
Strathprints Institutional Repository

Davydov, O. and Schumaker, L.L. (2008) Interpolation and scattered data fitting on manifolds using
projected Powell–Sabin splines. IMA Journal of Numerical Analysis, 28 (4). pp. 785-805. ISSN
0272-4979

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9024348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Interpolation and Scattered Data Fitting on
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on the occasion of his 70th birthday

Abstract

We present methods for either interpolating data or for fitting scat-
tered data on a two-dimensional smooth manifold Ω. The methods
are based on a local bivariate Powell-Sabin interpolation scheme, and
make use of a family of charts {(Uξ , φξ)}ξ∈Ω satisfying certain condi-
tions of smooth dependence on ξ. If Ω is a C2-manifold embedded
into R

3, then projections into tangent planes can be employed. The
data fitting method is a two-stage method. We prove that the re-
sulting function on the manifold is continuously differentiable, and
establish error bounds for both methods for the case when the data
are generated by a smooth function.

1 Introduction

Let Ω be a 2-dimensional smooth manifold. For simplicity we assume that
Ω is compact and has no boundary. Suppose we are given the values of a
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(possibly unknown) smooth function f defined on Ω at a set of points X on
Ω. Our aim is to construct a function s defined on Ω that approximates f .
This problem arises frequently in practice, see Remark 8.1, but there do not
seem to be many methods available for general manifolds. Several methods
have been developed for the case when Ω is the sphere, see Remark 8.2.

Our approach to solving this problem is as follows. Suppose we have an
atlas Φ = {(Uξ, φξ)}ξ∈Ω for Ω, where for each ξ ∈ Ω, Uξ are open sets on Ω
containing ξ, and φξ are mappings of Uξ into R

2. We assume that the φξ

depend smoothly on ξ in a way to be described in Definition 3.1. Then for
each ξ ∈ Ω, we map the data locations into φξ(Uξ) ⊂ R

2, and use a local
bivariate Powell-Sabin spline to compute the value s(ξ) of the approximating
function s. This approach is related to methods introduced by Demjanovich
[11, 12] and Pottmann [29], see Remarks 8.3 and 8.4.

The paper is organized as follows. In Section 2 we describe the classi-
cal bivariate piecewise quadratic spline interpolant by Powell and Sabin [30],
and prove that it depends smoothly on the vertex locations and the data.
In Section 3 we introduce some basic concepts and notation, including at-
lases, gradients, Sobolev spaces, and triangulations on manifolds. In view
of the Poincaré-Hopf index theorem, local parametrizations defined by the
charts (Uξ, φξ) in general cannot be smooth functions of ξ, see Remark 8.7.
Therefore, we introduce a weaker concept of smoothness whereby φζ for ζ
close to ξ may be adjusted by local rotations or rotoinversions (see Defini-
tion 3.1). In Section 4 we present a method for constructing an interpolant
to data on an arbitrary smooth 2-dimensional manifold Ω, assuming we are
also given values for the gradients at each of the data locations in X. We
show that the method produces a C1 function on Ω, and give an error bound
for how well it approximates smooth functions. In Section 5 we describe a
two-stage scattered data fitting method which is more appropriate than in-
terpolation for large data sets, and for highly irregularly distributed or noisy
data. This method does not require the knowledge of the gradients. In the
next section we give an error bound for this method. In Section 7 we spe-
cialize to the case where the manifold is embedded in R

3. In particular, we
show how to explicitly construct an atlas with the required properties using
local projections into tangent planes and discuss certain simplifications in
the algorithms. More details on our method used with this specific atlas
can be found in our paper [9], which also gives numerical examples for both
the sphere and for certain ring-type manifolds. We conclude the paper with
remarks and references.
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Figure 1: A triangulation △ and its Powell-Sabin refinement △PS.

2 The Powell-Sabin Spline Interpolant

We begin by recalling some facts about certain C1 quadratic spline spaces
introduced in [30]. Let △ be a regular triangulation of a polygonal domain
G in R

2, and let {vi}
n
i=1 be its set of vertices, where vi := (xi, yi). We write

△PS for the well-known Powell-Sabin refinement of △, where the split point
vT in each triangle T is taken to be its incenter see Definition 4.18 of [21].
Thus, △PS is obtained from △ by connecting the incenter of each triangle T
to the incenters of all triangles in △ that share an edge with T , and to the
vertices of T . If T has any edges on the boundary of G, then we also connect
vT with the midpoints of such edges. Figure 1 shows a triangulation △ and
its associated Powell-Sabin refinement, see also Figure 3. It is well known
that for any real numbers {zi, z

x
i , z

y
i }

n
i=1, there exists a unique spline s in the

space S1
2 (△PS) of all C1 piecewise quadratic functions with respect to △PS

such that

s(vi) = zi, Dxs(vi) = zx
i , Dys(vi) = zy

i , i = 1, . . . , n, (2.1)

where Dx, Dy stand for the x- and y-derivatives, respectively.
It is also known that the value s(u) at a point u ∈ G depends locally on

the data z = (z1, z
x
1 , z

y
1 , . . . , zn, z

x
n, z

y
n). In particular, if u lies in the triangle

T ∈ △, then s(u) is uniquely determined by the data at the three vertices of
T .

Clearly, the value s(u) is also a function of the locations of the vertices
in the set {vi}

n
i=1. So to be precise we should write s(V, z, u) to show the

dependence on V := (v1, . . . , vn), z and u. Suppose △ε is a triangulation
obtained from △ by perturbing the vertices by a small amount. Clearly, a
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sufficiently small perturbation does not produce any degenerate or overlap-
ping triangles in △ε. We write V ε for the perturbed vertices, and △ε

PS for
the corresponding Powell-Sabin refinement of △ε.

Theorem 2.1. s(V, z, u) is a C1 function of the parameters V, z, u.

Proof. It is well known that the Powell-Sabin spline is shift-invariant in the
sense that

s(V − w, z, u− w) = s(V, z, u), for any w ∈ R
2, (2.2)

see [30]. This implies that s(V, z, u) = s(V − u + u0, z, u0) for any fixed
u0 ∈ R

2. Moreover, since S1
2 (△PS) is a linear space, s(V, z, u) is a linear

function of z, that is

s(V, z, u) =

n
∑

i=1

zi s(V, ǫi, u) + zx
i s(V, ǫ

x
i , u) + zy

i s(V, ǫ
y
i , u),

where ǫi, ǫ
x
i , ǫ

y
i ∈ R

3n are the corresponding unit vectors. Hence, the theorem
will follow if we hold u and z fixed and show that s(V, z, u) is continuously
differentiable as a function of V .

We consider three cases depending on whether u lies in the interior of a
triangle in △PS, in the interior of an edge of a triangle, or at a vertex of
△PS.

Case 1: Suppose u lies in the interior of a triangle t ∈ △PS. Then for any
sufficiently small perturbation of the vertices V , u also lies in the interior of
the perturbed triangle tε. Let

qε :=
∑

i+j+k=2

cεijkB
ε
ijk

be the quadratic polynomial that coincides with the spline sε := s(V ε, z, ·)
on tε, where Bε

ijk are the quadratic Bernstein basis polynomials associated

with tε, see [21]. Since Bε
ijk = 2

i!j!k!
bi1b

j
2b

k
3, where b1, b2, b3 are the barycentric

coordinates relative to tε, the values Bε
ijk(u) are analytic functions of the

coordinates of the vertices of tε. Moreover, c.f. the formulae in Theorem 6.11
of [21], the cεijk are also analytic functions of the coordinates of the vertices of
△ε

PS. Since the incenter of a triangle is an analytic function of its vertices, the
vertices of △ε

PS are analytic functions of V ε, and we conclude that s(V, z, u)
is an analytic function of V in this case.
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For later use, we observe that for any vertex w of △PS, s(V, z, w) is an
analytic function of V . Indeed, denote by wε the perturbed version of w,
and choose a triangle tε ∈ △ε

PS attached to wε. Then s(V ε, z, wε) = cε200 if
the vertices of tε are numbered accordingly. As mentioned above, cε200 is an
analytic function of the vertices.

