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Abstract. Modular decomposition is a thoroughly investigated topic in
many areas such as switching theory, reliability theory, game theory and
graph theory. We propose an O(mn)-algorithm for the recognition of a
modular set of a monotone Boolean function f with m prime implicants
and n variables. Using this result we show that the the computation of
the modular closure of a set can be done in time O(mn2). On the other
hand, we prove that the recognition problem for general Boolean func-
tions is NP-complete. Moreover, we introduce the so called generalized
Shannon decomposition of a Boolean functions as an eÆcient tool for
proving theorems on Boolean function decompositions.
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1 Introduction

Substitution decomposition has been thoroughly studied by researchers in many
di�erent contexts such as switching theory, game theory, reliability theory, net-
work theory, graph theory and hypergraph theory. M�ohring and Radermacher
[17, 18] give an excellent survey for the various applications of substitution de-
composition and connections with combinatorial optimization. They also present
a framework for the algebraic and algorithmic aspects of substitution decom-
position for a number of discrete structures. Substitution decomposition (dis-
junctive and non-disjunctive decomposition) for general Boolean functions and
partially de�ned Boolean functions in switching theory is mainly developed by
Ashenhurst, Singer, Curtis and Hu [1, 2, 12, 14, 13]. Recently [8, 7, 15] the com-
plexity of non-disjunctive decompositions of partially de�ned Boolean functions
has been determined for various classes of Boolean functions. Decomposition for
monotone Boolean functions has been studied in several contexts: game theory
(decomposition of n-person games [24]), reliability theory (decomposition of co-
herent systems [5]) and set systems (clutters [4]). The concepts decomposition
and modular set are very basic in many contexts and applications. Not surpris-
ingly, the concept of a modular set is rediscovered several times under various
names: bound sets, autonomous sets, closed sets, stable sets, clumps, committees,



externally related sets, intervals, nonsimpli�able subnetworks, partitive sets and
modules, see [9, 17] and references therein. In all these contexts the collection
of all modular sets is eÆciently represented by the so called decomposition tree
introduced by Shaply in [24]. In graph theory eÆcient algorithms are known to
compute this tree [9, 16, 10]. The notion of a module in a graph has been re-
cently generalized to hypergraphs in [6]. A uni�ed treatment of all algorithms
(up to 1990) related to modular sets known in game theory, reliability theory and
set systems (clutters) is given by Ramamurthy [21]. In this paper we are inter-
ested in the algorithmic complexity of the decomposition of Boolean functions.
In switching theory this complexity has not been discussed. In this context de-
compositions are based by evaluating so-called Ashenhurt decomposition charts
or by using di�erential calculus [1, 2, 12, 14, 13]. It has been shown in [18, 17]
that the algorithms for the determination of modular sets is exponential in the
number of variables. However, here we will study the complexity of decompo-
sitions of Boolean functions given in DNF-form. We will show that for general
Boolean functions the problem: recognition of a modular set, is NP-complete.
For monotone Boolean functions the situation is di�erent. Various decomposi-
tion algorithms (in di�erent contexts) are known. Therefore, we brie
y discuss
the computational aspects of decomposition of monotone Boolean functions.

Computational aspects
It is proved by Singer [22] that the intersection of two modular sets of a Boolean
function with a non-empty intersection is again modular. Therefore, each subset
C of variables is contained in a smallest modular set called the modular closure
of C. The modular closure of a set was �rst introduced by Billera [4] in the
context of clutters. Let f be a monotone function de�ned on the set A, where
jAj = n; and let m be the number of prime implicants of f . Then according
to M�ohring and Radermacher [17] the modular tree can be computed in time
O(n3T (m;n)), where T (m;n) is the complexity of computing the modular clo-
sure of a set C � A. The �rst known algorithm due to Billera [4] is based on com-
puting the dual of f . Although this problem is NP-hard in general, for monotone
functions the complexity of the dualization problem is still not known, although
this problem is unlikely to be NP-hard, see e.g [3]. An improvement of Billera's
algorithm by Ramamurthy and Parthasarathy [19] also based on dualization has
a similar complexity. The �rst polynomial algorithm given by M�ohring and Ra-
dermacher (1984) reduced the complexity to T (m;n) = O(m3n4): Subsequently,
the complexity was further reduced by Ramamurthy and Parthasarathy [19] and
Ramamurthy [21] to respectively T (m;n) = O(m3n2) and T (m;n) = O(m2n2):
It is known that the determination of the modular closure can be solved by
solving O(n) times the following problem:

