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ABSTRACT 

This dissertation investigates two possible directions of achieving faster-than-real-

time simulation of power systems. The first direction is to develop a semi-analytical 

solution which represents the nonlinear dynamic characteristics of power systems in a 

limited time period. The second direction is to develop a parallel simulation scheme 

which allows the local numerical solutions of power systems to be developed 

independently in consecutive time intervals and then iteratively corrected toward the 

accurate global solution through the entire simulation time period. 

For the first direction, the semi-analytical solution is acquired using Adomian 

decomposition method (ADM). The ADM assumes the analytical solution of any 

nonlinear system can be decomposed into the summation of infinite analytical 

expressions. Those expressions are derived recursively using the system differential 

equations. By only keeping a finite number of those analytical expressions, an 

approximation of the analytical solution is yielded, which is defined as a semi-analytical 

solution. The semi-analytical solutions can be developed offline and evaluated online to 

facilitate the speedup of simulations. A parallel implementation and variable time 

window approach for the online evaluation stage are proposed in addition to the time 

performance analysis. 

For the second direction, the Parareal-in-time algorithm is tested for power system 

simulation. Parareal is essentially a multiple shooting method. It decomposes the 

simulation time into coarse time intervals and then fine time intervals within each coarse 

interval. The numerical integration uses a computational cheap solver on the coarse time 
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grid and an expensive solver on the fine time grids. The solution within each coarse 

interval is propagated independently using the fine solver. The mismatch of the solution 

between the coarse solution and fine solution is corrected iteratively. The theoretical 

speedup can be achieved is the ratio of the coarse interval number and iteration number. 

In this dissertation, the Parareal algorithm is tested on the North American eastern 

interconnection system with around 70,000 buses and 5,000 generators. 

Keywords: Adomian decomposition method; parallel computing; power system 

simulation; semi-analytical solution; transient stability; High-performance computing, 

parallel algorithms, Parareal-in-time.  
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CHAPTER ONE  

INTRODUCTION AND BACKGROUND INFORMATION 

1.1 Introduction  

Power system stability assessment is a challenging topic due to the complexity of 

a modern power grid and the wide range of the time constants of devices. In daily 

operations, power system dynamic security assessment needs to be performed on a 

regular basis, which involves assessing the angular stability and voltage stability to 

predict possible instability and provide insights for control actions. Beyond the dynamic 

security assessment, steady-state security of the system involving severe contingencies 

such as cascading failure [1][2] also needs to be studied although not as frequently as the 

dynamic security assessment. 

Voltage stability, to its nature, is a local stability problem. The mitigation of 

voltage instability requires local reactive power support. In the procedure of deciding 

optimal locations [3] and sizes [4] of reactive power supports, time domain simulation 

plays an important role, the effectiveness of the reactive power supports need to be 

validated through time domain simulation. In system planning studies, hundreds of 

contingencies need to be simulated. The optimization algorithm also requires several 

iterations to find the optimal decision. This means a large number of simulations must be 

performed. If the time performance of power system simulation can be improved, it will 

enable the planning engineers to perform such studies more frequently. 
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On the other hand, angular stability problems involve faster dynamics than 

voltage stability problems and are not necessarily local. There are two ways of assessing 

angular stability problems, analytical and numerical. Both have advantages and 

drawbacks. An Analytical method is computationally inexpensive; it evaluates the system 

angular stability by an energy function-based direct method which may only need the 

fault-on simulation. However, most of the analytical methods are over conservative, and 

some of them can not fully capture the nonlinearity of a power system. Some studies have 

investigated the relation between the amplitude and the frequency of oscillation 

analytically [5][6]. There are also studies introducing a measurement-based approach for 

identifying the oscillation mode [7]. On the other hand, numerical methods simulate the 

step-by-step response of the system, which provides more accurate information about the 

system. But for systems with realistic models and sizes, numerical methods are 

computationally demanding, which prohibit them from being utilized in real-time 

security assessment applications. 

Time-domain simulation of a power system following a contingency for transient 

stability analysis needs to solve nonlinear differential-algebraic equations (DAEs) on the 

system state over a simulation period. Numerical integration methods, either explicit or 

implicit, are traditionally employed to solve the Initial Value Problem (IVP) of the DAEs 

but their iterative computations could be time-consuming for a multi-machine power 

system because the DAEs in nature model tight coupling between machines via nonlinear 

sine functions. A very small integration step, typically less than one millisecond, is 

usually required for accuracy of the integration. Thus, a large number of iterations are 
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needed at each step, but numerical instability may become another concern with explicit 

integration methods like Runge–Kutta methods, which is widely applied in today’s 

simulation software. Implicit integration methods like the Trapezoidal method overcome 

numerical instability by introducing implicit algebraic equations, which also need to be 

solved thru iterations by numerical methods like the Newton-Raphson method, and thus, 

the computational complexity is significantly increased. 

1.2 Semi-analytical approaches 

The difficulty of solving a nonlinear ordinary differential equation (ODE) is 

mainly caused by its nonlinear expression. In traditional approaches, if an analytical 

expression is desired, linearization is applied to nonlinear functions to facilitate analytic 

approaches such as Laplace Transform at the cost of nonlinearities. On the other hand, if 

the system’s nonlinear time-domain response following a contingency is of interest, 

numerical approach is applied. There have been studies trying to combine the advantages 

of the analytic approach and numerical approach, namely, yielding an approximate 

analytical solution which is accurate within certain time range and keeps the system 

nonlinearity intact at the same time. This type of methods is called “semi-analytical”. 

There are three dominant sub-categories of semi-analytical methods, the Adomian 

Decomposition Method (ADM), the Homotopy Analysis Method (HAM) and the 

Variational Iteration Method (VIM).  The ADM is the developed by George Adomian 

from the 1970s to the 1990s, the HAM is proposed by Shijun Liao in 1992 and the VIM 

is proposed by Ji-Huan He in 1999. Among them, the ADM is considered the foundation 
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of decomposition methods. Both the HAM and the VIM use the ADM as a benchmark to 

test their performances [8][9]. 

1.2.1 ADM 

The ADM allows the system solution to be expressed in terms of a nonlinear 

expressions without linearize the system. The essential technique of the ADM is to 

recursively develop a series of Adomian polynomials which are generalized Maclaurin 

series to approximately represent the nonlinear functions in the system differential 

equations. 

In [10], Abbaoui and Cherruault provided a new idea of proving the convergence 

of the ADM. They proved the convergence of Adomian polynomials is equivalent to the 

convergence of the approximate solution. To prove the convergence of Adomian 

polynomials, they first redefined the way of calculating them [11], and then used number 

theory to find the convergence range. Using the convergence range found in [10], an 

efficient step-size control method is proposed in [12] to improve the speed of the ADM. 

1.2.2 VIM 

The key idea of the VIM is to use the iteration of a correction function to acquire 

several successive approximations of an exact solution. However, instead of summing up 

all of them as in the ADM and the HAM, the exact solution is obtained at the limit of 

these aforementioned approximations [1]. Because the ADM provides the components of 

an approximate solution, each of those components can be utilized for the analysis of 

system. On the other hand, the only useful result of the VIM is the last approximation 
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given by iteration, the results before the final iteration are discarded. However, because 

the VIM reduces the volume of calculations by not requiring the Adomian polynomials, it 

gives the solution more rapidly comparing to the ADM. 