Case 2: Suppose u lies in the interior of an edge e of △PS shared by two
triangles t1, t2 ∈ △PS. In this case, a small perturbation V ε of the vertices
V will leave u in the interior of tε1 ∪ t

ε
2. Let qε

1 be the quadratic polynomial
defined on tε1 as in Case 1. Then for (x, y) ∈ tε1 ∪ t

ε
2,

sε(x, y) = qε
1(x, y) + αεψε(x, y),

where

ψε(x, y) =

{

0, if (x, y) ∈ tε1,

ℓ2ε(x, y), if (x, y) ∈ tε2,

and ℓε(x, y) is a linear function that vanishes on the line containing e, and
is positive in the interior of tε2. Then ψε(x, y) is the composition of ℓε(x, y)
with the univariate truncated power function

ξ2
+ =

{

0, if ξ ≤ 0,

ξ2, if ξ > 0.

Suppose ℓε is chosen in the form ℓε(x, y) = x cos b + y sin b + c so that it is
positive for (x, y) ∈ tε2. Clearly, b and c are analytic functions of the location
of the vertices. Since ξ2

+ is a C1 function, it follows that ψε(x, y) is a C1

function of x, y and V ε. We claim that αε is an analytic function of V ε. To
see this, let wε be the vertex of tε2 not on the edge e. Then the condition
s(V ε, z, wε) = qε

1(w
ε) + αεℓ2ε(w

ε) implies

αε =
s(V ε, z, wε) − qε

1(w
ε)

ℓ2ε(w
ε)

.

This expression is an analytic function of the vertices V ε, and we conclude
that s(V, z, u) is a C1 function of V in this case.

Case 3: Suppose u coincides with a vertex w of △PS. In this case if V ε is
a sufficiently small perturbation of V , then u will lie in the cell Cε = ∪m

ℓ=1t
ε
ℓ

formed by the set {tεℓ}
m
ℓ=1 of all triangles in △ε

PS attached to the perturbed
vertex wε, numbered in counterclockwise order. For ℓ = 1, . . . , m, let

qε
ℓ :=

∑

i+j+k=2

cε,ℓijkB
ε,ℓ
ijk
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be the quadratic polynomial that coincides with the spline s(V ε, z, ·) on tεℓ ,
where Bε,ℓ

ijk are the quadratic Bernstein basis polynomials associated with

tε,ℓ. Assume that the vertices of tε,ℓ are numbered such that wε is the first.
Let L(V ε, ·) be the linear Taylor polynomial for s(V ε, z, ·) at wε. It is not
difficult to see that for any ℓ = 1, . . . , m,

L(V ε, ·) = cε,ℓ200B
ε,ℓ
200 + cε,ℓ110B

ε,ℓ
110 + cε,ℓ101B

ε,ℓ
101 + (2cε,ℓ110 − cε,ℓ200)B

ε,ℓ
020

+ (cε,ℓ110 + cε,ℓ101 − cε,ℓ200)B
ε,ℓ
011 + (2cε,ℓ101 − cε,ℓ200)B

ε,ℓ
002,

which shows that L(V ε, u) is an analytic function of the vertices. Therefore
it suffices to show that the function

d(V ε) := s(V ε, z, u) − L(V ε, u)

is continuously differentiable at V ε = V . Clearly,

d(V ε) = c̃ε,ℓ020B
ε,ℓ
020(u) + c̃ε,ℓ011B

ε,1
011(u) + c̃ε,ℓ002B

ε,ℓ
002(u),

where ℓ is such that u ∈ tεℓ , and

c̃ε,ℓ020 := cε,ℓ020 − 2cε,ℓ110 + cε,ℓ200,

c̃ε,ℓ011 := cε,ℓ011 − cε,ℓ110 − cε,ℓ101 + cε,ℓ200,

c̃ε,ℓ002 := cε,ℓ002 − 2cε,ℓ101 + cε,ℓ200.

Using the definition of the Bernstein basis polynomials, it is not difficult to see
that |d(V ε)| ≤ C1‖w−wε‖2, where ‖·‖ denotes the Euclidean distance in R

2,
and C1 is independent of the perturbation. Since wε is an analytic function
of V ε, we conclude that d is differentiable at V and its differential is zero.
Moreover, by the same argument, d is differentiable with zero differential for
any sufficiently slightly perturbed V ε such that wε = u. If wε 6= u, then
d is differentiable at V ε by Cases 1 and 2. To see that d is continuously
differentiable at V , we note that c̃ε,ℓ020, c̃

ε,ℓ
011, c̃

ε,ℓ
002 are analytic functions of the

vertices, and thus possess bounded partial derivatives in the neighborhood of
V . By investigating the derivatives of Bε,ℓ

020(u), B
ε,1
011(u), B

ε,ℓ
002(u) with respect

to the coordinates of the vertices in V ε, we arrive at the upper bound C2‖w−
wε‖ for the absolute values of all partial derivatives of d(V ε) with respect to
the coordinates of the vertices in V ε, where the constant C2 is independent
of the perturbation. This upper bound shows that the differential of d(V ε)
converges to zero as V ε → V , confirming the continuous differentiability in
this case.
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u

Figure 2: Points in Vu (open dots) and Ṽu \ Vu (black dots).

We have observed above that if u lies in a triangle T ∈ △, then the value
s(V, z, u) depends only on the data values at the three vertices of T . It also
depends on the location of these three vertices, but due to the nature of
the Powell-Sabin split, also on the location of the vertices of any triangle in
△ that shares an edge with T . The same holds for the partial derivatives
Dps(V, z, u) of s with respect to the parameters p in the sets V, z when u
is in the interior of some triangle T ∈ △. However, the above proof shows
that when u is on an edge or at a vertex of T , some of the Dps(V, z, u) may
depend on a larger set of data and vertices. This is due to the fact that if
we perturb △, u may fall into a triangle different from the perturbation T ε

of T . More precisely, Dps(V, z, u) depends on the location of (and data at)
vertices in the set

Vu := {v ∈ V : u ∈ T for a triangle T ∈ △ with a vertex at v}.

But taking account of the fact that the Powell-Sabin split of a given triangle
T also depends on the vertices of all triangles that share an edge with T , we
conclude that Dps(V, z, u) depends on the location of vertices in the set

Ṽu := {v ∈ V : ∃ a triangle with vertices v and v1, v2 ∈ Vu}.

Combining these observations shows that Dps(V, z, u) depends on the loca-
tion of vertices in Ṽu and data at Vu.

3 Manifolds: Preliminaries

3.1 Atlases

Let Ω be a compact 2-dimensional smooth manifold without boundary. For
each ξ ∈ Ω, suppose that Uξ is an open subset of Ω containing ξ, and that
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φξ : Uξ → R
2 is a homeomorphism between Uξ and an open subset of R

2.
Suppose also that for every ξ, ζ ∈ Ω, φζ ◦φ

−1
ξ : φξ(Uζ ∩Uξ) → φζ(Uζ ∩Uξ) is a

C1 mapping whenever Uξ∩Uζ 6= ∅. Then, according to standard terminology,
see e.g. [19], Φ = {(Uξ, φξ)}ξ∈Ω is an atlas for Ω, and (Uξ, φξ), ξ ∈ Ω, are its
charts. We emphasize that we need a chart for each ξ ∈ Ω, rather than simply
a covering of Ω by charts, as is usually required of an atlas. Moreover, we
suppose that the charts depend smoothly on ξ in the sense of Definition 3.1
below. Let

Bξ := φξ(Uξ), φζξ := φζ ◦ φ
−1
ξ .