Problem MOD
Input : A Boolean function f with m prime implicants de�ned on A, where
jAj = n and C � A.
Output : "C is modular" if C is modular. An element x 2 Closure(C) nC other-



wise.

This paper is organized as follows. After introducing some de�nitions and con-
cepts in section (2), we introduce in section (3) the very useful concept of 'gen-
eralized Shannon decompostion' and we argue that this concept can be used to
simplify decomposition theory. In section (4) we discuss the complexity of de-
composition for general Boolean functions. Decompositions of monotone Boolean
functions are discussed in section (5). In section (6) we prove that problem MOD
can be solved in linear time. The last section contains the conclusions and topics
for further research.

2 De�nitions and notations

A Boolean function f : f0; 1gn 7! f0; 1g is called monotone(positive) on N =
f1; 2; � � � ; ng; if x � y ) f(x) � f(y). A Boolean function f is called degenerated
if it is constant: f � 0 (denoted by f = ?) or f � 1 (denoted by >). Otherwise
f is called non-degenerated. We frequently abbreviate the notation for a DNF of
a function f by identifying the variables with their indices and by using + for
_ :

Example 1. The function f(x1; x2; x3) = x1�x2 _ x3 is denoted by f = 1�2 + 3:

A variable xj of f is called essential if the restrictions respectively de�ned by:

f(xj = 0) = f(x1 � � �xj�1; 0; xj+1; � � � ; xn) and

f(xj = 1) = f(x1 � � �xj�1; 1; xj+1 � � � ; xn);

are not identical. The set of all essential variables is denoted by E(f). The dual
of the function f is de�ned by: fd(x) = �f(�x). Given a function f in DNF, then
the dual is obtained by interchanging ^ and _.

Disjunctive decompositions

Let f : f0; 1gn 7! f0; 1g be a Boolean function and A = f1; 2; � � � ; ng. Identify
each i 2 A with the variable xi: Then f is said to be a function de�ned on A:
Furthermore, if A = A1 [ A2 [ � � � ; An is a partition of A (Ai \ Aj = ;; i 6= j);
then we will denote this by xA = (xA1

; � � � ; xAn
) and f(xA) = f(xA1

; � � �xAn
):

Let F (y0A) and gi(xBi
) be Boolean functions de�ned on the mutually disjoint

sets A0 = f1; � � � ;mg and Bi; i 2 A0, and let A = [mi=1Bi. Then the Boolean
function de�ned by

f(xA) = F (g1(xB1
); � � � ; gm(xBm

));

is called the composition of the functions F and gi; i 2 A0, obtained by sub-
stitution of the variables yi in F by the functions gi; i 2 A0. This composition
is denoted by F [gi; i 2 A0]: A composition is called proper if jA0j > 1 and



jBij > 1 for some i 2 A0. A Boolean function is said to be decomposable if it
has a representation as a proper composition. Otherwise, the function f is called
indecomposable or prime. If F [gi; i 2 A0] is a decomposition of the functionf
then the partition � = fBi; i 2 A0g is called a congruence partition and F is
called the quotient of f modulo � and is denoted by f=�: From the de�nition of
decomposition it easily follows that

f = F [gi; i 2 A
0], fd = F d[gi

d; i 2 A0]:

Therefore, we have F = f=� , F d = fd=�: Moreover, it is well-known that the
functions gi; i 2 A0, are determined modulo complementation of the functions,
and that the quotient F is determined modulo complementation of the variables.
The algebraic properties of congruence partitions are discussed in [17, 18]. It is
known that each decomposition of a Boolean function f can be obtained by a
series of so called simple disjunctive decompositions. These are decompositions
of the form

f(xA) = F (xB ; g(xC));

where � = fB;Cg is a partition of A.