1.2.3 HAM 

In [9], the ADM is compared with the HAM and its special case the Homotopy 

Perturbation Method (HPM). Both the ADM and the HPM are methods which consider 

the approximate solution of a nonlinear equation as an infinite series usually converging 

to the accurate solution [13]. Therefore the ADM and the HPM are equivalent in solving 

nonlinear equations [13] and they are special cases of the HAM. The advantage of the 

HAM compared to the ADM and the HPM is that the solution can be expressed by 

different base functions rather than polynomial functions [9]. 

1.3 Existing Parallel Computing Algorithms 

Although sequential numerical integration approaches are still the first choices of 

most simulation software, the power industry has expressed interests in alternative 

approaches that can improve the time performance of power system simulation. Power 

systems have two characteristics that limit the speed of simulation: the tight coupling 

between state variables and the sequential nature of time evolution. Any parallel 

simulation approach has to address those two characteristics in order to achieve a better 

performance than sequential numerical integration approaches. 
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1.3.1 Parareal 

The Parareal-in-time method is a variation of the multi-shooting method [14]. It 

decomposes the time domain into sub-intervals and uses a computationally cheap 

(coarse) solver to globally propagate a less accurate solution. Then within each sub-

interval, an accurate (fine) solver is utilized to correct the solution acquired from the 

coarse solver to the true solution. 

The Parareal method is designed for parallel computing. If enough parallel 

processors are available, the correction of each sub-interval can be computed 

concurrently by different processors. Under an ideal parallelism, the time for computing 

the entire true solution trajectory will be the time for correcting one sub-interval’s coarse 

solution to the true solution, multiplied by the number of required iterations.  

1.3.2 PITA 

The Parallel implicit time-integrator (PITA) is closely related to the Parareal-in-

time algorithm [15]. The difference is that the PITA has a different coarse solution 

correction scheme. The difference between coarse solution and fine solution at each 

coarse time instant is called a jump in the PITA. Since the jumps are propagated using the 

same set of DEs as the state variables, it is observed that those jumps oscillate at a 

comparable frequency with the system’s nature frequency. To eliminate the numerical 

resonance caused by the propagation of the jumps, the PITA uses the solution from 

previous iterations to construct a Krylov subspace and project the correction to this 

subspace, therefore filter out the nature modes from the jumps.  
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1.3.3 Waveform relaxation 

Instead of designing parallel computation in the dimension of time, waveform 

relaxation considers the parallelism across different state variables. Although dealing 

with different types of parallelism, the first step of the waveform relaxation approach is 

similar to Parareal. It also involves an initial guess of the solution (or waveform) of state 

variables. The state variables are separated into several groups based on offline studies of 

the system. The state variables between groups are assumed to be coupled not as tight as 

those within one group. For each group of state variables, the simulation is carried out 

independent with any solution of state variables belonging to other groups fixed to a 

presumed waveform. Then the solution of the entire system is corrected towards the true 

solution iteratively.  

Paper [16] applies waveform relaxation approach to implement parallelism 

through state variables by assuming and correcting waveforms for them. The grouping of 

state variables is based on the geographic location of the machines and the initial guesses 

of states variables outside the interested group are assumed to be constant values during 

the numerical integration of the state variables inside the interested group. 

1.3.4 Spatial decomposition 

In the power simulation studies, the spatial decomposition approach is a more 

intuitive way of designing parallel computing across different areas. Paper [17] 

decomposes the system into a study area and the external area. For each time step, the 

simulation of each area is independent. The information is passed between areas using 

fictitious generators at the boundary buses. During each time step, voltages of the 
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boundary buses are solved through balancing the power flow equations taking the power 

inputs from both sides of the boundary. 
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CHAPTER TWO  

SAS BASED DETERMINISTIC POWER SYSTEM SIMULATION 

Intuitively, to solve a power system’s DEs, if the analytical solution of the IVP 

about each state variable could be found as an explicit, closed-form function about 

symbolic variables including time, the initial state and other variables on the system 

operating condition, such a function would directly give the state value at any time 

instant without conducting time-consuming computations or iterations through all 

integration steps as R-K 4 does. However, for nonlinear power system DEs, such an 

analytical solution being accurate for any simulation time period does not exist in theory. 

Thus, a compromise is to find an approximate analytic solution, named a semi-analytical 

solution (SAS), which keeps accuracy for a certain length of time window (denoted by 

T), and can be repeatedly used over a series of such windows until those windows make 

up a desired simulation period. If an SAS is derived beforehand, then solving the IVP 

becomes simply evaluating the SAS, i.e. plugging in values of symbolic variables, which 

can be extremely fast compared to numerical integration. If online evaluation of the SAS 

for each window T takes a short computation time, the T/ indicates how many times the 

SAS-based power system simulation can be faster than the wall-clock time. 

2.1 Solving Power System DEs Using the ADM 

2.1.1 Adomian Decomposition Method 

( ) ( ( ))t tx f x      (2-1) 
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 1 2( ) ( ) ( ) ( )
T

Mt x t x t x tx 
 

 1 2( ) ( ) ( ) ( )
T

Mf f f    f   

Consider a nonlinear dynamic system, e.g., a power system, with M state 

variables modeled by nonlinear DE (2-1). 

(0) [ ( )]
[ ]

s s
 

x f x
x

L
L    (2-2) 

To solve x(t), the first step of the ADM is to apply Laplace transform L [] to transform 

(2-1) into an algebraic equation (AE) about complex frequency s [18], [19], and then 

solve L [x] to obtain (2-2). 

0

( ) ( )n
n

t t




x x      (2-3) 

, 0 1
0

( ) ( , , , ),    1i i n n
n

f A i M




 x x x x    (2-4) 

,
0 0

1

!

n n
i

i n i in
i

A f
n




  

   
      

 x  (2-5) 

Assume that x(t) can be decomposed as (2-3). Then, use (2-4) to decompose each fi(), i.e. 

f()’s i-th element, as a sum of infinite Adomian polynomials given by (2-5), where λ is 

called a grouping factor [20]. 

   0 0 sx xL      (2-6) 

   1      0n n s n  AxL L   (2-7) 
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Matching the terms of x(t) and f() with the same index [21], we can easily derive 

recursive formulas (2-6) and (2-7) for L [xn] (n0), where An=[ A1,n , … AM,n]T. 

