512 research outputs found

    Conflict-free connection numbers of line graphs

    Full text link
    A path in an edge-colored graph is called \emph{conflict-free} if it contains at least one color used on exactly one of its edges. An edge-colored graph GG is \emph{conflict-free connected} if for any two distinct vertices of GG, there is a conflict-free path connecting them. For a connected graph GG, the \emph{conflict-free connection number} of GG, denoted by cfc(G)cfc(G), is defined as the minimum number of colors that are required to make GG conflict-free connected. In this paper, we investigate the conflict-free connection numbers of connected claw-free graphs, especially line graphs. We first show that for an arbitrary connected graph GG, there exists a positive integer kk such that cfc(Lk(G))2cfc(L^k(G))\leq 2. Secondly, we get the exact value of the conflict-free connection number of a connected claw-free graph, especially a connected line graph. Thirdly, we prove that for an arbitrary connected graph GG and an arbitrary positive integer kk, we always have cfc(Lk+1(G))cfc(Lk(G))cfc(L^{k+1}(G))\leq cfc(L^k(G)), with only the exception that GG is isomorphic to a star of order at least~55 and k=1k=1. Finally, we obtain the exact values of cfc(Lk(G))cfc(L^k(G)), and use them as an efficient tool to get the smallest nonnegative integer k0k_0 such that cfc(Lk0(G))=2cfc(L^{k_0}(G))=2.Comment: 11 page

    Locality for quantum systems on graphs depends on the number field

    Full text link
    Adapting a definition of Aaronson and Ambainis [Theory Comput. 1 (2005), 47--79], we call a quantum dynamics on a digraph "saturated Z-local" if the nonzero transition amplitudes specifying the unitary evolution are in exact correspondence with the directed edges (including loops) of the digraph. This idea appears recurrently in a variety of contexts including angular momentum, quantum chaos, and combinatorial matrix theory. Complete characterization of the digraph properties that allow such a process to exist is a long-standing open question that can also be formulated in terms of minimum rank problems. We prove that saturated Z-local dynamics involving complex amplitudes occur on a proper superset of the digraphs that allow restriction to the real numbers or, even further, the rationals. Consequently, among these fields, complex numbers guarantee the largest possible choice of topologies supporting a discrete quantum evolution. A similar construction separates complex numbers from the skew field of quaternions. The result proposes a concrete ground for distinguishing between complex and quaternionic quantum mechanics.Comment: 9 page

    Improved hardness for H-colourings of G-colourable graphs

    Full text link
    We present new results on approximate colourings of graphs and, more generally, approximate H-colourings and promise constraint satisfaction problems. First, we show NP-hardness of colouring kk-colourable graphs with (kk/2)1\binom{k}{\lfloor k/2\rfloor}-1 colours for every k4k\geq 4. This improves the result of Bul\'in, Krokhin, and Opr\v{s}al [STOC'19], who gave NP-hardness of colouring kk-colourable graphs with 2k12k-1 colours for k3k\geq 3, and the result of Huang [APPROX-RANDOM'13], who gave NP-hardness of colouring kk-colourable graphs with 2k1/32^{k^{1/3}} colours for sufficiently large kk. Thus, for k4k\geq 4, we improve from known linear/sub-exponential gaps to exponential gaps. Second, we show that the topology of the box complex of H alone determines whether H-colouring of G-colourable graphs is NP-hard for all (non-bipartite, H-colourable) G. This formalises the topological intuition behind the result of Krokhin and Opr\v{s}al [FOCS'19] that 3-colouring of G-colourable graphs is NP-hard for all (3-colourable, non-bipartite) G. We use this technique to establish NP-hardness of H-colouring of G-colourable graphs for H that include but go beyond K3K_3, including square-free graphs and circular cliques (leaving K4K_4 and larger cliques open). Underlying all of our proofs is a very general observation that adjoint functors give reductions between promise constraint satisfaction problems.Comment: Mention improvement in Proposition 2.5. SODA 202