De�nition 1. Let f be a Boolean function de�ned on A Then C � A is called a
modular set of f if f has a simple disjunctive decomposition of the form f(xA) =
F (xB ; g(xC)): The function g is called a component of f .

The following theorem is fundamental:

Theorem 1. Let f be a general Boolean function. Suppose A and B are incom-
parable modular sets such that A \B 6= ;. Then A �B;A \ B; �AB and A [B are
modular sets of f , and f(xA[B) = f(xA �B)Æf(xA\B)Æf(x �AB); where Æ is either
^, _ or � : If f is monotone, then Æ is either ^ or _:

Remark 1. Theorem (1) is a famous result called the Three Modules Theorem
of Ashenhurst [2], reproved in game theory and reliability theory [21]. But as far
as we know this result is due to Singer [22].

Example 2. Let f be the monotone function de�ned by f = 134+234+135+235:
Let A = f1; 2; 3g; and B = f3; 4; 5g: Then A;B and A \ B are modular and
f = (1 + 2)3(4 + 5):

De�nition 2. Let f be a Boolean function de�ned on A. The closure of C � A
is de�ned by: Cl(f)(C) = \fB j C � B; B is a modular set of fg:

3 Generalized Shannon decomposition

Let f be a Boolean function on A. Then for all j 2 A the following decomposition
holds:

f = �xjfxj=0 _ xjfxj=1: (1)



Equation (1) is known as a Shannon decomposition of f: Now consider the simple
disjunctive decomposition

f(xA) = F (xB ; g(xC)): (2)

Then using equation (1) we have:

f(xA) = �g(xC)F0(xB) _ g(xC)F1(xB); (3)

where F0(xB) = F (xB ; 0) and F1(xB) = F (xB ; 1):
Conversely, let g and h0; h1 be arbitrary Boolean functions de�ned respectively
on C and B such that f = �gh0 _ gh1; and let the function F be de�ned by
F (xB ; y) := �yh0 _ yh1: Then f(xA) = F (xB ; g(xC)) is a simple disjunctive
decomposition of f , where F0(xB) = h0 and F1(xB) = h1: Therefore, we have
proved the following fundamental lemma:

Lemma 1. Let f be a Boolean function on A. Then C � A is a modular set of f
i� there exists a Boolean function g on A and functions h0 and h1 on B = AnC
such that f = �gh0 _ gh1:

We call the decomposition in the previous lemma a generalized Shannon decom-
position. In particular, we call the decomposition in equation (3) a generalized
Shannon decomposition associated with the simple disjunctive decomposition
(2). If C is a modular set of the function f such that C contains at least one
essential variable of f , then it follows from the decomposition

f = �gh0 _ gh1; (4)

that the function g is non-degenerate and that the functions h0 and h1 are not
identical. Therefore, there exists a binary vector b0 such that either g(xC) =
f(b0; xC) or �g = f(b0; xC): This shows that we may assume that the function g
is a subfunction of f .

De�nition 3. Let C be a modular set of f . Then a non-constant subfunction
f(b0; xC) is denoted by fC(xC): For general Boolean functions this subfunction
is determined modulo complementation. For monotone Boolean functions the
function fC(xC) is uniquely determined and called the contraction ([21]) of f
wrt to C:

In general, equation (4) shows that if b is a �xed vector then the function f(b; xC)
is either degenerate or identical to g of identical to �g: It is not diÆcult to see
that the converse holds also. Therefore, the following theorem holds:

Theorem 2. Let f be a Boolean function de�ned on A. If C � A contains at
least one essential variable of f , then the following statements are equivalent:

a) C is modular
b) There exists a vector b0 such that the function g(xC) := f(b0; xC) is non-

degenerate and for all �xed b the function fb := f(b; xC) is degenerate or
identical to either g or �g:



Lemma 2. Let f be a Boolean function de�ned on V and let fA;B;C;Dg be
a partition of V . Suppose f(xV ) = F (g(xA[B); xC ; xD) = G(xA; h(xB[C); xD):
Then there exist functions H and k such that f(xV ) = H(g(xA; k(xB); xC ; xD)).