By applying an inverse Laplace transform L  -1[] to both sides of (2-6) and (2-7), 

we can obtain xn(t) for any n. An SAS of (2-1) is defined as the sum of first N terms of 

xn(t): 

   
1

0

N
S A S

n
n

t t




  xx    (2-8) 

2.1.2 Deriving an ADM-based SAS of Power System DEs   

 
0

0

( )
2

1
( )

1
( )

k k R

k RR
k m k ek k

k R

qk fdk qk dk dk dk
d k

dk dk qk qk qk
q k

P P D
H

e E e x x i
T

e e x x i
T

  
 



  
    


         

         









 (2-9) 
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*

2 2

sin cos ( sin cos )

sin cos ,   sin cos

,                

k dk k qk k qk k dk k

tk Rk Ik k

ek qk qk dk dk

qk Ik k Rk k dk Rk k Ik k

qk qk dk dk dk dk qk qk

k dk qk

E e e j e e

I i ji

P e i e i

i i i i i i

e e x i e e x i

V e e

   

   



      

  

 

   

      



Y E

  (2-10) 
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For a power system having K synchronous generators, consider the 4th-order two-

axis model (2-9) to model each generator with saliency ignored [22]. All generators are 

coupled through nonlinear AEs in (2-10) about the network. In (2-9) and (2-10), ωR is the 

rated angular frequency; δk , ωk, Hk and Dk are respectively the rotor angle, rotor speed, 

inertia and damping coefficient of the machine k; Yk is the kth row of the reduced 

admittance matrix Y; E is the column vector of all generator’s electromotive forces 

(EMFs) and Ek is the kth element; Pmk and Pek are the mechanical and electric powers; 

Efdk is the internal field voltage; 𝑒௤௞
ᇱ , 𝑒ௗ௞

ᇱ , iqk, idk, 𝑇௤଴௞
ᇱ , 𝑇ௗ଴௞

ᇱ , xqk, xdk, x’qk and x’dk are 

transient voltages, stator currents, open-circuit time constants, synchronous reactances 

and transient reactances in q- and d-axes, respectively; Vk is the terminal bus voltage 

magnitude. 

In addition, consider the following first-order exciter and governor models [23]: 

 
1

( )fdk fdk Ak refk k
Ak

E E K V V
T

     


   (2-11) 

 
1

( )k R
mk mk refk

gk k

P P P
T R

 
   

   (2-12) 

where TAk and KAk are respectively the time constant and gain in voltage regulation with 

the exciter, Vrefk is the reference voltage value, Tgk is total time constant of the governor 

and turbine, Prefk is the setting point of the mechanical power output, Rk is the speed 

regulation factor.  

In the following context, the 4th-order model is utilized as an example to illustrate 

the derivation of an SAS for simplicity of description. A similar procedure is applied to 
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the 6th-order DE model in (2-9), (2-11) and (2-12) and other DE models. Substitute AEs 

(2-10) into DEs (2-9) to eliminate iqk, idk and Pek. Then, the differential-algebraic 

equations (2-9) and (2-10) are transformed into the form of (2-1), where state vector 

1 1 1 1

T

q d K K qK dKe e e e         x   has M=4K state variables as the elements. 

Then, an SAS of this set of DEs can be derived by formulas (2-6) and (2-7), as illustrated 

below about the generator speed  of a single-machine infinite-bus (SMIB) system 

modeled by (2-9). Assume that the infinite bus has voltage V∞=1 pu. Let x=[ , , , ]T
q de e   

and f=[f1, f2, f3, f4]T, which are the nonlinear functions in four DEs. From (2-3), 

  0
( ) ( )nn
t t 


      (2-13a) 

  0
( ) ( )nn
t t 


     (2-13b) 

  ,0
( ) ( )d d nn

e t e t



       (2-13c) 

  ,0
( ) ( )q q nn

e t e t



      (2-13d) 

Then, equation (2-2) about  becomes 

 
2[ ( , , , )](0)

[ ] q df e e

s s

 
 

 
L

L   (2-14) 

From (2-4) and (2-5), the first two Adomian polynomials for f2 are given in 

0
2,0 ,0 1 ,0 2 1 2 ( )

2
RR

q d d q m
R

A e e x x P D
H

     


           
 

  (2-15a) 
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2
2,1 ,1 2 ,1 1 1 0

,0 ,1 ,0 ,1 ,1 0 ,1 0

1
4 1 4 1 3 ,1 1 ,1 2

[ ( ) ( ) cos 2
2

      2 ( ) ( cos sin )

      ( ) ]

R
o d q d d q

q q d d d q

d o o q o q d q
R

A Y x e e Y x x
H
Y e e e e Y e e

D
x Y Y Y x Y Y x e e

    

 

      




 

 

       

        

         

 (2-15b) 

where 

1 0sino q,0Y e Y    

2 0coso d,0Y e Y    

3 ,0 0 ,0 0cos sinq de e      

4 ,0 0 ,0 0cos sind qe e      

where Yo and Y∞=|Y∞|∠ are respectively the admittances from the generator’s EMF to 

the ground and to the infinite bus. Note that Efd, which is constant in this 4th-order DE 

model, only explicitly appears in the Adomian polynomials about e’q. 

Since the accuracy of an SAS defined by (2-8) only lasts for a limited time 

window T [24], [25], [26], [27], a multi-stage strategy, i.e. the M-ADM [28], [29], [30], 

[31], is adopted to extend the accuracy of the same SAS to an expected simulation period 

by these two steps: 

Step-1: Partition the simulation period into sequential windows of T each able to keep an 

acceptable accuracy of the SAS.  

Step-2: Evaluate the SAS at desired time points in the first T using the given initial state 

and the values of other symbolic variables; starting from the second window T, 

evaluate the SAS by taking the final state of the previous T as the initial state.  
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As long as the final state of each window is accurate enough, the accuracy of the next 

window will be ensured. To apply this approach to simulate a contingency, we may first 

perform the numerical approach until the contingency is cleared to obtain the initial state 

for the IVP about the post-contingency simulation period, and then the M-ADM can be 

performed. 

2.1.3 Adomian Convergence and Time Window of Accuracy for an SAS 

This subsection studies the convergence and time window of accuracy of the 

ADM-based SAS. First, consider an SMIB system having a 2nd-order classical model 

generator connected to the infinite bus by an impedance. Thus, Yo is zero and the EMF E 

of the generator has a constant magnitude so as to eliminate two DEs on e’d and e’q in (2-

9). System parameters and initial conditions are listed in Table 2.1. Mechanical power Pm 

determines the operating condition. V∞ is the voltage magnitude of the infinite bus, whose 

phase angle is considered zero. δ(0) and ω(0) are the initial rotor angle and speed of the 

generator, which are initial state variables. 

4
8 7 6 5

0

4 3 2

( ) 1353.32

                  240.09

11.39 4.50 361.02

47.72 2.05 020.8 .1 06

n
n

t t t t

t t t

t

t

 


   

   



    (2-16) 

where 

0 0.06  , 
2

1 2 0 .8 1 2 .0 5t t   , 4
2

3241.61 47.72t t     

5
3

6 41184.67 35 1 20.95 .5t t t   , 8 7 6 5
4 11.39 4.5 168.0 10.066 7t t t t     
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Table 2.1. Parameters of the SMIB system. 

Parameter Value 

H 3 s 

D 0 s 

Y∞= |Y∞|∠ 0.9∠90°pu 

Yo 0 pu 

Pm 0.8 pu 

|E| 1.1 pu 

V∞ 1 

𝜔ோ 377 rad/s 

𝛿(0) 0.06 rad 

𝜔(0) 2.05 rad/s 
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For N=5, 5 terms of the SAS are given in (2-16) as an example and its trajectory 

and the trajectories of individual terms are shown in Fig. 2.2. 

Fig. 2.1 plots the trajectories of six different SASs with N=3 to 8, respectively, 

and compare them with the numerical integration result from the R-K 4. 

 

 

Fig. 2.1. Comparison of SASs with numerical result. 

