5,941 research outputs found

    Parallel software tool for decomposing and meshing of 3d structures

    Get PDF
    An algorithm for automatic parallel generation of three-dimensional unstructured computational meshes based on geometrical domain decomposition is proposed in this paper. Software package build upon proposed algorithm is described. Several practical examples of mesh generation on multiprocessor computational systems are given. It is shown that developed parallel algorithm enables us to reduce mesh generation time significantly (dozens of times). Moreover, it easily produces meshes with number of elements of order 5 · 107, construction of those on a single CPU is problematic. Questions of time consumption, efficiency of computations and quality of generated meshes are also considered

    Using quantum theory to reduce the complexity of input-output processes

    Full text link
    All natural things process and transform information. They receive environmental information as input, and transform it into appropriate output responses. Much of science is dedicated to building models of such systems -- algorithmic abstractions of their input-output behavior that allow us to simulate how such systems can behave in the future, conditioned on what has transpired in the past. Here, we show that classical models cannot avoid inefficiency -- storing past information that is unnecessary for correct future simulation. We construct quantum models that mitigate this waste, whenever it is physically possible to do so. This suggests that the complexity of general input-output processes depends fundamentally on what sort of information theory we use to describe them.Comment: 10 pages, 5 figure

    Custom Integrated Circuits

    Get PDF
    Contains reports on twelve research projects.Analog Devices, Inc.International Business Machines, Inc.Joint Services Electronics Program (Contract DAAL03-86-K-0002)Joint Services Electronics Program (Contract DAAL03-89-C-0001)U.S. Air Force - Office of Scientific Research (Grant AFOSR 86-0164)Rockwell International CorporationOKI Semiconductor, Inc.U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)Charles Stark Draper LaboratoryNational Science Foundation (Grant MIP 84-07285)National Science Foundation (Grant MIP 87-14969)Battelle LaboratoriesNational Science Foundation (Grant MIP 88-14612)DuPont CorporationDefense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research (Contract N00014-87-K-0825)American Telephone and TelegraphDigital Equipment CorporationNational Science Foundation (Grant MIP-88-58764

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Modeling and analysis of semiconductor manufacturing processes using petri nets

    Get PDF
    This thesis addresses the issues in modeling and analysis of multichip module (MCM) manufacturing processes using Petri nets. Building such graphical and mathematical models is a crucial step to understand MCM technologies and to enhance their application scope. In this thesis, the application of Petri nets is presented with top-down and bottom-up approaches. The theory of Petri nets is summarized with its basic notations and properties at first. After that, the capability of calculating and analyzing Petri nets with deterministic timing information is extended to meet the requirements of the MCM models. Then, using top-down refining and system decomposition, MCM models are built from an abstract point to concrete systems with timing information. In this process, reduction theory based on a multiple-input-single-output modules for deterministic Petri nets is applied to analyze the cycle time of Petri net models. Besides, this thesis is of significance in its use of the reduction theory which is derived for timed marked graphs - an important class of Petri nets

    Towards Faster-than-real-time Power System Simulation Using a Semi-analytical Approach and High-performance Computing

    Get PDF
    This dissertation investigates two possible directions of achieving faster-than-real-time simulation of power systems. The first direction is to develop a semi-analytical solution which represents the nonlinear dynamic characteristics of power systems in a limited time period. The second direction is to develop a parallel simulation scheme which allows the local numerical solutions of power systems to be developed independently in consecutive time intervals and then iteratively corrected toward the accurate global solution through the entire simulation time period. For the first direction, the semi-analytical solution is acquired using Adomian decomposition method (ADM). The ADM assumes the analytical solution of any nonlinear system can be decomposed into the summation of infinite analytical expressions. Those expressions are derived recursively using the system differential equations. By only keeping a finite number of those analytical expressions, an approximation of the analytical solution is yielded, which is defined as a semi-analytical solution. The semi-analytical solutions can be developed offline and evaluated online to facilitate the speedup of simulations. A parallel implementation and variable time window approach for the online evaluation stage are proposed in addition to the time performance analysis. For the second direction, the Parareal-in-time algorithm is tested for power system simulation. Parareal is essentially a multiple shooting method. It decomposes the simulation time into coarse time intervals and then fine time intervals within each coarse interval. The numerical integration uses a computational cheap solver on the coarse time grid and an expensive solver on the fine time grids. The solution within each coarse interval is propagated independently using the fine solver. The mismatch of the solution between the coarse solution and fine solution is corrected iteratively. The theoretical speedup can be achieved is the ratio of the coarse interval number and iteration number. In this dissertation, the Parareal algorithm is tested on the North American eastern interconnection system with around 70,000 buses and 5,000 generators
    corecore