Proof. In the proof the variables in D do not play a role. Therefore, we will
assume in our notation that f is actually de�ned on the partition fA;B;Cg:
From theorem (1) it follows that g = fA[B : Therefore, there exists a vector c
such that:

g(xA; xB) = G(xA; h(xB ; c)) = �k(xB)G0(xA) _ k(xB)G1(xA); (5)

where k is de�ned as: k(xB) = h(xB ; c): According to equation (4), we also have:

f(xV ) = �g(xA; xB)F0(xC) _ g(xA; xB)F1(xC): (6)

Combining 5 and 6 gives after some re-grouping of terms:

f(xV ) = H0(xA[C)�k(xB) _H1(xA[C)k(xB) = H(xA; k(xB); xC):
ut

It is easy to see that lemma (2) is equivalent to the following theorem due to
Singer [22]:

Theorem 3. Let f be a Boolean function de�ned on N: If A;B � N are modular
sets of f such that A \B 6= ;, then A \ B is also a modular set of f .

Remark 2. This fundamental theorem is proved in the literature in a much more
elaborate way by considering Ashenhurst decomposition charts, expansions of
Boolean functions or di�erential calculus ([1, 2, 12, 14, 13]). In fact the theory
using Ashenhurt decomposition charts can be more easily developed by using
the concept 'generalized Shannon decomposition' discussed in this section.

4 Complexity of decomposition for general Boolean

functions

In this section we prove that for general Boolean functions the problem of rec-
ognizing modular sets (called MODULAR) is coNP-complete.

Problem MODULAR
Given: A Boolean function f in DNF de�ned on A and a set C � A that contains
at least one essential variable of f .
Question: Is C a modular set of f ?

We relate this problem to the following recognition problem that is coNP-
complete:

Problem COMPLEMENT
Given: Boolean functions f and g in DNF.
Question: f = �g ?



Lemma 3. Problem COMPLEMENT is reducible to MODULAR

Proof. We will prove this lemma by reducing problem COMPLEMENT to prob-
lem MODULAR. Suppose g1 and g2 are Boolean functions given in DNF on
C = fx1 � � � ; xng: De�ne the function f on C [ fx; yg as:

f = xg1 _ yg2: (7)

If g2 = �g1; then C is a modular set of f . Conversely, suppose C is modular and
C contains essential variables of f . Then there exists a pair of binary values
(x0; y0) such that the function g de�ned by g = f(x0; y0; xC) is non-degenerate.
Furthermore, according to theorem (2) for all �xed x and y the function h(xC) =
f(x; y; xC) is constant or identical to the function g or its complement. From
equation (7) it follows that h 2 f?; g2; g1; g1 _ g2g: Therefore, we have g2 = �g1:
Conclusion: g2 = �g1 , C is modular.

ut
The following lemma is easy to prove:

Lemma 4. Suppose C � N and g and fc are Boolean functions de�ned on
respectively �C and N: Let f be function de�ned by f = g _ fc: Then C is a
modular set of f i� C is a modular set of fc:

Lemma 5. MODULAR is in coNP.