 

In Fig. 2.2, Tmax denotes a limit of the time window of accuracy. Also define the 

absolute value of the last term, i.e.|xN-1|, as a divergence indicator ID, which is close to 

zero within Tmax and sharply increases the magnitude, otherwise. Tmax can be estimated by 

selecting an appropriate threshold ID,max for ID. For instance in Fig. 2.2, ID,max is set at 0.01 

rad to determine Tmax. There are two observations from Fig. 2.2:  

 The SAS from the ADM matches well the R-K 4 result within 0.2s, i.e. a time 

window of accuracy.  

 The higher order of a term, the less contribution it has and the faster it diverges to 

infinity. The last term δ4 diverges quickly outside 0.2s.  
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Fig. 2.2. Different terms of the SAS and the time window of accuracy. 
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To unveil the relation between Tmax and time constants of a multi-machine 

system, the IEEE 3-generator 9-bus system in [32] is studied. Gradually decrease H3, the 

inertia of generator 3, from 4.5 s to 1.0 s while keeping the other two unchanged at 

original 23.64 s and 6.4 s, such that eight system models are yielded as shown in Table 

2.2. Because the system has two oscillation modes and their oscillation periods T1 and T2 

may be important time constants influencing Tmax, T1 and T2 are estimated from each 

linearized model of the system and are listed in Table 2.2. A three-phase fault at bus 7 

cleared by tripping line 5-7 is simulated on each model by both the R-K 4 and the ADM 

with N=3 (using the post-fault state from the R-K 4 as its initial state). Using 0.01 rad as 

ID,max, the estimated Tmax for each model is given in the table  

 

Table 2.2. Tmax vs. Time Constants of the System. 

No. 𝐻ଷ(s) 𝑇ଵ(s) 𝑇ଶ(s) Tmax(s) 

1 4.5 0.9510 0.5516 0.2546 

2 4.0 0.9438 0.5280 0.2342 

3 3.5 0.9369 0.5014 0.2131 

4 3.0 0.9304 0.4718 0.1905 

5 2.5 0.9241 0.4365 0.1662 

6 2.0 0.9183 0.3961 0.1410 

7 1.5 0.9128 0.3479 0.1137 

8 1.0 0.9076 0.2881 0.0845 
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. Fig. 2.3 illustrates that T1, T2 and Tmax monotonically increase with H3. The 

bigger time constant T1 does not change significantly with H3.  

 

 

Fig. 2.3. Relationships between Tmax, T2, T1 and H3. 

 

Fig. 2.4 shows values of Tmax for H3=1.5 s, 3 s and 4.5 s, beyond which the ADM 

result starts diverging from the R-K 4 result. A hypothesis for a multi-machine power 

system is that Tmax is mainly influenced by the smallest time constant. 

 

 

Fig. 2.4. 𝑇୫ୟ୶’s with respect to selected 𝐻ଷ’s. 
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If the initial state varies, the time of accuracy may change as well. For the above 

SMIB system, different values of δ(0) and ω(0)  will lead to different Tmax’s. As 

illustrated by Figs. 2.5 and 2.6, the SAS evaluated starting from an initial state with 

(0)=0 rad/s and δ(0)=0.76 rad keeps its accuracy for a time window around 0.25s while 

for a larger δ (0)=1.38 rad/s and δ(0)=0.04 rad, the window of accuracy may reduce to 

below 0.2 s.  

 

 

Fig. 2.5. Using an initial state with (0)=0 rad/s and δ(0)=0.76 rad. 

 

 

Fig. 2.6. Using an initial state with (0)=1.38 rad/s and δ(0)=0.04 rad. 

 
For a general multi-machine system, it can be difficult to analyze how Tmax 

changes with ID,max about a state variable. However, we may analyze their relationship on 

the above SMIB system first to help gain an insight on their relationship for a multi-
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machine system. Consider a 3-term SAS of rotor angle , whose last term 2 has this 

expression  

4 3
2 1 2c t c t        (2-17) 

where 

2 2
0

1 2

0
2
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 
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

 

 
    

 
  


 

Define divergence indicator ID as 2 and let t=Tmax and 2=ID,max in (2-17) to obtain 

4 3
,max 1 max 2 maxDI c T c T       (2-18) 

Tmax has 4 roots as given in 

5 6 5 62 4 2 4
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1 1
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4 2 2 4 2 2

p p p pc p c p
T

c c

 
        (2-19) 
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Since Tmax>0, the smallest positive root should be selected as an estimate of Tmax. 

For a multi-machine system, equations (2-18) and (2-19) can also be applied to 

approximately analyze the relationship of ID,max and Tmax for state variables of each 



 

23 
 

machine by means of an SMIB equivalent about that machine against the rest of the 

system. 

The studies above show that, for an SAS, its Tmax depends on time constants of 

the system, the initial state starting the evaluation and the contingency as well. Therefore, 

we may either choose a fixed time window less than the most conservative Tmax observed 

offline based on many simulations on probable contingency scenarios or allow the 

window T to change adaptively as long as divergence indicator ID remains below a preset 

threshold ID,max for each state variable.  

2.1.4 Evaluating an SAS Using an Adaptive Time Window 

The convergence of the SASs for a general nonlinear system is still an open 

question [33], and no sufficient condition for convergence has been proved yet. 

Reference [12] gives a necessary condition, i.e. the satisfaction of a ratio test: 

1 2 2n n x x  holds for n=0, 1, …, N-1, where 0<α<1 is a constant depending on the 

system. However, α is difficult to derive analytically for a high-dimensional system.  

This dissertation proposes a practical approach for evaluation of an ADM-based 

N-term SAS using an adaptive time window. The approach compares divergence 

indicator ID with a preset threshold ID,max to adaptively judge the end of the current 

window for evaluation and proceed to the next window until the entire simulation period 

is made up. ID,max is estimated by the following procedure for a list of scenarios that each 

have a contingency simulated under a specific operating condition: 

Step-1: For each scenario, use the post-contingency state from the R-K 4 as the initial 

state to run the M-ADM using a small enough fixed time window T. 
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Step-2: Find the maximum per unit absolute value that the last SAS term, i.e. |xk,N-1|, of 

any state variable may reach over the entire simulation period. Use that value as a 

guess of ID,max. 

 Step-3:Add a small random variation to the post-contingency state and repeat Step-2 for 

a number of times. Take the smallest guess of ID,max.  

Step-4: After finishing Steps 1-3 for all contingencies, choose the smallest ID,max as the 

final threshold. 

Remarks:  

1) Step-2 on guessing an ID,max may exclude k,N-1, i.e. the last SAS term for each rotor 

angle k, since its divergence can be detected through the divergence of the last SAS term 

of k;  

2) Step-2 finds the maximum value of all last terms rather than the minimum value in 

order to provide a necessary condition for convergence rather than an over-conservative, 

sufficient condition causing loss of the advantage of using an adaptive time window;  

3) The random variation in Step-3 is added to make the ID,max more independent of the 

post-contingency state, which may be around 1%.  

The above procedure can be performed offline for potential contingencies and 

operating conditions. Based on our tests, ID,max does not vary significantly with 

contingencies, so in practice, the list of scenarios does not have to be large to find an 

effective ID,max. 
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2.2 SAS-based Scheme for Power System Simulation 

A two-stage scheme is presented for power system simulation using the M-ADM, 

which comprises an offline stage to derive the SASs and an online stage to evaluate the 

SASs as shown in Fig. 2.7. 