Then Bξ is an open set in R
2, and φζξ is an invertible C1 mapping between

φξ(Uζ ∩ Uξ) ⊂ Bξ and φζ(Uζ ∩ Uξ) ⊂ Bζ.
A real function f defined in a neighborhood of a point ξ ∈ Ω is said to be

continuous (C0) at ξ if one of its local representations f ◦ φ−1
ζ is continuous

at φζ(ξ) for some ζ with ξ ∈ Uζ . Similarly, we say that f is continuously
differentiable (C1) at ξ provided one of its local representations f ◦ φ−1

ζ is
continuously differentiable at φζ(ξ) for some ζ with ξ ∈ Uζ . Since all φζξ are
invertible C1 mappings, every local representation f ◦ φ−1

ζ will then be C0

(resp. C1) at φζ(ξ).
For a C1 function f defined in a neighborhood U of ζ ∈ Ω, we also define

Jζ(f) : U ∩ Uζ → R
2×2 by

Jζ(f)(µ) := J(f ◦ φ−1
ζ )(φζ(µ)), µ ∈ U ∩ Uζ ,

where for any smooth function g : R
2 → R

2, g = (g[1], g[2])T , J(g) denotes its
Jacobian

J(g) :=

[

∂g[1]

∂x[1]
∂g[1]

∂x[2]

∂g[2]

∂x[1]
∂g[2]

∂x[2]

]

.

We write
Jζξ := Jξ(φζ), on Uζ ∩ Uξ,

so that

Jζξ(µ) = Jξ(φζ)(µ) = J(φζξ)(φξ(µ)), µ ∈ Uζ ∩ Uξ,

is the Jacobian of φζξ evaluated at φξ(µ). Since φ−1
ζξ = φξζ, the well-known

properties of the Jacobian imply

[Jζξ(µ)]−1 = Jξζ(µ). (3.1)

8



Definition 3.1. We say that the charts (Uξ, φξ) depend smoothly on ξ if
φξ(ξ) is a C1 function of ξ, and for each ξ ∈ Ω there is an open neighborhood
Ũξ of ξ such that the following conditions hold:

• Ũξ ⊂ Uζ for all ζ sufficiently close to ξ,

• for any ζ sufficiently close to ξ, there is a rotation or rotoinversion (a
rotation followed by a flip) rζ : R

2 → R
2 about φζ(ζ) such that for any

µ ∈ Ũξ, both (rζ ◦ φζ)(µ) and Jµ(rζ ◦ φζ)(µ) are C1 functions of ζ at
ζ = ξ.

If the charts of a C1 atlas Φ = {(Uξ, φξ)}ξ∈Ω depend smoothly on ξ, then Φ
is said to be admissible. Any system of neighborhoods {Ũξ}ξ∈Ω satisfying the
above conditions is called a basic covering.

It is shown in Section 7 that if Ω is a 2-dimensional manifold embedded in
R

3, then an admissible atlas can be defined using local orthogonal projections
onto tangent planes. More specific examples of admissible atlases are given
in Remarks 8.12 and 8.13 for the sphere and the torus.

Note that removing local transformations rζ from Definition 3.1 would
result in severe restrictions on the topology of the manifold Ω. This is related
to the famous ‘hairy ball’ theorem, see Remark 8.7.

3.2 Gradients

Suppose that f is a continuously differentiable real-valued function on Ω.
For any ξ ∈ Ω, we write fξ := f ◦ φ−1

ξ . Then fξ : Bξ → R is a bivariate C1

function. For any µ ∈ Uξ, we write

∇ξf(µ) := ∇fξ(φξ(µ))

for the value of the gradient ∇fξ :=
(

∂fξ

∂x[1] ,
∂fξ

∂x[2]

)

of fξ at φξ(µ). If Uζ∩Uξ 6= ∅,

then fξ = fζ ◦ φζξ on φξ(Uζ ∩ Uξ), and by the chain rule,

∇ξf(µ) = ∇ζf(µ) Jζξ(µ), µ ∈ Uξ ∩ Uζ . (3.2)

3.3 Sobolev spaces

Given a continuous function f : Ω → R, we define its maximum norm to be
‖f‖C(Ω) := maxξ∈Ω |f(ξ)|. Given r ≥ 1, we say that f belongs to the Sobolev
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space W r
∞(Ω) provided fξ ∈ W r

∞(Bξ) for all ξ ∈ Ω. We define the Sobolev
norm on W r

∞(Ω) by

‖f‖W r
∞

(Ω) := max
ξ∈Ω

‖fξ‖W r
∞

(Bξ).

This definition of the Sobolev norm for the functions defined on the manifold
Ω is equivalent to the standard definitions, see [13].

3.4 Manifold Triangulations

Given a finite set V of points in a manifold Ω, let T be a set of triples
τ = {v, u, w} of points v, u, w ∈ V such that

• any two triples have at most two common points,

• any pair of points in V belong to at most two different triples in T ,

• for any v ∈ V, the set of all triples containing v forms a cell, i.e.
{τ ∈ T : v ∈ τ} = {τi}

n
i=1 for some n ≥ 3, where τi = {v, vi, vi+1}, with

distinct v1, . . . , vn, and vn+1 = v1.

If these conditions are satisfied, we say that T is a triangulation of Ω with
vertices V. We say that two vertices v1, v2 are connected in T if there is a
triple τ ∈ T containing both v1 and v2. This definition of a triangulation of a
manifold Ω is described by connectivity of vertices only, and does not involve
“edges” or “triangles” on Ω. Indeed, T is essentially an abstract simplicial
complex [25] with vertices in Ω.

It is well known that any compact 2-dimensional manifold Ω can be tri-
angulated (see [20, 24]), i.e. there exists a finite triangulation T of Ω in the
above sense along with a corresponding partition of Ω into homeomorphic
images of triangles, similar to a planar triangulation. Such a partition is also
called a triangulation of Ω, but since we never make use of it in this paper,
there will be no confusion with our definition.

We now assume that Φ = {(Uξ, φξ)}ξ∈Ω is an admissible atlas for Ω in
the sense of Definition 3.1. Let ξ ∈ Ω, and suppose that all vertices of
τ = {v, u, w} ∈ T are in Uξ. Then we denote by φξ(τ) the planar triangle with
vertices φξ(u), φξ(v), φξ(w). Note that the triangle φξ(τ) may be degenerate.

Definition 3.2. We say that a triangulation T of Ω is consistent with Φ
provided that there is a basic covering {Ũξ}ξ∈Ω such that for any ξ ∈ Ω,

10



• △ξ := {φξ(τ) : τ ∈ T , τ ⊂ Ũξ} is a planar triangulation of Pξ :=
∪T∈△ξ

T (in particular, every triangle T ∈ △ξ is non-degenerate),

• φξ(ξ) lies in the interior of Pξ.

For any ξ ∈ Ω, let Vξ be the set consisting of vertices of all τ ∈ Tξ :=
{τ ∈ T : τ ⊂ Ũξ} such that φξ(ξ) lies in φξ(τ), i.e.

Vξ := {v ∈ V ∩ Uξ : φξ(ξ) ∈ φξ(τ) for a τ ∈ Tξ with a vertex at v}. (3.3)

For a consistent triangulation T , Vξ is independent of the basic covering
choosen. If ξ is a vertex in V, then Vξ consists of ξ and all vertices connected
to it. For any point ξ ∈ Ω \ V the set Vξ contains either three or four points,
depending on whether φξ(ξ) belongs to the interior of a triangle in △ξ, or lies
on a common edge of two such triangles. We say that ξ is an interior point
or respectively an edge point with respect to the triangulation T . Clearly,
for any basic covering,

Vξ ⊂ Ũξ and φξ(Vξ) ⊂ Pξ.