Proof. Let f be a Boolean function on A and C a subset of A that contains at
least one essential variable of f . Suppose f = g_fc (see lemma (4)) and

Wm
j=1 cj

is a DNF-representation of fc, where we assume that each term cj contains a
variable in C. We may assume also that each term cj contains a variable in
�C, for otherwise we replace cj by cj = x0cj _ �x0cj ; where x0 2 C. Therefore,
each term cj can be written as cj = sjtj ; where sj and tj are conjunctions
de�ned on �C respectively C. Let S = fsi j i 2 �Cg and T = ftj j j 2 Cg.
Finally, let � =

W
i2S si and  =

W
j2T tj : We now de�ne the connection-matrix

A = (�i;j) by �i;j = 1, sitj is a term of fc (i 2 S; j 2 T ). By construction each
row and column of A has a non-zero entry. If A is constant, then fc = � ^  ;
implying that C is modular. Otherwise, the matrix A contains at least one
non-constant row Rp. To check the modularity of C we de�ne the functions
g =

W
jfsptj j �p;j = 1g; h0 =

W
fsitp j �i;k = 1g, where k is a �xed index such

that �p;k = 0, and h1 =
W
i sitl j �i;l = 1g, where l is a �xed index such that

�p;l = 1: Then according to theorem (4) C is non-modular i� f 6= h0�g _ h1g:
All the constructions in the proof can be done in time O(n2m2). Moreover, to
show that C is not modular, it is suÆcient to exhibit a binary vector x such
that f(x) 6= h0(xAnC)�g(xC) _ h1(xAnC)g(xC): This establishes that problem
MODULAR is in coNP.

ut
The lemma's (3) and (5)imply:

Theorem 4. Problem MODULAR is coNP-complete.



5 Decompositions of monotone Boolean functions

In this section we will frequently represent a subset C � N by its characteristic
vector c 2 f0; 1gn. A positive Boolean function has a unique irredundant DNF
consisting of all prime implicants. The set of prime implicants correspond to the
this of minimal true vectors of f , denoted by minT (f): It is well-known that
minT (fd) represents the set of minimal transversals of minT (f). The comple-
ment of a false vector is a transversal: f(x) = 0, fd(�x) = 1.

Example 3. Let f be the function de�ned by f(x) = x1x2 _ x2x3 Then:
fd(x) = (x1 ^ x3)(x2 ^ x3) = x2 ^ x1x3, minT (fd) = f010; 101g are the min-
imal transversals of minT (f) = f110; 011g; and 001 is a false vector and its
complement 110 is a transversal of minT (f).

De�nition 4. For a monotone function f the function fc is de�ned by:
minT (fc) = fv j v 2 minT (f); v ^ c 6= 0g:

From this de�nition it follows that every monotone Boolean function f has
the following basic decomposition:

f = f(c = 0) _ fc: (8)

Furthermore for a monotone Boolean function f Shannon's decomposition has
the form:

f(x) = f(xj = 0) _ xjf(xj = 1): (9)

De�nition 5. Let f be a monotone function. Then the contraction of f on c is
de�ned by fc = fc(�c = 1); where (�c = 1) indicates that all the variables in �C are
replaced by 1.

The following characterization of the contraction is well known, see [21]:

Theorem 5. Let x � c. Then: fc(x) = 1 , 9y � �c such that f(y) = 0 and
f(x _ y) = 1.

Example 4. Let the monotone function f be de�ned by:
f = 1245 + 126 + 2345+ 236 + 46 and let C = f1; 2; 3g: Then
c = 111000; and f(c = 0) = 46; fc = 1245+ 126 + 2345 + 236; fc = 12 + 23:

Theorem 6. Let f be a monotone Boolean function de�ned on N and let C �
N . Then C is modular i�

f = f(c = 0) _ fc(c = 1)fc , fc = fc(c = 1)fc:

Proof. If C is modular, then f = F (xB ; g(xC)), where fB;Cg is a partition of
N: Then Shannon's decomposition: F (xB ; y) = F (y = 0) _ yF (y = 1); implies:

f = f(c = 0) _ gf(c = 1): (10)



Furthermore, since f(c = 1) = fc(c = 1) _ f(c = 0) by equation (8), equation
(10) implies:

f = f(c = 0) _ gfc(c = 1): (11)

Using the fact that the functions f(c = 0) and fc(c = 1) are de�ned on B =
N n C, equation (11) implies:

fc(xC) = fc(�c = 1)(xC) = g(xC):

Therefore, we have the decomposition:

f = f(c = 0) _ fc(c = 1)fc: (12)

Conversely, if equation (12) holds, then C is modular.
ut

Remark 3. Note, that by checking the equation fc = fc(c = 1)fc the problem
of deciding whether a set C is modular or not can be solved in time O(m2n2) !

