4,167 research outputs found

    Optimum quantization of a class of non-bandlimited signals

    Get PDF
    We consider the quantization of a special class of non bandlimited signals, namely the class of discrete time signals that can be recovered from their decimated version. Similar to sigma-delta modulation ideas, we show that we can obtain a great reduction in the quantization noise variance due to the oversampled nature of these signals. We then consider noise shaping by optimizing a pre- and post filter around the quantizer and develop a closed form expression for the coding gain of the scheme under study. The use of an orthonormal filter bank as a sophisticated quantizer is investigated and several examples are provided

    Oversampling PCM techniques and optimum noise shapers for quantizing a class of nonbandlimited signals

    Get PDF
    We consider the efficient quantization of a class of nonbandlimited signals, namely, the class of discrete-time signals that can be recovered from their decimated version. The signals are modeled as the output of a single FIR interpolation filter (single band model) or, more generally, as the sum of the outputs of L FIR interpolation filters (multiband model). These nonbandlimited signals are oversampled, and it is therefore reasonable to expect that we can reap the same benefits of well-known efficient A/D techniques that apply only to bandlimited signals. We first show that we can obtain a great reduction in the quantization noise variance due to the oversampled nature of the signals. We can achieve a substantial decrease in bit rate by appropriately decimating the signals and then quantizing them. To further increase the effective quantizer resolution, noise shaping is introduced by optimizing prefilters and postfilters around the quantizer. We start with a scalar time-invariant quantizer and study two important cases of linear time invariant (LTI) filters, namely, the case where the postfilter is the inverse of the prefilter and the more general case where the postfilter is independent from the prefilter. Closed form expressions for the optimum filters and average minimum mean square error are derived in each case for both the single band and multiband models. The class of noise shaping filters and quantizers is then enlarged to include linear periodically time varying (LPTV)M filters and periodically time-varying quantizers of period M. We study two special cases in great detail

    Efficient Synthesis of Room Acoustics via Scattering Delay Networks

    Get PDF
    An acoustic reverberator consisting of a network of delay lines connected via scattering junctions is proposed. All parameters of the reverberator are derived from physical properties of the enclosure it simulates. It allows for simulation of unequal and frequency-dependent wall absorption, as well as directional sources and microphones. The reverberator renders the first-order reflections exactly, while making progressively coarser approximations of higher-order reflections. The rate of energy decay is close to that obtained with the image method (IM) and consistent with the predictions of Sabine and Eyring equations. The time evolution of the normalized echo density, which was previously shown to be correlated with the perceived texture of reverberation, is also close to that of IM. However, its computational complexity is one to two orders of magnitude lower, comparable to the computational complexity of a feedback delay network (FDN), and its memory requirements are negligible

    All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials

    Get PDF
    A simple method for approximation of all-pole recursive digital filters, directly in digital domain, is described. Transfer function of these filters, referred to as Ultraspherical filters, is controlled by order of the Ultraspherical polynomial, nu. Parameter nu, restricted to be a nonnegative real number (nu ≥ 0), controls ripple peaks in the passband of the magnitude response and enables a trade-off between the passband loss and the group delay response of the resulting filter. Chebyshev filters of the first and of the second kind, and also Legendre and Butterworth filters are shown to be special cases of these allpole recursive digital filters. Closed form equations for the computation of the filter coefficients are provided. The design technique is illustrated with examples

    Methods and aspects of active-RC filter synthesis

    Get PDF

    Computer-Aided Design of Switched-Capacitor Filters

    Get PDF
    This thesis describes a series of computer methods for the design of switched-capacitor filters. Current software is greatly restricted in the types of transfer function that can be designed and in the range of filter structures by which they can be implemented. To solve the former problem, several new filter approximation algorithms are derived from Newton's method, yielding the Remez algortithm as a special case (confirming its convergency properties). Amplitude responses with arbitrary passband shaping and stopband notch positions are computed. Points of a specified degree of tangency to attenuation boundaries (touch points) can be placed in the response, whereby a family of transfer functions between Butterworth and elliptic can be derived, offering a continuous trade-off in group delay and passive sensitivity properties. The approximation algorithms have also been applied to arbitrary group delay correction by all-pass functions. Touch points form a direct link to an iterative passive ladder design method, which bypasses the need for Hurwitz factorisation. The combination of iterative and classical synthesis methods is suggested as the best compromise between accuracy and speed. It is shown that passive ladder prototypes of a minimum-node form can be efficiently simulated by SC networks without additional op-amps. A special technique is introduced for canonic realisation of SC ladder networks from transfer functions with finite transmission at high frequency, solving instability and synthesis difficulties. SC ladder structures are further simplified by synthesising the zeros at +/-2fs which are introduced into the transfer function by bilinear transformation. They cause cancellation of feedthrough branches and yield simplified LDI-type SC filter structures, although based solely on the bilinear transform. Matrix methods are used to design the SC filter simulations. They are shown to be a very convenient and flexible vehicle for computer processing of the linear equations involved in analogue filter design. A wide variety of filter structures can be expressed in a unified form. Scaling and analysis can readily be performed on the system matrices with great efficiency. Finally, the techniques are assembled in a filter compiler for SC filters called PANDDA. The application of the above techniques to practical design problems is then examined. Exact correction of sinc(x), LDI termination error, pre-filter and local loop telephone line weightings are illustrated. An optimisation algorithm is described, which uses the arbitrary passband weighting to predistort the transfer function for response distortions. Compensation of finite amplifier gain-bandwidth and switch resistance effects in SC filters is demonstrated. Two commercial filter specifications which pose major difficulties for traditional design methods are chosen as examples to illustrate PANDDA's full capabilities. Significant reductions in order and total area are achieved. Finally, test results of several SC filters designed using PANDDA for a dual-channel speech-processing ASIC are presented. The speed with which high-quality, standard SC filters can be produced is thus proven
    • …
    corecore