Lemma 3.3. Let T be a triangulation consistent with an admissible atlas Φ
for Ω. Then for any ξ ∈ Ω, Vζ ⊆ Vξ for all ζ ∈ Ω sufficiently close to ξ.

Proof. Let Vξ = {v1, . . . , vm}. Since Vξ ⊂ Ũξ, the functions vi(ζ) := (rζ ◦
φζ)(vi), i = 1, . . . , m, are well defined for all ζ sufficiently close to ξ, and
continuous at ζ = ξ, c.f. Definition 3.1. Also (rζ ◦ φζ)(ζ) = φζ(ζ) is a
continuous function of ζ . Denote by Λζ the union of all triangles of the type
rζ(φζ(τ)), τ ∈ T , whose vertices are all in (rζ ◦φζ)(Vξ) = {v1(ζ), . . . , vm(ζ)}.
Clearly, φξ(ξ) lies in the interior of Λξ. By the above continuity we conclude
that for all ζ sufficiently close to ξ, φζ(ζ) lies in the interior of Λζ . Hence
φζ(ζ) ∈ φζ(τ) implies that all vertices of τ are in Vξ, and Vζ ⊆ Vξ follows.

It is easy to see that the set of all interior points with respect to a con-
sistent triangulation is an open subset of Ω. Indeed, if ξ is an interior point,
then Vξ consists of just three vertices. For any ζ sufficiently close to ξ,
Vζ ⊂ Vξ and Vζ cannot have fewer than three vertices. Hence Vζ = Vξ and
ζ is an interior point. In addition to consistency, we will need the following
assumption specifically related to the Powell-Sabin spline:

for every ξ ∈ Ω, if φξ(ξ) ∈ T for a T ∈ △ξ, then △ξ also
includes three triangles sharing edges with T .

(3.4)

We extend Vξ to Ṽξ by adding to Vξ the vertices of the triangles described in
(3.4). The definition of △ξ implies that Ṽξ ⊂ Ũξ.

11



1T

T2T

3T

(a) (b)

Figure 3: Powell-Sabin split of a triangle.

4 An Interpolation Method

Let T be a triangulation of Ω consistent with an admissible atlas Φ =
{(Uξ, φξ)}ξ∈Ω. We assume that T is fine enough for (3.4) to hold. Let

D := {av, σv}v∈V , where av are real numbers and σv = (σ
[1]
v , σ

[2]
v ) are 2-

vectors. We now show how to construct a C1 function sT defined on Ω that
satisfies the interpolation conditions

sT (v) = av, ∇vsT (v) = σv, all v ∈ V. (4.1)

Algorithm 4.1. Given ξ ∈ Ω, compute sT (ξ):

1. Let T := 〈w1, w2, w3〉 be a triangle in △ξ such that φξ(ξ) ∈ T , and let
T1 := 〈w4, w3, w2〉, T2 := 〈w5, w1, w3〉, and T3 := 〈w6, w2, w1〉 be the
three triangles in △ξ sharing edges with T , see Figure 3(a).

2. Let TPS be the Powell-Sabin split of T into six triangles obtained by
connecting the incenter w of T to the incenters of T1, T2, T3, and to the
vertices w1, w2, w3, see Figure 3(b).

3. Let gi := σvi
Jviξ(vi), where vi = φ−1

ξ (wi), for i = 1, 2, 3.

4. Let sT (ξ) be the value at φξ(ξ) of the Powell-Sabin C1 quadratic spline
sξ defined on TPS that satisfies sξ(wi) = avi

and ∇sξ(wi) = gi for
i = 1, 2, 3.

12



Since the Powell-Sabin interpolant in Step 4) is uniquely defined by the
values {(avi

, gi)}
3
i=1 at the vertices {wi}

3
i=1, it follows that sT is uniquely

defined by the data D. By construction, sT satisfies (4.1).

Theorem 4.2. The interpolant sT is a C1 function on the manifold Ω.

Proof. We may assume without loss of generality that for any ζ ∈ Ω the
point φζ(ζ) is the origin in R

2, since otherwise we may replace φζ by φζ −
φζ(ζ), and sζ by sζ(· + φζ(ζ)), which coincides with the Powell-Sabin spline
computed with respect to the shifted version of the local triangulation △ζ .

Fix ξ ∈ Ω. Since we are assuming that the charts of Φ depend smoothly
on ξ, it follows that for any ζ sufficiently close to ξ there is a rotation or
rotoinversion rζ : R

2 → R
2 about the origin (an orthogonal linear trans-

formation of the plane) such that both (rζ ◦ φζ)(µ) and Jµ(rζ ◦ φζ)(µ), as
functions of ζ , are continuously differentiable at ζ = ξ as soon as µ ∈ Ũξ.
Without loss of generality we assume that rξ is the identity. Recall from
(3.3) that Vξ denotes the set of all vertices v ∈ V ∩ Uξ such that φξ(ξ) ∈ T
for a triangle T ∈ △ξ attached to φξ(v). Since T is consistent with the atlas
Φ, by Lemma 3.3 we may choose a neighborhood U ⊂ Uξ of ξ such that
Vζ ⊆ Vξ ⊂ Ũξ for all ζ ∈ U . Moreover, according to Definition 3.1, we may
choose a smaller U to ensure that Ũξ ⊂ Uζ for all ζ ∈ U . For any ζ ∈ U it
follows by Definition 3.2 that all points in φζ(Vζ) are vertices of △ζ. Clearly,
△ζ includes all triangles φζ(τ) for τ ∈ T with vertices in Vζ . In view of (3.4),
it also includes images of all τ ∈ T having a pair of vertices in Vζ . Moreover,
Ṽξ ⊂ Ũξ ⊂ Uζ .

Now for any ζ ∈ U and each vertex v ∈ Ṽξ, set v(ζ) = (rζ ◦ φζ)(v). The
functions v(ζ) are continuously differentiable at ζ = ξ. Let △̃ζ denote the
triangulation obtained by applying rζ to △ζ, and let △̃ζ,PS be the Powell-
Sabin split of △̃ζ . Since rζ is an orthogonal transformation, it is easy to
see that sT (ζ) can be computed as the value at the origin of the Powell-
Sabin spline s̃ζ defined on △̃ζ,PS that interpolates the values {(av, g(ζ))}
at the vertices v(ζ) for all v ∈ Ṽξ, where g(ζ) = σvJvζ(v)J(r−1

ζ ). Since

Jvζ(v)J(r−1
ζ ) = [Jv(rζ ◦ φζ)(v)]

−1 is continuously differentiable with respect
to ζ at ζ = ξ, and since by Theorem 2.1 the value of the Powell-Sabin
interpolant sζ at the origin depends smoothly on the vertex locations and
the data, we conclude that sT is continuously differentiable at ξ.

Suppose that sT (f) is the interpolant corresponding to the data

av := f(v), σv := ∇vf(v), all v ∈ V ,

13



where f is a smooth function defined on Ω. We now show that sT (f) ap-
proximates f to order O(h3), where h is the mesh size of T , i.e., the length
of the longest edge in the triangles in the set {△ξ}ξ∈Ω. Let α be the smallest
angle appearing in the triangles in this set.

Theorem 4.3. Let f ∈W 3
∞(Ω). Then

‖f − sT (f)‖C(Ω) ≤ K h3‖f‖W 3
∞

(Ω), (4.2)

where K is a constant depending only on α.

Proof. Fix ξ ∈ Ω, and let sξ be the bivariate Powell-Sabin spline defined on
the triangulation △ξ that interpolates the values {(avi

, gi)}
3
i=1 at the vertices

{wi}
3
i=1 of the triangle in △ξ containing ξ as described in Algorithm 4.1.

