2,498 research outputs found

    Combining Revealed and Stated Preference Data to Estimate the Nonmarket Value of Ecological Services: An Assessment of the State of the Science

    Get PDF
    This paper reviews the marketing, transportation, and environmental economics literature on the joint estimation of revealed and stated preference data. The revealed preference and stated preference approaches are first described with a focus on the strengths and weaknesses of each. Recognizing these strengths and weaknesses, the potential gains from combining data are described. A classification system for combined data that emphasizes the type of data combination and the econometric models used is proposed. A methodological review of the literature is pursued based on this classification system. Examples from the environmental economics literature are highlighted. A discussion of the advantages and disadvantages of each type of jointly estimated model is then presented. Suggestions for future research, in particular opportunities for application of these models to environmental quality valuation, are presented.Nonmarket Valuation, Revealed Preference, Stated Preference

    Secants of minuscule and cominuscule minimal orbits

    Full text link
    We study the geometry of the secant and tangential variety of a cominuscule and minuscule variety, e.g. a Grassmannian or a spinor variety. Using methods inspired by statistics we provide an explicit local isomorphism with a product of an affine space with a variety which is the Zariski closure of the image of a map defined by generalized determinants. In particular, equations of the secant or tangential variety correspond to relations among generalized determinants. We also provide a representation theoretic decomposition of cubics in the ideal of the secant variety of any Grassmannian

    Parameterized Verification of Asynchronous Shared-Memory Systems

    Full text link
    We characterize the complexity of the safety verification problem for parameterized systems consisting of a leader process and arbitrarily many anonymous and identical contributors. Processes communicate through a shared, bounded-value register. While each operation on the register is atomic, there is no synchronization primitive to execute a sequence of operations atomically. We analyze the complexity of the safety verification problem when processes are modeled by finite-state machines, pushdown machines, and Turing machines. The problem is coNP-complete when all processes are finite-state machines, and is PSPACE-complete when they are pushdown machines. The complexity remains coNP-complete when each Turing machine is allowed boundedly many interactions with the register. Our proofs use combinatorial characterizations of computations in the model, and in case of pushdown-systems, some language-theoretic constructions of independent interest.Comment: 26 pages, International Conference on Computer Aided Verification (CAV'13

    Beyond Gaussian Pyramid: Multi-skip Feature Stacking for Action Recognition

    Full text link
    Most state-of-the-art action feature extractors involve differential operators, which act as highpass filters and tend to attenuate low frequency action information. This attenuation introduces bias to the resulting features and generates ill-conditioned feature matrices. The Gaussian Pyramid has been used as a feature enhancing technique that encodes scale-invariant characteristics into the feature space in an attempt to deal with this attenuation. However, at the core of the Gaussian Pyramid is a convolutional smoothing operation, which makes it incapable of generating new features at coarse scales. In order to address this problem, we propose a novel feature enhancing technique called Multi-skIp Feature Stacking (MIFS), which stacks features extracted using a family of differential filters parameterized with multiple time skips and encodes shift-invariance into the frequency space. MIFS compensates for information lost from using differential operators by recapturing information at coarse scales. This recaptured information allows us to match actions at different speeds and ranges of motion. We prove that MIFS enhances the learnability of differential-based features exponentially. The resulting feature matrices from MIFS have much smaller conditional numbers and variances than those from conventional methods. Experimental results show significantly improved performance on challenging action recognition and event detection tasks. Specifically, our method exceeds the state-of-the-arts on Hollywood2, UCF101 and UCF50 datasets and is comparable to state-of-the-arts on HMDB51 and Olympics Sports datasets. MIFS can also be used as a speedup strategy for feature extraction with minimal or no accuracy cost

    Some Remarks about the Complexity of Epidemics Management

    Full text link
    Recent outbreaks of Ebola, H1N1 and other infectious diseases have shown that the assumptions underlying the established theory of epidemics management are too idealistic. For an improvement of procedures and organizations involved in fighting epidemics, extended models of epidemics management are required. The necessary extensions consist in a representation of the management loop and the potential frictions influencing the loop. The effects of the non-deterministic frictions can be taken into account by including the measures of robustness and risk in the assessment of management options. Thus, besides of the increased structural complexity resulting from the model extensions, the computational complexity of the task of epidemics management - interpreted as an optimization problem - is increased as well. This is a serious obstacle for analyzing the model and may require an additional pre-processing enabling a simplification of the analysis process. The paper closes with an outlook discussing some forthcoming problems

    QuizMap: Open social student modeling and adaptive navigation support with TreeMaps

    Get PDF
    In this paper, we present a novel approach to integrate social adaptive navigation support for self-assessment questions with an open student model using QuizMap, a TreeMap-based interface. By exposing student model in contrast to student peers and the whole class, QuizMap attempts to provide social guidance and increase student performance. The paper explains the nature of the QuizMap approach and its implementation in the context of self-assessment questions for Java programming. It also presents the design of a semester-long classroom study that we ran to evaluate QuizMap and reports the evaluation results. © 2011 Springer-Verlag Berlin Heidelberg

    Enabling high confidence detections of gravitational-wave bursts

    Get PDF
    With the advanced LIGO and Virgo detectors taking observations the detection of gravitational waves is expected within the next few years. Extracting astrophysical information from gravitational wave detections is a well-posed problem and thoroughly studied when detailed models for the waveforms are available. However, one motivation for the field of gravitational wave astronomy is the potential for new discoveries. Recognizing and characterizing unanticipated signals requires data analysis techniques which do not depend on theoretical predictions for the gravitational waveform. Past searches for short-duration un-modeled gravitational wave signals have been hampered by transient noise artifacts, or "glitches," in the detectors. In some cases, even high signal-to-noise simulated astrophysical signals have proven difficult to distinguish from glitches, so that essentially any plausible signal could be detected with at most 2-3 σ\sigma level confidence. We have put forth the BayesWave algorithm to differentiate between generic gravitational wave transients and glitches, and to provide robust waveform reconstruction and characterization of the astrophysical signals. Here we study BayesWave's capabilities for rejecting glitches while assigning high confidence to detection candidates through analytic approximations to the Bayesian evidence. Analytic results are tested with numerical experiments by adding simulated gravitational wave transient signals to LIGO data collected between 2009 and 2010 and found to be in good agreement.Comment: 15 pages, 6 figures, submitted to PR
    corecore