Example 5. Consider the function f of the previous example, and let C =
f1; 2; 3g: Then: fc = fc(c = 1)fc = (45 + 6)(12 + 23).

Characterizations of modular sets

Its is known [21] that a modular set can be characterized as follows:

Theorem 7. Suppose f is a monotone, non-degenerate function de�ned on A,
C � A and e(f) ^ c 6= 0, where e(f) denotes the characteristic vector of the set
of essential variables of f . Then the following are equivalent:

a) C is a modular set of f
b) (fd)c = (fc)

d

c) C is a modular set of fc

d) 8v;w 2 minT(fc) : f(vc _w�c) = 1
e) min T (fc) = fvc _ w�c j v; w 2 minT (fc)g
f) e(((fc)d)c) = e(f) ^ c.

Example 6. Consider the function f = (12+23)(45+6) = 1245+126+2345+236:
If C = f1; 2g or C = f1; 2; 3g; then fcd = 2 + 13 + 46 + 56: If C = f1; 2; 3g,
then e(fcdc) = c: However, if C = f1; 2g, then C is not modular because 9v 2
minT (fcd) with v ^ c 6= 0 such that v 6� c.

Computing the modular closure
The following theorem [21] relates the modular closure of fc to its dual:

Theorem 8. c � e(fcdc) � Clfc(c) � Clf (c):

Theorem 9. Suppose f is a monotone function and u; v 2 minT (fc): If f(uc_
v�c) = 0; then the vector t = �uc _ �v�c 2 T (fcd): Furthermore, 8w 2 minT (fcd)
such that w � t we have 0 6� w�c � e(fcdc):



Proof. It is easy to see that �t = uc_v�c; so t 2 T (fcd): Furthermore, the assump-
tions imply w � �uc _ �v�c; and �u; �v 2 F (fcd): Therefore, since w 2 minT (fcd) we
conclude w 6� �uc and w 6� �v�c, implying w�uc 6= 0 and w�v�c 6= 0: From this we
conclude that w � e(fcdc) and that w�c 6= 0:

ut

Remark 4. Given t; then a vector w in theorem (9) can be determined in time
O(mn2), since it is known that a minimal transversal w can be obtained from a
transversal t in O(n) steps. Therefore, the theorem shows that we can determine
an element in Clf (C) n C from t in time O(mn2):

De�nition 6. Suppose 9u; v 2 min T (fc) such that f(uc _ v�c) = 0: Then we
call the vector uc _ v�c a culprit of f wrt c.

The following lemma is of independent interest:

Lemma 6. Suppose f is a monotone Boolean function and fd(w) = 1: Let
v 2 argminfjuwj j u 2 minT (f)g: Then for all unit vectors e � wv there exits
a vector w0 2 minT (fd) such that e � w0 � w:

Proof. Since w�v ^ v = 0 and v 2 minT (f) we conclude that w�v 62 T (fd): On
the other hand we claim that

w�v _ e 2 T (fd): (13)

To prove this claim we suppose that u 2 minT (f) but (w�v_e)^u = 0: Then we
have e 6� u and w�vu = 0: However, the last equality implies wu � v; implying

0 6= wu � wv: (14)

By the minimality assumption we then have wu = wv: Since e 6� u and e � wv;
this is a contradiction. This proves our claim (13). Furthermore we claim that:

8w0 2 minT (f
d) such that: w0 � w�v _ e; we have e � w0: (15)

To prove claim (15), assume e 6� w0: Then we would have: w0 � w�v: However,
w�v 62 T (fd), so w0 6� w�v: Contradiction. This �nishes our proof.

ut
A useful variation of this lemma is:

Lemma 7. Suppose f is a monotone Boolean function and fd(w) = 1: Let c be a
vector such that U = fu 2 minT (f) j uwc = 0g 6= ;: Let v 2 argminu2Uf juwj g:
Then for all unit vectors e � wv there exits a vector w0 2 minT (fd) such that
e � w0 � w:

Proof. Note, that the inequality (14) implies: wuc � wvc = 0; so u 2 U: Using
this observation the proof of this lemma is the same as the proof of lemma (6)

ut
The following fundamental theorem is a variation of a theorem in [21]:



Theorem 10. Let f be a monotone function. Suppose t is the complement of a
culprit of f wrt to c. Then U = fu 2 minT (fc) j utc = 0g 6= ;: Furthermore, if
u0 2 argminu2Uf jutj g; then 0 6= u0t = u0t�c � Clf (c):

Proof. Since t is the complement of a culprit we have 9v; w 2 minT (fc) such
that t = �vc _ �w�c; and fcd(t) = 1: Furthermore, since �vc 62 T (fcd) there must
exist a vector u0 2 minT (f c) such that u0�vc = 0: From u0tc = u0�vc = 0 it
follows that u0 2 U: Now suppose u0 2 argminu2Uf jutj g; then according to
lemma (7): for all unit vectors e � u0t we have: 9t0 2 minT (fcd) such that
e � t0 � t: Now theorem (8) implies 0 6= t0�c � e(fcdc): Therefore, we have:
0 6= u0t = u0t�c � Clf (c):

ut

Remark 5. The vector u0t can be determined in O(mn) time. Therefore, if a
culprit is known, then we can determine in O(mn) time an element in Clf (C)nC:

6 Solving MOD in linear time

In this section we show that the problem MOD introduced in section (1) can
be solved in linear time: O(mn). We �rst introduce some notations for a given
monotone Boolean function f on A: M = minT (fc) = fv1; � � � ; vmg, S =
fvc j v 2 Mg and T = fv�c j v 2 Mg: Let p = jSj and q = jT j: For each v 2 M
we can write v = vc _ �vc as a 2n-vector: (vcjv�c): Now we consider the list of all
(column-)vectors:

vc v1c v2c � � � � � � vmc
v�c v1�c v2�c � � � � � � vm�c

.

According to [23], the set of all these 2n-vectors can be lexicographical sorted in
time O(mn): Now it follows from the next lemma (8) that C is modular i� the
sorted list of all 2n-vectors has the following structure:

S =
vc s1 � � � s1 s2 � � � s2 � � � � � � sp � � � sp
v�c t1 � � � tq t1 � � � tq � � � � � � t1 � � � tq

.

So if C is modular, then the structure S consists of p segments of length q, and
m = pq: It is easy to see by scanning from left to right that the structure S can
be identi�ed in time O(mn). Therefore, it can be determined in time O(mn)
whether a set C is modular or not. However, the more diÆcult part is to show
that we can �nd an element x 2 Closure(C) n C in linear time if C is not
modular. We call such an element a culprit wrt the non-modularity of C:

Finding a culprit in linear time

Let V;W be subsets of A, and let v and w denote their characteristic vectors.
Then we denote V < W respectively V > W by v < w and v > w: Furthermore,
we use the following notations: v � w , (v < w or v > w); and v ' w , (v �
w or v > w): The next basic lemma is used several times in order to �nd a
culprit.



Lemma 8. Let s1; s2 and t1; t2 denote arbitrary elements in respectively the �rst
and second row of the list S. Then:

a) s1 ' s2 ) t1 6' t2
b) t1 ' t2 ) s1 6' s2
c) If either s1 � s2 or t1 � t2, then either s1 _ t2 or s2 _ t1 is a culprit.
d) If s1 _ t2 does not occur in the list S and s1 and t2 are minimal, then s1 _ t2

is a culprit.