Then
fξ(wi) = f(vi) = avi

= sξ(wi), i = 1, 2, 3,

and by (3.2)

∇fξ(wi) = ∇ξf(vi) = ∇vi
f(vi) Jviξ(vi) = σvi

Jviξ(vi) = ∇sξ(wi),

i = 1, 2, 3.
Thus, sξ interpolates the function values and gradients of fξ at w1, w2, w3.

It follows from well-known error bounds for bivariate Powell-Sabin interpo-
lation [30] (see also [21]) that

|fξ(ξ) − sξ(ξ)| ≤ K1h
3‖fξ‖W 3

∞
(Bξ),

where K1 is a constant depending only on the smallest angle in △ξ. By the
definition of the Sobolev norm on Ω, taking the maximium over ξ ∈ Ω gives
(4.2).

5 A Two-Stage Data Fitting Method

In practice we are frequently given only values of an unknown function f
at a set X of scattered data points on the manifold Ω. In this case we can
use a two-stage method to construct an approximation. First we select a
consistent triangulation T of Ω satisfying (3.4). Let V be the set of vertices
of T . Note that we do not require that the vertices be located at the data

14



points of X, and the number of vertices may be different (in particular much
smaller) than the number of data points.

In the first stage of the algorithm we compute local approximations to the
values {f(v),∇vf(v)}v∈V based on the data {f(ξ)}ξ∈X. We perform these
calculations in the sets Bv ⊂ R

2 using techniques available for local fitting
of bivariate data. To carry this out, we suppose that X is sufficiently dense
to satisfy

X ∩ Uv 6= ∅ for each v ∈ V. (5.1)

Clearly, (5.1) is just a minimum requirement needed to formulate the algo-
rithm. It does not guarantee that accurate local approximations based on
the data in X ∩ Uv can be computed.

Experience with the bivariate case [10] suggests that for each v ∈ V, we
compute both av ≈ f(v) and σv ≈ ∇vf(v) by averaging several estimates of
the same quantities based on different sets of nearby data. It follows from
the consistency of T that for each vertex v ∈ V, all vertices of T connected
to v belong to the set Uv.

Algorithm 5.1. Given {f(ξ)}ξ∈X, compute {av, σv}v∈V as follows:

1. For each v ∈ V:

(a) Let v0 := v, and let v1, v2, . . . , vn ∈ V be the set of vertices of T
connected to v. Let ṽi = φv(vi), i = 1, . . . , n.

(b) Choose a set X̃v ⊂ φv(X ∩ Uv) of points in Bv near φv(v).

(c) Compute a bivariate approximation pv defined on Bv based on the
data {fv(ξ̃)}ξ̃∈X̃v

, where fv := f ◦ φ−1
v .

(d) Store the numbers av,vi
:= pv(ṽi) and vectors σv,vi

:= ∇pv(ṽi) Jvvi
(vi)

for i = 0, . . . , n.

2. For each v ∈ V, set

av :=
1

n+ 1

n
∑

i=0

avi,v, σv :=
1

n + 1

n
∑

i=0

σvi,v.

In the second stage of the algorithm we construct our approximant sT as
the interpolant (4.1) to the data {av, σv}v∈V obtained from Algorithm 5.1.

We have not specified how T is selected and how the Steps 1(b) and 1(c)
of Algorithm 5.1 are to be performed. However, the overall performance of
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the two-stage method will depend significantly on the particular techniques
used in these steps. Numerical examples in our paper [9] make use of recently
developed adaptive techniques based on local least squares fitting by bivariate
polynomials and radial basis functions [7, 8, 10].

6 An Error Bound for the Two-Stage Method

Suppose that f is a smooth function defined on Ω, and that sT = sT (f)
is the approximant of f constructed in the previous section based on values
{f(ξ)}ξ∈X of f at some scattered setX of data points on Ω. Let h be the mesh
size of the triangulation T . In this section we show that sT approximates
f to order h3 as h → 0, provided that for each vertex v of T , the local
approximation pv of fv := f ◦ φ−1

v approximates the function value fv(v) to
order at least h3, and the first derivatives of fv at v to order h2.

In this section we denote by ‖ · ‖2 the Euclidean vector norm as well as
the corresponding matrix norm. For a vector function g : G → R

2, we set
‖g‖C(G) := maxx∈G ‖g(x)‖2.

Given ξ ∈ Ω, let △ξ be the associated planar triangulation, as in Sec-
tion 3.4. Let

κ(ξ) := max
v∈Vξ

{‖Jξv(v)‖2, ‖Jvξ(v)‖2},

where Vξ is defined in (3.3). We assume that

κ := sup
ξ∈Ω

κ(ξ) <∞. (6.1)

For each v ∈ V, let Nv be the union of all triangles of △v attached to v,
and let pv be the bivariate approximation to fv, as in Algorithm 5.1. Recall
that Bv := φv(Uv).

Theorem 6.1. Let f ∈W 3
∞(Ω). Then

‖f − sT ‖C(Ω) ≤ K
[

h3‖f‖W 3
∞

(Ω)

+ max
v∈V

{

‖fv − pv‖C(Nv∩Bv) + h‖∇fv −∇pv‖C(Nv∩Bv)

}

]

,

where K is a constant depending only on κ and the smallest angle α.
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Proof. Let ξ ∈ Ω. We have |f(ξ)−sT (ξ)| = |fξ(ξ)−sξ(ξ)|, where fξ := f◦φ−1
ξ

and sξ is the bivariate Powell-Sabin interpolating spline on the planar tri-
angulation △ξ, computed using the values avi

and vectors σvi
corresponding

to the vertices {wi := φξ(vi)}
3
i=1 of the triangle T in Bξ that contains φξ(ξ).

Recall that avi
, σvi

are computed in the first stage using Algorithm 5.1. By
Algorithm 4.1,

sξ(wi) = avi
, ∇sξ(wi) = σvi

Jviξ(vi), i = 1, 2, 3.

Let ŝ be the bivariate Powell-Sabin spline on the triangulation △ξ inter-
polating the exact values and gradients of fξ, i.e.,

ŝ(wi) = âvi
:= fξ(wi) = f(vi), ∇ŝ(wi) = σ̂vi

:= ∇fξ(wi) = ∇ξf(vi),

for i = 1, 2, 3. Then by Theorem 4.3,

|fξ(ξ) − ŝ(ξ)| ≤ K1h
3‖f‖W 3

∞
(Ω),

where K1 is a constant depending only on α. Now by a standard argument
involving the cardinal functions of Powell-Sabin interpolation,

|ŝ(ξ) − sξ(ξ)| ≤ K2 max
i=1,2,3

{

|âvi
− avi

| + h‖σ̂vi
− σvi

Jviξ(vi)‖2

}

,

with a constant K2 depending only on α. For each i = 1, 2, 3,

âvi
− avi

= f(vi) −
1

n+ 1

n
∑

j=0

auj ,vi
=

1

n+ 1

n
∑

j=0

[

fuj
(wij) − puj

(wij)
]

,

where u0 = vi, the u1, . . . , un are the vertices of T connected to vi, and
wij = φuj

(vi). Since wij ∈ Nuj
∩Buj

, it follows that

|fuj
(wij) − puj

(wij)| ≤ ‖fuj
− puj

‖C(Nuj
∩Buj

),

and hence

|âvi
− avi

| ≤ max
v∈V

‖fv − pv‖C(Nv∩Bv), i = 1, 2, 3.

Similarly, by (3.2) and the definition of σvi
,

σ̂vi
− σvi

Jviξ(vi) = ∇ξf(vi) −
1

n+ 1

n
∑

j=0

σuj ,vi
Jviξ(vi)

=
1

n+ 1

n
∑

j=0

(

∇vi
f(vi) − σuj ,vi

)

Jviξ(vi).
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Since σuj ,vi
= ∇puj

(wij) Jujvi
(vi) and ∇uj

f(vi) = ∇fuj
(wij), (3.2) implies

∇vi
f(vi) − σuj ,vi

=
(

∇uj
f(vi) −∇puj

(wij)
)

Jujvi
(vi)

=
(

∇fuj
(wij) −∇puj

(wij)
)

Jujvi
(vi).