2.2.1 Offline Stage 

Assuming a constant impedance load at each bus, an SAS is derived by the ADM 

for each generator with symbolic variables from, e.g., one of these two groups: 

 Group-1: Time, the initial state, and the operating condition (e.g. generator outputs 

and load impedances) 

 Group-2: Group-1 plus selected symbolized elements (symbolized parameters of 

system that subject to changes) in the system admittance matrix 

Group-1 assumes a specific post-contingency system topology (i.e. a constant system 

admittance matrix) but relaxes the system operating condition so as to enable one SAS to 

simulate for multiple loading conditions. Group-2 additionally relaxes selected elements 

in the admittance matrix and hence enables one SAS suitable for simulating multiple 

contingencies. Other symbolic variables can also be added as undetermined parameters 

but the more symbolic variables the more complex expression of the SAS. All SASs 

derived in the offline stage will be saved in storage for later online use.  
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Fig. 2.7. Flowchart of the proposed approach. 
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If an adaptive time window for SAS evaluation is used, the offline stage also 

needs to estimate ID,max. The detailed implementation of estimating ID,max is illustrated in 

section 2.3. If a fixed window is adopted, T can be chosen less than the minimum Tmax 

estimated by a procedure similar to that for the determination of ID,max using a list of 

scenarios. 

2.2.2 Online Stage 

For a specific contingency scenario, this stage evaluates the corresponding SAS’s 

of every generator consecutively over time windows T, fixed or adaptive, until making up 

the expected simulation period. The first time window needs to know the post-

contingency initial system state, which can be obtained from numerical integration for the 

fault-on period until the fault is cleared. Starting from the second window, the initial state 

takes the final state of the previous window. 

If an adaptive time window is applied, an initial window may be chosen less than 

the estimated Tmax for a fixed window. Then, during each window, the divergence 

indicator ID for each state variable is calculated and compared with the threshold ID,max 

acquired in the offline stage in order to decide when to proceed to the next window, i.e. 

the end of the current window. Thus, even if the initial window is not small enough, 

comparison of ID and ID,max will enable self-adaptive adjustment of the window.  

Within each window, because SAS’s are independent expressions, their 

evaluations can be performed simultaneously on parallel computers. In expression, each 

SAS is the sum of terms in this form 
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( ) ( )   where ( ) is sin( ) or cos( )n
i j k k l l

mh

C x x t f x f x f       (2-20) 

Where C is a constant which depends on system parameters, t is time, i, j, k and l 

are integer indices of state variables. For different numbers of SAS terms and different 

systems, the ranges of h, m and n are different. For the IEEE 39-bus system with 3 SAS 

terms tested in Section 2.3, h=0,…,3, n=0,1,2 and m=0,…,4. Expression (2-20) is defined 

as one Computing Unit (CU) in this dissertation. All such CUs can be evaluated 

simultaneously on parallel processors to accelerate the online stage. 

The proposed SAS-based approach may be applied for fast power system 

simulation in the real-time operating environment: in the offline stage, an SAS is derived 

that symbolizes a group of uncertain parameters like Group-2; then, in the online stage, 

whenever the real-time state estimation is finished (typically, every 1 to 3 minutes) to 

give the current power-flow solution and network topology, the SAS will be evaluated to 

provide simulation results on a given contingency. However, if a change on the network 

topology or any parameter about the operating condition is detected in real time by, e.g., 

the SCADA system [34] and makes the most recent state estimation result invalid, the 

SAS evaluation should wait until the state estimator gives a new estimation result. Thus, 

online power system simulation using the proposed approach can be performed 

synchronously with real-time state estimation. 
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2.3 Case Studies on the IEEE 39-bus System 

 

Fig. 2.8. IEEE 10-generator 39-bus system. 

IEEE 10-generator, 39-bus system, as shown in Fig. 2.8, is used to validate the 

SAS-based approach for power system simulation. Generator 39 has the largest inertia 

and its rotor angle is defined as the reference. The proposed two-stage scheme is tested 

using both a fixed time window and an adaptive time window. 

2.3.1 Fixed Time Window 

A permanent three-phase fault lasting for 0.08 s is applied to line 3-4 at bus 3. We 

preset ID,max=0.005 p.u. (per unit) for all state variables except for the rotor angle. If all 

generators are represented by the 4th-order model in (2-9), our tests show that when an 

SAS with 2 terms is evaluated over a time window of 0.002 s, the largest 2nd SAS term 

of the state variables is 0.0047 p.u. <ID,max, which means Tmax0.002 s for a 2-term SAS. 

Fig. 2.9 gives the results from the M-ADM (dash lines) using a 0.001 s window and the 

results from the R-K 4 (solid lines) with a 0.001 s integration step, which are identical. 
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Fig. 2.9. Comparison of the simulation results given by the R-K 4 and the 2-term SAS using a fixed time 

window of 0.001 s. 
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(a) Rotor speeds. 

 

 

(b) Rotor angles. 

 

Fig 2.9 continued 
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(c) q-axis transient voltages. 

 

 

(d) d-axis transient voltages. 

 

Fig 2.9 continued 
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If the time window and integration step are both increased to 0.01 s (>Tmax), the 

simulation results from the R-K 4 and M-ADM have slight, noticeable differences as 

shown in Fig. 2.10. 

Although including more terms is expected to increase Tmax as indicated by Fig. 

2.1, using an SAS with 3 terms does not extend Tmax significantly in this case. For 

example, use a 0.01 s time window to run a 3-term SAS for the same contingency, there 

are still obvious mismatches between the R-K 4 and M-ADM results.  

Moreover, a 3-term SAS has a more complex expression, so it takes longer to 

evaluate than a 2-term SAS. When an SAS is evaluated over a fixed time window T for 

power system simulation, the last SAS terms, i.e. divergence indicator ID’s, of all state 

variables can distinguish numerical instability from power system instability: if the 

simulated system trajectory becomes unstable while all ID’s are still small, e.g. much less 

than the predefined ID,max, it is very likely to be power system instability; if some ID also 

increases drastically to approach or exceed ID,max when the system trajectory appears to 

be unstable, numerical instability may happen. Thus, a smaller T should be used to re-

evaluate the SAS for verification of numerical instability. 
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Fig. 2.10. Comparison of the simulation results given by the R-K 4 and the 2-term SAS using a fixed time 

window of 0.01 s. 
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(a) Rotor speeds. 

 

 

(b) Rotor angles. 

 

Fig 2.10 continued 
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(c) q-axis transient voltages. 

 

 

(d) d-axis transient voltages. 

 

Fig 2.10 continued 
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For example, if T is increased to 0.02 s 10Tmax, the simulation results diverge 

with numerical instability introduced on purpose as shown in Fig. 2.11, where the results 

from the R-K 4 method are still stable. That numerical instability can be detected by ID’s 

>ID,max for many windows. 

 

 

Fig. 2.11. Comparison of the simulation results of rotor speeds given by the R-K 4 and the 2-term SAS 

using a fixed time window of 0.02 s. 