Proof. c) Let v and w be minimal vectors of fc such that s1 = vc; s2 = wc; t1 =
v�c and t2 = w�c. Suppose s1 � s2, e.g vc > wc. Then v = vc_v�c > wc_v�c. Since
v is a minimal vector of fc, the vector wc _ v�c is a culprit: f(wc _ v�c) = 0, see
theorem (7 c). The other assertions are proved similar.

ut

Corollary 1. If s1 _ t2 does not occur in the list S, than a culprit can be found
in time O(mn); see the next example (7).

We will now describe our algorithm to decide if a set C is modular, or other-
wise to �nd a culprit. The overall algorithm is given in the procedure Modular.

Modular(L, var culprit):
flag := false; culprit := false
call FirstSegment
while flag = true do call NextSegment

The procedure Firstsegment scans the list S from left to right, by comparing
each element in the �rst row by s1. In this procedure we determine the length
of the �rst segment and the �rst element in the next segment. While there is a
next segment, i.e if there is an element si 6= S1 indicated by flag = true; then
we start the procedure Nextsegment. Both procedures determine the beginning
of the next segment by updating the variable index. The beginning of each next
segment is given by S1:

FirstSegment(L, var index; flag; culprit; p; q):
if s1 6= s2 then

if s1 � s2 then return culprit
else if 8j > 1 tj = t1 then return (q = 1; p = m)

else j0 := minfj j tj 6= t1g
(so s1 _ tj0 is not in L) return culprit

else if 8i > 2 si = s1 then return (p = 1; q = m)
else i0 := minfi j si 6= s1g;
if si0 � s1 then return culprit

else return (q = i0 � 1; p = m=q; index = q + 1; f lag = true)

The procedure Nexsegment also detects whether the length of each next segment
is equal to p. If not, then either S1 _ ti or si _ T1 is not in the list. In that case
we scan the list to �nd an element si or tj comparable to respectively S1 and
T1; see corollary (1)



Example 7. Let f = 15 + 16 + 245 + 35 + 36 + 46; and C = f1; 2; 3; 4g: Then

the sorted list is given by S =
1 1 24 3 3 4
5 6 5 5 6 6

. In this example the �rst segment

has length p = 2. Since the fourth element in the �rst row is not equal to 24 we
detect that 246 is not in S. By comparing 24 with the next elements in the �rst
row we discover that 4 is comparable with 24. Hence 45 is not a true vector of
fc: Therefore the vector 000110 is a culprit.

ut

NextSegment(L, var index; flag; culprit):
flag := false; i := 2;S1 := sindex
while Si = S1 do i := i+ 1
�q := i� 1
if �q 6= q then (note: either S1 _ Ti or Si _ T1 is not in L) return culprit

else call Compare
if Sq+1 � S1 then return culprit

else return (flag = true; index = q + 1)

Even if all the elements in the �rst row of a segment are equal to those of
the �rst segment, we have to compare all the elements of the second row with
those of the elements of the �rst segment in the second row. This comparison is
made in the procedure Compare called in the procedure Nextsegment.

Compare(T , var culprit):
culprit := false
if 8j 2 f1; � � � qg Tj = tj then return

else j0 := minfj j Tj 6= tjg
if Tj0 � tj0 then return culprit

else (s1 _ Tj0 or Sj0 _ t1 is not in L) return culprit

7 Conclusions and further research

For monotone Boolean functions the recognition of modular sets and therefore
the computation of the modular closure and the modular tree can be reduced
with a factor O(m). On the other hand we have proved that for general Boolean
functions the recognition problem is NP-complete. We also argued that the gener-
alized Shannon representation of a disjunctive decomposition is an e�ective tool
to study decompositions of Boolean functions. Compared with the set theoretic
approach used in the literature it appears that the Boolean function approach is
more transparent. Since partially de�ned Boolean functions play an important
role in many datamining tasks we consider decomposition theory in datamin-
ing also as an important task for further research. Finally decompositions with
components restricted to a certain class, e.g. self-dual functions (committees in
game theory), regular functions etc. are an interesting topic for future research.
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