Hence

‖∇vi
f(vi) − σuj ,vi

‖2 ≤ ‖∇fuj
(wij) −∇puj

(wij)‖2 ‖Jujvi
(vi)‖2

≤ κ(uj)‖∇fuj
−∇puj

‖C(Nuj
∩Buj

),

and

‖σ̂vi
− σvi

Jviξ(vi)‖2 ≤
1

n+ 1

n
∑

j=0

κ(ξ)κ(uj)‖∇fuj
−∇puj

‖C(Nuj
∩Buj

)

≤ κ2 max
v∈V

‖∇fv −∇pv‖C(Nv∩Bv).

Combining the above inequalities, we get the desired estimate.

7 C2-Manifolds Embedded in R
3

In this section we examine the case when Ω is an arbitrary compact 2-
dimensional C2-manifold embedded in R

3. Our main task is to show how
to construct an atlas for Ω that satisfies the smoothness assumptions of Sec-
tion 3.1. More details on our method for scattered data fitting on surfaces,
including extensive numerical tests, can be found in [9]. Throughout this
section, we write 〈·, ·〉 for the usual inner product in R

3, and ‖a‖2 for the
Euclidean norm of any 3-vector a.

7.1 Projection atlas

Since Ω is embedded in R
3, it can be represented locally as a regular level

surface of a C2 function of three variables. More precisely, each point ξ ∈ Ω
has a neighborhood Gξ in R

3 such that Gξ ∩ Ω = F−1
ξ (0), where Fξ : Gξ → R

is a C2 function with nonzero gradient ∇Fξ everywhere in Gξ ∩ Ω, see [19].
Then nξ := ∇Fξ(ξ)/‖∇Fξ(ξ)‖2 is a normal vector to Ω at ξ. Moreover, the
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tangent plane Γξ is the unique plane in R
3 that contains ξ and is orthogonal

to nξ. Clearly, for all ζ ∈ Gξ ∩ Ω, a normal vector to Ω at ζ can also be
computed as ∇Fξ(ζ)/‖∇Fξ(ζ)‖2. It coincides with either nζ or −nζ . Clearly,
〈nξ,∇Fξ(ζ)〉 > 0 for all ζ ∈ Gξ ∩ Ω.

We are now ready to define an atlas associated with Ω. For each ξ ∈ Ω,
let Uξ be the connected component of the open set {ζ ∈ Ω : 〈nξ, nζ〉 6= 0} that
contains ξ. Then Uξ is an open neighborhood of ξ. Clearly, the orthogonal
projection πξ : Uξ → Γξ defined by

πξ(ζ) = ζ + 〈ξ − ζ, nξ〉nξ, ζ ∈ Uξ,

is invertible. Assuming that γ
[1]
ξ , γ

[2]
ξ are orthogonal unit vectors in Γξ such

that γ
[1]
ξ × γ

[2]
ξ = nξ, we can also write

πξ(ζ) = ξ + 〈ζ − ξ, γ
[1]
ξ 〉 γ

[1]
ξ + 〈ζ − ξ, γ

[2]
ξ 〉 γ

[2]
ξ .

Define φξ by the formula

φξ(ζ) := [〈ζ − ξ, γ
[1]
ξ 〉, 〈ζ − ξ, γ

[2]
ξ 〉]T , ζ ∈ Uξ.

We call Φ = {Uξ, φξ}ξ∈Ω the projection atlas associated with Ω. The
remainder of this subsection is devoted to a proof that Φ satisfies the hy-
potheses of Section 3.1.

Theorem 7.1. The projection atlas Φ is an admissible atlas for Ω, where a
basic covering {Ũξ}ξ∈Ω is given by any open neighborhoods of ξ such that the
closure of Ũξ is a compact set contained in Uξ.

Proof. By the choice of Uξ, φξ is invertible. Consider the coordinate system

for R
3 with coordinate vectors γ

[1]
ξ , γ

[2]
ξ , nξ and origin ξ. For any µ ∈ Uξ,

the equation Fµ = 0 determines an implicit function x[3] = δµ(x
[1], x[2]) in a

neighborhood of φξ(µ), such that

φ−1
ξ (x[1], x[2]) = ξ + x[1]γ

[1]
ξ + x[2]γ

[2]
ξ + δµ(x[1], x[2])nξ.

Since 〈nξ,∇Fµ(µ)〉 = 〈nξ, nµ〉‖∇Fµ(µ)‖2 6= 0, the implicit function theo-
rem implies that δµ(x[1], x[2]) is a C2 function in a neighborhood of φξ(µ).
Assuming µ ∈ Uξ ∩ Uζ , we also have

φζξ(x
[1], x[2]) = (φζ ◦ φ

−1
ξ )(x[1], x[2]) = [φ

[1]
ζξ(x

[1], x[2]), φ
[2]
ζξ(x

[1], x[2])]T ,
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where for i = 1, 2,

φ
[i]
ζξ(x

[1], x[2]) = 〈ξ − ζ + x[1]γ
[1]
ξ + x[2]γ

[2]
ξ + δµ(x[1], x[2])nξ, γ

[i]
ζ 〉 (7.1)

in a neighborhood of φξ(µ). Therefore φζξ : φξ(Uξ ∩ Uζ) → φζ(Uξ ∩ Uζ) is a
C2 mapping.

For later use, we now obtain explicit formulas for the Jacobian Jζξ(ξ) :=
J(φζξ)(φξ(ξ)) as defined in Section 3.1, and its determinant. By the above
construction, the implicit function x[3] = δξ(x

[1], x[2]) is C2 in a neighborhood
of the origin φξ(ξ). Moreover, it vanishes together with its gradient at the
origin. Hence, by (7.1),

Jζξ(ξ) = [〈γ
[i]
ζ , γ

[j]
ξ 〉]i,j=1,2. (7.2)

Clearly, the determinant of this matrix is the projection of nζ = γ
[1]
ζ ×γ

[2]
ζ on

nξ, i.e.,
det Jζξ(ξ) = 〈nζ, nξ〉. (7.3)

It remains to show that the charts (Uξ, φξ) depend smoothly on ξ in the
sense of Definition 3.1. To this end, we fix ξ ∈ Ω and let Ũξ ⊂ Uξ be an open
neighborhood of ξ such that the closure of Ũξ is a compact set contained in
Uξ. Then infµ∈Ũξ

|〈nξ, nµ〉| > 0, and hence 〈nζ , nµ〉 6= 0 for all µ ∈ Ũξ and all

ζ in some neighborhood of ξ. This implies that Ũξ ⊂ Uζ for all ζ sufficiently
close to ξ.

For any ζ ∈ Uξ, we define a coordinate system in Γζ with origin ζ and

orthonormal coordinate vectors γ̃
[1]
ζ , γ̃

[2]
ζ , where

γ̃
[1]
ζ = γ̂

[1]
ζ /‖γ̂

[1]
ζ ‖2, γ̂

[1]
ζ = γ

[1]
ξ − 〈γ

[1]
ξ ,∇Fξ(ζ)〉∇Fξ(ζ),

γ̃
[2]
ζ = ñζ × γ̃

[1]
ζ , ñζ = ∇Fξ(ζ)/‖∇Fξ(ζ)‖2.

Set
φ̃ζ(µ) := [〈µ− ζ, γ̃

[1]
ζ 〉, 〈µ− ζ, γ̃

[2]
ζ 〉]T , µ ∈ Ũξ ⊂ Uζ .

Since the coordinate system γ
[1]
ζ , γ

[2]
ζ can be obtained from γ̃

[1]
ζ , γ̃

[2]
ζ by an

orthogonal linear transformation rζ : R
2 → R

2,

φ̃ζ = rζ ◦ φζ.