 

From the results of Fig.2.9 to Fig. 2.11, as T increases from 0.001 s to 0.01 s and 

then to 0.02 s, the largest ID of all states variables increases from 0.0023 p.u. to 0.0279 

p.u. (i.e. 12.1 times) and then to 0.1051 p.u. (i.e. 45.7 times), which indicates the 

occurrence of numerical instability. ID can be utilized to avoid numerical instability by 

changing the time window adaptively. The detailed method will be proposed in the next 

sub-section. 
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The M-ADM is also tested on the system having each generator represented by 

the 6th-order DE model in (2-9), (2-11) and (2-12) containing the exciter and governor. 

The parameters of exciters and governors are set up as TAk  = 0.02 s, KAk = 5, Tgk = 0.5 s, 

Rk = 0.01 for all machines. A 2-term SAS is derived for each of the six state variables, 

and the time window is selected to be 0.001 s within the estimated Tmax. Under the same 

contingency on line 3-4, The R-K 4 simulation indicates the frequency oscillation is 

better damped than that without a governor. Fig. 2.12 compares the results from the M-

ADM (dash lines) and R-K 4 (solid lines) for each state variable, which match well. 

2.3.2 Adaptive Time Window 

The first step is to use a list of contingencies to determine an ID,max that can 

guarantee the accuracy of an SAS  and avoid numerical instability in simulation by the 

M-ADM. For the illustration purpose, the above contingency on line 3-4 and a second 

contingency adding a three-phase fault lasting 0.08 s on line 15-16 at bus 15 are 

considered. 

In practical studies, all the possible contingencies including line faults, bus faults 

and generator outages at different locations with different durations should be simulated 

to determine an ID,max. 

Although simulating all the possible contingencies takes considerably long time, 

such exhaustive study only need to be performed once. After the value of ID,max  is 

obtained, it can be used online for simulating all the contingencies for this system. 
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Fig. 2.12. Comparison of the simulations using the 6th-order generator model by the R-K 4 and the 2-term 

SAS using a fixed time window of 0.001 s. 
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(a) Rotor speeds. 

 

 

(b) Rotor angles. 

 

Fig 2.12 continued 
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(c) q-axis transient voltages. 

 

 

(d) d-axis transient voltages. 

 
Fig 2.12 continued 
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(e) Field voltages. 

 

 

(f) Governor outputs. 

 
Fig 2.12 continued 
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Consider the 3rd SAS term of each state variable (except the rotor angle) in per 

unit as an ID. Fig. 2.13 plots the ID’s for all those state variables of 10 generators, where 3 

random variations are added and the resulting trajectories are also plotted in the same 

figure. The effective ID,max for two contingencies are found both associated with |e’d5,2|, 

which are 6.5×10-6 and 9.4×10-6 (p.u.), respectively.  

Fig. 2.14 gives the result from a 3-term SAS evaluated over an adaptive time 

window, which is identical to the R-K 4 result. 

 

 

Fig. 2.13. Comparison of rotor angles given by the R-K 4 and the 3-term SAS using an adaptive time 

window initiated from 0.001 s. 
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(a) Contingency 1. 

 

(b) Contingency 2. 

Fig. 2.14. Estimation of ID,max . 
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Fig. 2.15 plots how the length of the time window changes with time during a 5.5-

s simulation for three cases: 1) the 2-term SAS with an initial T=0.001 s, 2) the same SAS 

with an initial T=0.01s, and 3) the 3-term SAS with an initial T=0.001 s. The comparison 

of the cases 1) and 2) in Fig. 2.15 verifies that, if an adaptive time window is used, the 

accuracy of simulation is independent of the choice of the initial time window since the T 

of the case 2) adaptively decreases below 0.002 s soon after simulation starts. For the 

cases 1) and 2), the largest T reaches 0.0022 s.  

 

 

Fig. 2.15. Adaptive changing of time window length. 

 

A main advantage of using an adaptive time window is that the total number of 

windows for evaluation is effectively reduced. The M-ADM using a fixed 0.001 s 

window evaluates 5500 windows to finish 5.5-s simulation while the case 1) using an 

adaptive time window only takes 4500 windows (i.e. 4500/5500=81.8%) to finish the 

same simulation period. For the case 3), the reduction of time windows is even more 
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significant. As shown in Fig. 2.15, the largest T reaches 0.005 s, which is more than twice 

of the largest T for the 2-term SAS. Also, the total number of windows drops to 2000 (i.e. 

2000/5500=36.4%). Thus, a conclusion is that using an adaptive time window enables the 

M-ADM to better exploit the advantage with a higher order SAS in terms of the reduction 

of the window number. 

In the future development of a practical M-ADM based power system simulation 

tool, the optimal size of the time window and the proper number of SAS terms should be 

decided in a more adaptive way based on the information of the simulated power system 

to minimize the user intervention. It is not the focus of this dissertation but will be 

addressed in the future work. 

2.3.3 Time Performance 

To demonstrate the time performance of the proposed SAS-based approach, the 

following three cases are tested: 

 Case-A: only symbolizing time t and initial state variables, i.e. for one specific 

simulation. 

 Case-B: beside Case-A, also symbolizing the reduced admittance matrix Y about 10 

generator EMFs, i.e. for simulating different faults under one specific loading 

condition. Magnitudes and angles of elements of the reduced admittance matrix are 

symbolized separately to generate two symmetric symbolic 10×10 matrices. 

 Case-C: beside Case-B, also symbolizing generators’ mechanical powers to make the 

SAS be also good for simulating various loading conditions. 



 

47 
 

Here, the load at each bus is represented by a constant impedance load model and is 

embedded in the reduced admittance matrix Y. In the online stage, for a given power-

flow condition with all loads known, load impedances will first be calculated, and then 

with the knowledge of the post-fault network topology, all elements of Y can be 

calculated in order to evaluate the SAS.  

The offline stage is implemented in MAPLE and the online stage is performed in 

MATLAB. For 4th-order and 6th-order generator models, the numbers of CU’s 

comprising the 3-term SAS’s of each state variable are given in Tables 2.3 and 2.4, 

respectively, for three cases.  

 

Table 2.3. The Number of CUs for the 4th-Order Model System. 

State Variable Case-A Case-B Case-C 

ωk 4,269 11,430 11,430 

δk 150 150 150 

𝑒′௤௞ 225 301 301 

𝑒′ௗ௞ 223 299 299 
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Table 2.4. The Number of CUs for the 6th-Order Model System. 

State Variable Case-A Case-B Case-C 

ωk 4,272 11,434 11,434 

δk 150 150 150 

𝑒′௤௞ 227 303 303 

𝑒′ௗ௞ 223 299 299 

𝐸௙ௗ 2,644 5,234 5,234 

𝑃௠ 153 155 155 
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For Case-A, it only takes less than 3 s to evaluate one CU. If all such CU’s are 

evaluated simultaneously on parallel processors, it takes about 3 s to evaluate one SAS 

for each time window plus the time costs for communication in parallel computing. 