    On Generalizations of Supereulerian Graphs

    Get PDF
    A graph is supereulerian if it has a spanning closed trail. Pulleyblank in 1979 showed that determining whether a graph is supereulerian, even when restricted to planar graphs, is NP-complete. Let κ2˘7(G)\kappa\u27(G) and δ(G)\delta(G) be the edge-connectivity and the minimum degree of a graph GG, respectively. For integers s0s \ge 0 and t0t \ge 0, a graph GG is (s,t)(s,t)-supereulerian if for any disjoint edge sets X,YE(G)X, Y \subseteq E(G) with Xs|X|\le s and Yt|Y|\le t, GG has a spanning closed trail that contains XX and avoids YY. This dissertation is devoted to providing some results on (s,t)(s,t)-supereulerian graphs and supereulerian hypergraphs. In Chapter 2, we determine the value of the smallest integer j(s,t)j(s,t) such that every j(s,t)j(s,t)-edge-connected graph is (s,t)(s,t)-supereulerian as follows: j(s,t) = \left\{ \begin{array}{ll} \max\{4, t + 2\} & \mbox{ if $0 \le s \le 1$, or $(s,t) \in \{(2,0), (2,1), (3,0),(4,0)\}$,} \\ 5 & \mbox{ if $(s,t) \in \{(2,2), (3,1)\}$,} \\ s + t + \frac{1 - (-1)^s}{2} & \mbox{ if $s \ge 2$ and $s+t \ge 5$. } \end{array} \right. As applications, we characterize (s,t)(s,t)-supereulerian graphs when t3t \ge 3 in terms of edge-connectivities, and show that when t3t \ge 3, (s,t)(s,t)-supereulerianicity is polynomially determinable. In Chapter 3, for a subset YE(G)Y \subseteq E(G) with Yκ2˘7(G)1|Y|\le \kappa\u27(G)-1, a necessary and sufficient condition for GYG-Y to be a contractible configuration for supereulerianicity is obtained. We also characterize the (s,t)(s,t)-supereulerianicity of GG when s+tκ2˘7(G)s+t\le \kappa\u27(G). These results are applied to show that if GG is (s,t)(s,t)-supereulerian with κ2˘7(G)=δ(G)3\kappa\u27(G)=\delta(G)\ge 3, then for any permutation α\alpha on the vertex set V(G)V(G), the permutation graph α(G)\alpha(G) is (s,t)(s,t)-supereulerian if and only if s+tκ2˘7(G)s+t\le \kappa\u27(G). For a non-negative integer sV(G)3s\le |V(G)|-3, a graph GG is ss-Hamiltonian if the removal of any ksk\le s vertices results in a Hamiltonian graph. Let is,t(G)i_{s,t}(G) and hs(G)h_s(G) denote the smallest integer ii such that the iterated line graph Li(G)L^{i}(G) is (s,t)(s,t)-supereulerian and ss-Hamiltonian, respectively. In Chapter 4, for a simple graph GG, we establish upper bounds for is,t(G)i_{s,t}(G) and hs(G)h_s(G). Specifically, the upper bound for the ss-Hamiltonian index hs(G)h_s(G) sharpens the result obtained by Zhang et al. in [Discrete Math., 308 (2008) 4779-4785]. Harary and Nash-Williams in 1968 proved that the line graph of a graph GG is Hamiltonian if and only if GG has a dominating closed trail, Jaeger in 1979 showed that every 4-edge-connected graph is supereulerian, and Catlin in 1988 proved that every graph with two edge-disjoint spanning trees is a contractible configuration for supereulerianicity. In Chapter 5, utilizing the notion of partition-connectedness of hypergraphs introduced by Frank, Kir\\u27aly and Kriesell in 2003, we generalize the above-mentioned results of Harary and Nash-Williams, of Jaeger and of Catlin to hypergraphs by characterizing hypergraphs whose line graphs are Hamiltonian, and showing that every 2-partition-connected hypergraph is a contractible configuration for supereulerianicity. Applying the adjacency matrix of a hypergraph HH defined by Rodr\\u27iguez in 2002, let λ2(H)\lambda_2(H) be the second largest adjacency eigenvalue of HH. In Chapter 6, we prove that for an integer kk and a rr-uniform hypergraph HH of order nn with r4r\ge 4 even, the minimum degree δk2\delta\ge k\ge 2 and kr+2k\neq r+2, if λ2(H)(r1)δr2(k1)n4(r+1)(nr1)\lambda_2(H)\le (r-1)\delta-\frac{r^2(k-1)n}{4(r+1)(n-r-1)}, then HH is kk-edge-connected. %κ2˘7(H)k\kappa\u27(H)\ge k. Some discussions are displayed in the last chapter. We extend the well-known Thomassen Conjecture that every 4-connected line graph is Hamiltonian to hypergraphs. The (s,t)(s,t)-supereulerianicity of hypergraphs is another interesting topic to be investigated in the future