Since Fξ is a C2 function and ∇Fξ(ζ) 6= 0 for all ζ ∈ Uξ, it follows that φ̃ζ(µ),
as a function of ζ , is continuously differentiable at ζ = ξ.
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Finally, for a fixed µ ∈ Ũξ consider M(ζ) := Jµ(rζ ◦φζ)(µ) = J(rζ)Jζµ(µ).
In view of (7.2),

M(ζ) = J(rζ)[〈γ
[i]
ζ , γ

[j]
µ 〉]i,j=1,2 = [〈γ̃

[i]
ζ , γ

[j]
µ 〉]i,j=1,2,

which is continuously differentiable at ζ = ξ, as required.

7.2 Projected gradients

Let f ∈ C1(Ω), and let fξ = f ◦φ−1
ξ . Since Ω is embedded in R

3, the gradient

∇fξ =
(

∂fξ

∂x[1] ,
∂fξ

∂x[2]

)

of fξ can be identified with the 3-vector

grad fξ =
∂fξ

∂x[1]
γ

[1]
ξ +

∂fξ

∂x[2]
γ

[2]
ξ

lying in the tangent plane Γξ ⊂ R
3. Adopting a notation similar to that in

Section 3.2, we write

gradξf(µ) := (grad fξ)(φξ(µ)), µ ∈ Uξ,

for the gradient of fξ evaluated at φξ(µ). We call gradξf(µ) the projected
gradient of f at µ. It is easy to see that gradξf(ξ) coincides with the standard
gradient of a function on a 2-surface in R

3, as defined for example in [33,
p. 96]. We also need projected gradients when µ 6= ξ.

Lemma 7.2. For any ξ ∈ Ω and ζ ∈ Uξ, the projected gradient gradζf(ζ) is
the orthogonal projection of gradξf(ζ) onto Γζ . In particular,

gradζf(ζ) = gradξf(ζ) − 〈gradξf(ζ), nζ〉nζ , (7.4)

and

gradξf(ζ) = gradζf(ζ) −
〈gradζf(ζ), nξ〉

〈nζ , nξ〉
nζ , if 〈nζ, nξ〉 6= 0, (7.5)

where nζ and nξ are the unit normal vectors to Γζ and Γξ, respectively.

Proof. We have

gradξf(ζ) =
∂fξ

∂x[1]

(

φξ(ζ)
)

γ
[1]
ξ +

∂fξ

∂x[2]

(

φξ(ζ)
)

γ
[2]
ξ .
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Its projection onto Γζ is therefore

(

∂fξ

∂x[1]

(

φξ(ζ)
)

〈γ
[1]
ξ , γ

[1]
ζ 〉 +

∂fξ

∂x[2]

(

φξ(ζ)
)

〈γ
[2]
ξ , γ

[1]
ζ 〉

)

γ
[1]
ζ

+

(

∂fξ

∂x[1]

(

φξ(ζ)
)

〈γ
[1]
ξ , γ

[2]
ζ 〉 +

∂fξ

∂x[2]

(

φξ(ζ)
)

〈γ
[2]
ξ , γ

[2]
ζ 〉

)

γ
[2]
ζ .

This last expression coincides with gradζf(ζ), since

∇ζf(ζ) = ∇ξf(ζ)Jξζ(ζ) = ∇ξf(ζ) [〈γ
[i]
ξ , γ

[j]
ζ 〉]i,j=1,2

by (3.2) and (7.2).
The formulas (7.4) and (7.5) for the projection and inverse projection,

respectively, follow immediately.

7.3 Consistent triangulations

As mentioned in Section 3.4, every compact 2-dimensional smooth manifold
Ω admits a triangulation T . Let Ω be embedded into R

3, and let Φ be the
projection atlas for it. For any ε > 0 there is a triangulation T of Ω consistent
with Φ and with the mesh size h < ε. See e.g. [2] for a construction of suitable
triangulations using sufficiently dense samples of points on 2-dimensional
manifolds embedded in R

3.

7.4 Interpolation and data fitting

Using projected gradients, we can reformulate the interpolation problem

sT (v) = av, ∇vsT (v) = σv, all v ∈ V, (7.6)

of (4.1) as
sT (v) = av, gradvsT (v) = cv, all v ∈ V, (7.7)

where cv = σ
[1]
v γ

[1]
ξ + σ

[2]
v γ

[2]
ξ is a vector in Γv.

An advantage of the formulation (7.7) over (7.6) is that each cv is deter-
mined by just three real numbers (the Cartesian coordinates of cv), whereas

σv requires two real numbers and the tangent vectors γ
[1]
ξ , γ

[2]
ξ . Thus, when

defining sT by (7.7), we do not need any coordinate systems in the tangent
planes Γv.
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Clearly, Algorithms 4.1 and 5.1 can now be formulated without refer-
ence to any coordinate systems in the tangent planes provided we use pro-
jected gradients. Assume the data is given as {av, cv}v∈V , where av are
real numbers and cv are 3-vectors in Γv. Then to construct a C1 function
sT defined on Ω that satisfies the interpolation conditions (7.7), we sim-
ply apply Algorithm 4.1, where we replace the formula for gi in Step 3 by

gi := cvi
−

〈cvi
,nξ〉

〈nvi
,nξ〉

nvi
, and require in Step 4 that sξ interpolates the values

{avi
}3

i=1 and the gradients corresponding to the tangent vectors {gi}
3
i=1 at

the vertices {wi}
3
i=1. Algorithm 5.1 describing the first stage of the two-stage

data fitting method can also be reformulated by replacing the vectors σv,vi
in

Step 1d by cv,vi
:= grad pv(ṽi) − 〈grad pv(ṽi), nvi

〉nvi
for i = 0, . . . , n, and by

taking the average of cvi,v’s instead of σvi,v’s in Step 2. Precise formulations
can be found in [9].

Theorems 4.3 and 6.1 give error bounds for our interpolation and scat-
tered data fitting methods, respectively, in terms of the mesh size h of T ,
i.e., the length of the longest edge in the triangles in the set {△ξ}ξ∈Ω, the
smallest angle α appearing in the triangles in this set, and the parameter
κ defined in (6.1). In the case of surfaces embedded in R

3, there are more
convenient parameters to play the role of h, α, κ. Let us define the mesh size
h̃ as the maximum distance in R

3 between any pair of vertices v ∈ V con-
nected in T . By actually connecting these pairs of vertices by straight line
segments, we obtain a 2-dimensional triangulation in R

3. Let α̃ be the small-
est angle appearing in its triangles. Let, furthermore, κ̃(ξ) be the maximum
of 〈nξ, nv〉

−1 over all v ∈ V ∩ Uξ such that ξ = φξ(ξ) belongs to the closure
of a triangle of △ξ attached to φξ(v), and let κ̃ = maxξ∈Ω κ̃(ξ). Assuming
Φ is the projection atlas, it is not difficult to see that (a) h ≤ h̃, (b) α̃ > 0
implies α > 0 if h̃ is sufficiently small, and (c) κ < ∞ if and only if κ̃ < ∞.
(Note that (c) follows from (3.1), (7.2) and (7.3).) Thus, in the case of the
projection atlas, Theorems 4.3 and 6.1 can be reformulated with h̃, α̃, κ̃ in
place of h, α, κ, see [9].

8 Remarks

Remark 8.1. The problem of fitting functions defined on surfaces arises in
many applications, see for example [1, 3, 4, 5, 11, 12, 14, 15, 16, 22, 23, 28,
29, 32, 34], and references therein. Used parametrically, such functions can
be applied to the problem of modelling surfaces of arbitrary topological type
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from point clouds, see for example [17, 18, 35].

Remark 8.2. Many of the papers mentioned in the above remark deal with
the sphere in R

3. For a survey of interpolation and scattered data fitting
methods on the sphere, see [14]. For some specific methods, see [16, 22, 23,
28, 32, 34].