Because summating the values of all CU’s for a state variable is essentially the addition 

of constants, it is extremely fast. The additions for different state variables can also be 

performed in parallel. Thus, the final time for summating all CUs equals the time for the 

most complex SAS expression, often on a rotor speed, which only takes 7 s. Therefore, 

the ideal total time cost for evaluations of state variables of one generator is 3+7=10 s 

per time window T. If evaluations for various generators are also done simultaneously on 

an unlimited number of parallel processors, that time is also the time cost  for SAS 

evaluation over each time window T. The R-K 4 method takes 0.37 s to finish a 5.5-s 

simulation with all generators represented by the 4th-order model on one computer 

processor. (It takes 0.48 s if all generators are represented by the 6th-order model.) Given 

the fact that a 3-term SAS only needs 2000 adaptive time windows for a 5.5-s simulation, 

it can be concluded that the online stage ideally only takes 0.000012000=0.02 s to finish 

simulation on parallel processors, which is about 18 times faster than the time cost of the 

R-K 4. Ratio T/ =5.5/0.02=275, i.e. the number of times faster than wall-clock time. For 

Case-B and Case-C, T/ =137.5 as given by Table 2.4, which indicates how many times 

the simulation can be faster than the wall-clock time. 

By comparing Tables 2.3 and 2.4, it can be easily noticed that even after the 

exciter and governor models are added, the state variables that have the most CUs are still 

rotor speeds. Meanwhile, the number of CUs of each rotor speed’s SAS only increases 
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very slightly (by 3 for Case-A and 4 for Case-B and Case-C.) when the generator model 

changes from the 4th-order to the 6th-order. Basically, adding those details or controllers 

to each generator does not influence the online performance of the proposed approach. 

The time performance of the offline stage is not as critical as the online stage, so 

it is evaluated in a sequential computing manner. Tables 2.5 and 2.6 summarize the time 

performances of both offline and online stages for two systems respectively using the 4th 

and 6th order generator models under the assumption of an ideal parallel computing 

capability. 

 

Table 2.5. Time Performance on the 4th-Order model System. 

 Case-A Case-B Case-C 

Offline time cost (s) 198.05 682.18 711.17 

Online time cost (s) 0.02 0.04 0.04 

Ratio T/ 275.0 137.5 137.5 

 

Table 2.6. Time Performance on the 6th-Order model System. 

 Case-A Case-B Case-C 

Offline time cost (s) 6215.51 13472.91 16339.71 

Online time cost (s) 0.02 0.04 0.04 

Ratio T/ 275.0 137.5 137.5 
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Considering that the number of parallel processors cannot be infinity in practice, 

we also studied how the time performance changes with the number of available 

processors. As theoretical estimates, ideal parallelism among all available processors is 

assumed. Thus, all processors are assumed to take equal computational burdens. The 

results are listed in Table 2.7 for Case-A using 3-term SASs. From the table, when the 

number of processors drops to 100, the simulation time increases to 0.3 s, which is close 

to 0.37 s of the R-K 4. If the number of parallel processors is further decreased, the 

simulation using the M-ADM becomes slower than the R-K 4.  

 

Table 2.7. Influence of Parallel Capability on Time Performance. 

Number of Parallel 

Processors 

Time Cost of Each Time 

Window (s) 

Time Cost for a 5.5-s 

simulation (s) 

∞ 1.0×10-5 2.0×10-2 

1000 1.4×10-5 2.8×10-2 

100 1.5×10-4 3.0×10-1 

10 1.5×10-3 3.0 

 

When a long list of contingencies need to be simulated, parallel processors may 

simulate multiple contingencies simultaneously, so power system simulation using the 

proposed SAS-based approach will be parallelized also at the contingency level besides 

the aforementioned CU level. Thus, a more sophisticated hierarchy for parallel 
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implementation of the proposed SAS-based approach should be designed and will be 

addressed in the future work.  

2.3.4 Simulation of a contingency with multiple disturbances 

The proposed SAS-based approach can be used to simulate a contingency 

containing multiple disturbances, e.g. “n-1-1” and even “n-k” contingencies, which 

involve one or more disturbances during the simulation period. The same SAS can be 

used for the entire simulation period as long as all parameters that may change during the 

simulation period are defined as symbolic variables like an SAS from Case-B or Case-C.  

In the following, we demonstrate how to use the SASs of Case-B to perform an 

“n-1-1” simulation involving a topological change of the system during the simulation 

period. The 6th-order generator models are adopted. The initial contingency is still the 

same as that in Fig. 2.9-Fig. 2.12 except that at t=3 s, the line 22-35 is opened, making 

the system have a different topology in the remaining 2.5 s. The SAS’s derived for Case-

B treat all elements of reduced Y matrix as symbolic variables. Therefore, at t=3 s, the 

time when topology changes, new values of the elements in the reduced Y matrix should 

be plugged into the SASs. The simulation results are shown in Fig. 2.16. Generator 35 

loses its stability. The online time cost is 0.04 s with ideal parallelism on sufficient 

processors.  
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Fig. 2.16. Comparison of the simulation results with a topology change at  t=3 s given by the R-K 4 and a 

3-term SAS using an adaptive time window. 
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(a) Rotor speeds. 

 

 

(b) Rotor angles. 

 
Fig. 2.16 continued 

 

 

 

 



 

55 
 

 

(c) q-axis transient voltages. 

 

 

(d) d-axis transient voltages. 

 
Fig. 2.16 continued 
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(e) Field voltages. 

 

 

(f) Governor outputs. 

 
Fig. 2.16 continued 
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2.3.5 Simulating Systems with Non-conforming Load 

The proposed SAS-based approach also can be applied to simulating systems 

which have ZIP loads. The challenge of considering ZIP loads in power system 

simulation is that the system DAEs can not be simplified as differential equations 

anymore. The ZIP load characteristic is dependent on the voltage at its terminal bus as 

shown in (2-21) and (2-22). 
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   (2-22)  

Therefore the buses which connected to ZIP can not be eliminated while 

calculating reduced admittance matrix.  
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T
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T T

13 23 33

nc nc

g

bus

     
          
          

I Y Y Y V

I Y Y Y Ψ

0 Y Y Y V
   (2-23) 

Voltages of the buses with no load or constant impedance load can be eliminated 

using (2-24), 

1 T 1 T
33 13 33 23bus nc
   V Y Y V Y Y Ψ     (2-24) 

Then the current injections into non-conforming load buses Inc and from generator 

terminal buses IG are, 
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nc nc nc ncg I Y V Y Ψ     (2-25) 

g gnc nc g I Y V Y Ψ     (2-26) 

where,  

1 T
11 13 33 13nc

Y Y Y Y Y  

1 T
12 13 33 23ncg

Y Y Y Y Y  

1 T
22 23 33 23g

Y Y Y Y Y  

T 1 T
12 23 33 13gnc

Y Y Y Y Y  

Moreover, the voltage of ZIP load terminal bus has to be solved numerically 

through Newton-Raphson method, since the analytical solution of algebraic equation (2-

27) does not exist. 

ncg nc nc nc cc cp   Y Ψ Y V I I I    (2-27) 

where, the i-th element of Icc+Icp is 
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            (2-28) 

To consider non-conforming load, the algebraic equation about the current 

injection at generator terminal buses in (2-10) needs to be replaced by (2-26), which also 

considers the component of generator terminal bus currents due to the voltage of non-

conforming load buses, i.e. YgncVnc. 
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Since the voltages at non-conforming load buses can not be solved analytically, 

they can be treated as symbolic variables in the derivation of an SAS at the offline stage 

and updated at the end of every window using the solution of (2-27) at the online stage. 

