488 research outputs found

    Scattered data fitting on surfaces using projected Powell-Sabin splines

    Get PDF
    We present C1 methods for either interpolating data or for fitting scattered data associated with a smooth function on a two-dimensional smooth manifold Ī© embedded into R3. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of local projections on the tangent planes. The data fitting method is a two-stage method. We illustrate the performance of the algorithms with some numerical examples, which, in particular, confirm the O(h3) order of convergence as the data becomes dens

    Interpolation and scattered data fitting on manifolds using projected Powellā€“Sabin splines

    Get PDF
    We present methods for either interpolating data or for fitting scattered data on a two-dimensional smooth manifold. The methods are based on a local bivariate Powell-Sabin interpolation scheme, and make use of a family of charts {(UĪ¾ , Ī¾)}Ī¾āˆˆ satisfying certain conditions of smooth dependence on Ī¾. If is a C2-manifold embedded into R3, then projections into tangent planes can be employed. The data fitting method is a two-stage method. We prove that the resulting function on the manifold is continuously differentiable, and establish error bounds for both methods for the case when the data are generated by a smooth function

    Efficient spatial modelling using the SPDE approach with bivariate splines

    Get PDF
    Gaussian fields (GFs) are frequently used in spatial statistics for their versatility. The associated computational cost can be a bottleneck, especially in realistic applications. It has been shown that computational efficiency can be gained by doing the computations using Gaussian Markov random fields (GMRFs) as the GFs can be seen as weak solutions to corresponding stochastic partial differential equations (SPDEs) using piecewise linear finite elements. We introduce a new class of representations of GFs with bivariate splines instead of finite elements. This allows an easier implementation of piecewise polynomial representations of various degrees. It leads to GMRFs that can be inferred efficiently and can be easily extended to non-stationary fields. The solutions approximated with higher order bivariate splines converge faster, hence the computational cost can be alleviated. Numerical simulations using both real and simulated data also demonstrate that our framework increases the flexibility and efficiency.Comment: 26 pages, 7 figures and 3 table

    IGS: an IsoGeometric approach for Smoothing on surfaces

    Full text link
    We propose an Isogeometric approach for smoothing on surfaces, namely estimating a function starting from noisy and discrete measurements. More precisely, we aim at estimating functions lying on a surface represented by NURBS, which are geometrical representations commonly used in industrial applications. The estimation is based on the minimization of a penalized least-square functional. The latter is equivalent to solve a 4th-order Partial Differential Equation (PDE). In this context, we use Isogeometric Analysis (IGA) for the numerical approximation of such surface PDE, leading to an IsoGeometric Smoothing (IGS) method for fitting data spatially distributed on a surface. Indeed, IGA facilitates encapsulating the exact geometrical representation of the surface in the analysis and also allows the use of at least globally C1āˆ’C^1-continuous NURBS basis functions for which the 4th-order PDE can be solved using the standard Galerkin method. We show the performance of the proposed IGS method by means of numerical simulations and we apply it to the estimation of the pressure coefficient, and associated aerodynamic force on a winglet of the SOAR space shuttle

    Splines and Wavelets on Geophysically Relevant Manifolds

    Full text link
    Analysis on the unit sphere S2\mathbb{S}^{2} found many applications in seismology, weather prediction, astrophysics, signal analysis, crystallography, computer vision, computerized tomography, neuroscience, and statistics. In the last two decades, the importance of these and other applications triggered the development of various tools such as splines and wavelet bases suitable for the unit spheres S2\mathbb{S}^{2}, ā€…ā€…S3\>\>\mathbb{S}^{3} and the rotation group SO(3)SO(3). Present paper is a summary of some of results of the author and his collaborators on generalized (average) variational splines and localized frames (wavelets) on compact Riemannian manifolds. The results are illustrated by applications to Radon-type transforms on Sd\mathbb{S}^{d} and SO(3)SO(3).Comment: The final publication is available at http://www.springerlink.co
    • ā€¦
    corecore