Remark 8.3. The method of this paper is closely related to work of Dem-
janovich [11, 12]. He also computes an interpolant s at a point ξ on the
manifold by using local charts (Uξ, φξ) and finite element interpolation in
φξ(Uξ). A key difference is that for each evaluation point ξ, his method in-
volves interpolation of the original function values and derivatives assigned
to certain points in φξ(Uξ) determined by the finite element scheme, whereas
in our methods we only interpolate projected gradients corresponding to the
vertices of the underlying triangulation T , compare Steps 3 and 4 of Al-
gorithm 4.1. Therefore, our interpolation operator only requires function
values and gradients at the vertices of T , which makes it possible to design a
two-stage scattered data fitting method. Only one of the methods in [11, 12]
(based on interpolation with Courant hat functions) has similar properties
for general manifolds, but it does not produce a C1 interpolant.

Remark 8.4. The special case of our method for surfaces in R
3 (Section 7)

is also closely related to work of Pottmann [29], which also makes use of
projected gradients. (It is not difficult to see that equation (7.5) describes the
π-transform of [29].) However, instead of using local approximation methods
to estimate gradients, he constructs a kind of minimum norm network.

Remark 8.5. Here we have made use of the standard bivariate C1 quadratic
Powell-Sabin macro-element to solve the interpolation problem in the tangent
plane. Its key feature is that it is constructed from only nine pieces of data,
the values and gradients at the three vertices of the macro-triangle. Using
the same data, we can also construct an interpolant based on the classical C1

reduced Clough-Tocher macro-element. It is based on a split of the macro-
triangle into three subtriangles (typically using the barycenter), and is a cubic
polynomial on each piece. Along each edge its cross derivative is restricted
to be a linear polynomial. Yet another possibility is a modified quadratic
Powell-Sabin macro-element on a 12-split [30], where the cross derivatives
are assumed linear rather than piecewise linear on the edges of the macro-
triangles. Note that with either the Clough-Tocher or Powell-Sabin-12 macro-
element, the assumption (3.4) will not be needed.
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Remark 8.6. Instead of the Powell-Sabin macro-element, bivariate interpo-
lation techniques of a completely different nature (and not necessarily based
on triangulations) could in principle be combined with the mapping into
planes via charts satisfying Definition 3.1. For that to work, the interpola-
tion techniques must meet certain requirements, in particular they must be
invariant with respect to the shifts and rotations of the interpolation centers,
and must depend smoothly on the data and the location of the centers. It
is easy to see that one of the requirements is that the domain of influence
of each center is compact. Indeed, otherwise the value of the interpolating
function at a given point may be discontinuous with respect to the centers
that are at the boundary of Uξ.

Remark 8.7. It follows from the Poincaré-Hopf index theorem [26] that any
continuous tangent vector field on a compact differentiable manifold without
boundary vanishes at a point unless the Euler number of the manifold is zero.
Recall that the Euler number of an oriented surface of genus g is 2−2g. Thus,
the Euler number is zero for the torus, but is nonzero for surfaces of other
topological types, including the sphere. For the sphere, this is just the ‘hairy
ball’ theorem which states that there is no nonvanishing continuous tangent
vector field on the sphere, and explains why we need to use local rotations
rζ in Definition 3.1. Indeed, if the charts (Uξ, φξ) for Ω can be found such
that Definition 3.1 holds with rζ being the identity in all cases, then one can
easily construct a smooth tangent vector field on Ω by taking unit vectors
corresponding to partial derivatives of all local parametrizations. Then the
Poincaré-Hopf theorem implies that the Euler number of Ω is zero, which is
a severe restriction on the topology of the manifold.

Remark 8.8. By the Whitney immersion theorem, any 2-dimensional man-
ifold can be immersed in R

3. Clearly, the projection atlas can be used on
these immersions, where the correct tangent planes have to be chosen for
the points of self-intersection. For any 2-dimensional C2-submanifold of R

n,
n > 3, arguing as in Section 7.1, we can use local orthogonal projections on
tangent planes to define an admissible atlas in the sense of Definition 3.1.
This construction is also applicable to arbitrary 2-dimensional C2-manifolds
in view of the Whitney embedding theorem, which says that any smooth
2-dimensional manifold can be smoothly embedded into R

4.

Remark 8.9. For the sake of simplicity, in this paper we consider only com-
pact 2-dimensional manifolds without boundary. Clearly, our method is local,

25



and therefore can be used on non-compact manifolds that have a countable
basis for their topology. Indeed, by a theorem of Radó, such manifolds can
be triangulated such that every point has a neighborhood that meets only
finitely many triangles [24].

Remark 8.10. The method is also applicable to manifolds with boundary.
The main theoretical results of this paper will hold if we assume that all
points on the boundary of Ω are either vertices of the triangulation T or edge
points with respect to it, see Section 3.4. In this case Definition 3.2 needs
obvious adjustments for the points ξ on the boundary of Ω, requiring that
φξ(ξ) is on the boundary of Pξ rather than in its interior. Another approach
could be to introduce a unique C1 extension of the Powell-Sabin spline beyond
the boundary of a triangulation. This would then allow interior points on
the boundary of Ω and work with the projection atlas as in Section 7.

Remark 8.11. To extend our method to higher dimensional manifolds, one
would need a construction of local C1 interpolants in n variables, with n > 2,
completely determined by the function and gradient values at vertices, and
depending smoothly on this data and the vertex locations. Similarly, to
obtain C2 or higher smoothness Cr with our scheme, a local bivariate Cr

interpolant determined by the function and gradient values at vertices is
needed. Recall that all known macro-elements of higher smoothness [21]
require higher order derivative values.

Remark 8.12. If Ω is the 2-dimensional sphere S
2, then an admissible atlas

{(Uξ, φξ)}ξ∈S2 can be defined using either central or stereographic projec-
tions onto the tangent planes rather than the orthogonal projections as in
Section 7.1. The central projection has the property that the edge points
with respect to any consistent triangulation are segments of great circles on
S

2. The advantage of the stereographic projection is that Uξ can be chosen
to be S

2\{−ξ} provided −ξ is the center of the stereographic projection that
defines φξ. Therefore, very coarse triangulations, for example the one defined
by a tetrahedron inscribed in the sphere, are consistent with the atlas.

Remark 8.13. In the case when Ω is the torus T
2, the following simple atlas

is admissible. The torus with inner radius R − r and outer radius R + r is
defined parametrically by the equations

x = (R+ r cos v) cosu,
y = (R+ r cos v) sinu,
z = r sin v,
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with u, v ∈ [0, 2π). For each ξ on the torus, let uξ, vξ be its parameter values.
We can reparametrize the torus as

x = (R+ r cos(vξ + v)) cos(uξ + u),
y = (R+ r cos(vξ + v))) sin(uξ + u),
z = r sin(vξ + v)),

with u, v ∈ [−π, π), and define the chart (Uξ, φξ) by setting φξ(ζ) = (u, v) ∈
R

2, where u, v are the parameter values of ζ , and letting Uξ be the set of
all points ζ with φξ(ζ) ∈ (−π, π)2. This family of charts depends smoothly
on ξ in the sense of Definition 3.1, where no local transformations rζ are
needed. Moreover, the transition mappings φζ ◦ φ

−1
ξ are the shifts (u, v) 7→

(u+ uξ − uζ , v + vξ − vζ). Hence, all Jacobians Jζξ are unit matrices, which
makes the transformations in Step 3 of Algorithm 4.1 and in Step 1(d) of
Algorithm 5.1 trivial. Note that using this atlas with our method is equivalent
to interpreting the data on T

2 as periodic data on R
2, constructing a periodic

triangulation, and interpolating or approximating the data by the ordinary
Powell-Sabin spline.
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