    On cyclic Kautz digraphs

    Get PDF
    A prominent problem in Graph Theory is to find extremal graphs or digraphs with restrictions in their diameter, degree and number of vertices. Here we obtain a new family of digraphs with minimal diameter, that is, given the number of vertices and out-degree there is no other digraph with a smaller diameter. This new family is called modified cyclic digraphs MCK(d, `) and it is derived from the Kautz digraphs K(d, `). It is well-known that the Kautz digraphs K(d, `) have the smallest diameter among all digraphs with their number of vertices and degree. We define the cyclic Kautz digraphs CK(d, `), whose vertices are labeled by all possible sequences a1 . . . a` of length `, such that each character ai is chosen from an alphabet containing d + 1 distinct symbols, where the consecutive characters in the sequence are different (as in Kautz digraphs), and now also requiring that a1 6= a`. The cyclic Kautz digraphs CK(d, `) have arcs between vertices a1a2 . . . a` and a2 . . . a`a`+1, with a1 6= a` and a2 6= a`+1. Unlike in Kautz digraphs K(d, `), any label of a vertex of CK(d, `) can be cyclically shifted to form again a label of a vertex of CK(d, `). We give the main parameters of CK(d, `): number of vertices, number of arcs, and diameter. Moreover, we construct the modified cyclic Kautz digraphs MCK(d, `) to obtain the same diameter as in the Kautz digraphs, and we show that MCK(d, `) are d-out-regular. Finally, we compute the number of vertices of the iterated line digraphs of CK(d, `).Preprin

    Classification of real Bott manifolds and acyclic digraphs

    Full text link
    We completely characterize real Bott manifolds up to affine diffeomorphism in terms of three simple matrix operations on square binary matrices obtained from strictly upper triangular matrices by permuting rows and columns simultaneously. We also prove that any graded ring isomorphism between the cohomology rings of real Bott manifolds with Z/2\mathbb Z/2 coefficients is induced by an affine diffeomorphism between the real Bott manifolds. Our characterization can also be described in terms of graph operations on directed acyclic graphs. Using this combinatorial interpretation, we prove that the decomposition of a real Bott manifold into a product of indecomposable real Bott manifolds is unique up to permutations of the indecomposable factors. Finally, we produce some numerical invariants of real Bott manifolds from the viewpoint of graph theory and discuss their topological meaning. As a by-product, we prove that the toral rank conjecture holds for real Bott manifolds.Comment: 27 pages, 5 figures. It is a combination of arXiv:0809.2178 and arXiv:1002.4704, including some new result

    Limit points of eigenvalues of (di)graphs

    Get PDF
    The study on limit points of eigenvalues of undirected graphs was initiated by A. J. Hoffman in 1972. Now we extend the study to digraphs. We prove: 1. Every real number is a limit point of eigenvalues of graphs. Every complex number is a limit point of eigenvalues of digraphs. 2. For a digraph D, the set of limit points of eigenvalues of iterated subdivision digraphs of D is the unit circle in the complex plane if and only if D has a directed cycle. 3. Every limit point of eigenvalues of a set D of digraphs (graphs) is a limit point of eigenvalues of a set of bipartite digraphs (graphs), where consists of the double covers of the members in D. 4. Every limit point of eigenvalues of a set D of digraphs is a limit point of eigenvalues of line digraphs of the digraphs in D. 5. If M is a limit point of the largest eigenvalues of graphs, then -M is a limit point of the smallest eigenvalues of graphs

    Analyzing Social Network Structures in the Iterated Prisoner's Dilemma with Choice and Refusal

    Full text link
    The Iterated Prisoner's Dilemma with Choice and Refusal (IPD/CR) is an extension of the Iterated Prisoner's Dilemma with evolution that allows players to choose and to refuse their game partners. From individual behaviors, behavioral population structures emerge. In this report, we examine one particular IPD/CR environment and document the social network methods used to identify population behaviors found within this complex adaptive system. In contrast to the standard homogeneous population of nice cooperators, we have also found metastable populations of mixed strategies within this environment. In particular, the social networks of interesting populations and their evolution are examined.Comment: 37 pages, uuencoded gzip'd Postscript (1.1Mb when gunzip'd) also available via WWW at http://www.cs.wisc.edu/~smucker/ipd-cr/ipd-cr.htm
    corecore