In a power system, there are generally more loads than generators, so instead of directly 

using (2-26) in the derivation of the SAS, which will introduce dim(Vnc) new symbolic 

variables, this implementation uses (2-29) to derive the SAS, which will introduce 

dim(Ig) < dim(Vnc) new symbolic variables. 

g gnc g I I Y Ψ            (2-29) 

where Ignc is the component of generator bus currents due to the voltages of non-

conforming loads. 

The procedure of simulating a power system with non-conforming load is 

outlined as follows: 

1. Calculate the current injection from the non-conforming load to the generator 

buses Ignc. 

2. Update the value of Ignc in the SAS. 

3. Evaluate the SAS for the upcoming window.  

Using the 3rd order SAS and this procedure to simulate a 4-cycle 3-phase fault at 

bus 1 of the 10-machine 39-bus system with all loads represented by 20% constant 

impedance, 30% constant current and 50% constant power load, the simulation result of 

the rotor speed deviation is shown in Fig. 2.17 and the window length is shown in Fig. 

2.18. 
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Fig. 2.17. The IEEE 10-machine 39-bus system with non-conforming load rotor speed deviation simulation 

comparison between the R-K 4 (blue) and SAS based approach (red). 

 

 

Fig. 2.18. The changing of time window length for the IEEE 10-machine 39-bus system with non-

conforming load simulation. 
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CHAPTER THREE  

SAS BASED STOCHASTIC POWER SYSTEM SIMULATION 

Uncertainties exist in operations of power grids [35]. Many factors such as 

random load consumptions and unanticipated relay protection actions contribute to the 

randomness of grid operations. It can be foreseen that a future power grid will have more 

uncertainties and stochastic behaviors in system operations due to the increasing 

penetrations of responsive loads and intermittent renewable generations. Thus, dynamic 

security assessment (DSA) of power systems should be conducted in both deterministic 

and stochastic manners. However, most of today’s power system simulation software 

tools are still based on solvers of deterministic DAEs that do not involve stochastic 

variables to model uncertainties in system operating conditions.  

3.1 Stochastic Simulation Approaches 

In literature, there are three major approaches for the modeling of a dynamic 

system having stochastic effects as shown in Fig. 3.1: the master equation, the Fokker-

Planck equation [36][37] and Gillespie method [38][39]. The master equation and the 

Fokker-Plank equation are widely applied in the field of computational biology, which 

both focus on the evolution of probability distribution; the Gillespie method focuses on 

individual stochastic trajectories. The first two approaches provide a more comprehensive 

understanding of stochastic effects with a dynamic system but require solving high 

dimensional partial differential equations, so they are computationally difficult to be 
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applied to simulations of realistic power systems [40]. There have been works using the 

Gillespie method for power system simulation [41]-[44]. 

 

Stochastic 
Modeling 

Gillespie 
Algorithm

Master 
Equation

Fokker-
Planck 

Equation

Euler-
Maruyama 

method

Adomian 
Decomposition 

Method

Multiple runs Multiple runs

 

Fig. 3.1. Stochastic modeling approaches. 

 

In recent years, some researchers have contributed to power system simulation in 

a less-deterministic manner. Reference [44] proposed a systematic method to simulate the 

system behaviors under the influence of stochastic perturbations on loads, bus voltages 

and rotor speeds. This approach introduces stochastic differential equations (SDEs) to 

represent stochastic perturbations and solves the equations by Ito calculus, and then a 

mean trajectory with the envelope on trajectory variations is yielded by repeating 

simulations for many times. Papers [42]-[44] utilize a similar approach to study power 

system stability under random effects. To analyze long term stability of a power system 

with wind generation, a new SDE model is developed in [45], which also applies the 

singular perturbation theory to investigate the slow dynamics of the system with 
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stochastic wind generation. However, the time performance of such an approach based on 

Euler-Maruyama method can hardly meet the requirements for online power system 

simulation. Especially, when the penetration of distributed energy resources (DERs) 

reaches a high level, the distribution network behaves in a more stochastic manner as 

seen from the transmission network, and hence a large number of SDEs need to be 

included in the power system model, which will significantly influence the simulation 

speed. Also, the nature of the Gillespie method requires a large number of simulations on 

the same model to yield the mean trajectory as well as the envelope on variations. 

Therefore, adding any extra SDE to the existing set of SDEs will result in multiplying 

computing time by a factor of hundreds or even thousands.  

In our previous work [28][46], a new semi-analytical approach for power system 

simulation has been proposed. That approach applies the Adomain decomposition 

method (ADM) to power system DAEs to derive a semi-analytical solution (SAS) for 

each state variable as an explicit function of symbolic variables including time, the initial 

system state and other selected parameters on the system condition; then each function is 

evaluated by plugging in values of its symbolic variables over consecutive small time 

windows to make up a desired simulation period so as to obtain the simulated trajectory 

of each state variable. Since the form of every SAS is a summation of finite terms for 

approximation, its evaluation can be fast and parallelized among terms. Thus, compared 

to traditional numerical integration based power system simulation, this semi-analytical 

approach decomposes the computation into offline derivation and online evaluation of an 

SAS and is better fit for online power system simulation and a parallel computing 
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environment [46]. In fact, such a semi-analytical approach also suggests a viable, 

alternative paradigm for fast stochastic simulation. For example, early works by Adomian 

in the 1970s utilized the ADM to solve nonlinear SDEs [47] by embedding explicitly 

stochastic processes into the terms of an SAS.  

For power system simulation in a stochastic manner, this dissertation proposes an 

approach as an extension of the ADM based approach proposed in [46]. Utilizing the 

semi-analytical nature of an SAS yielded by the ADM, this new approach embeds a 

stochastic model, e.g. a stochastic load model, into the SAS. Evaluation of an SAS with 

the stochastic model whose parameters are represented symbolically will not increase 

many computational burdens compared to evaluation of an SAS for deterministic 

simulation. Thus, an expected number of simulation runs for one single case are achieved 

by evaluating one SAS for the same number of times. 

3.2 Power System SDE Model with Stochastic Loads 

3.2.1 Synchronous Generator Modeling 

For a power system having K synchronous generators, consider the 4th-order two-

axis model (2-9) to model each generator having saliency ignored [22]. All generators are 

coupled through nonlinear algebraic equations (2-10) about the network. 

3.2.2 Stochastic Load Modeling 

A stochastic model can be built based on analysis on real data and assumptions on 

probabilistic characteristics of the stochastic variables. Traditionally, uncertainties in 

loads of a power system are ignored in time-domain simulation for the sake of simplicity. 
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However their stochastic behaviors are well-recognized in [48]. Taking stochastic loads 

into consideration will enable more realistic power system stability assessment. 

This dissertation uses the Ornstein-Uhlenbeck process in [49] to model the 

stochastic variations of a load in these SDEs: 

  PL P PL P ( )t  y a y b W  
     (3-1) 

  QL QL ( )Q Q t  y a y b W        (3-2) 

where W(t) is the white noise vector whose dimension equals the number of load buses, a 

and b parameters are drifting and diffusion parameters of the SDEs,  operator “ ” is the 

Hadamard Product, i.e., element-wise multiplication, and yPL and yQL are the stochastic 

variations in normal distributions. 

The stochastic dynamic of the load is therefore modeled by 

   L L0 PL P P y     (3-3) 

   L L0 QL Q Q y     (3-4) 

where PL0 and QL0 are the mean values of  the active and reactive loads, respectively.  

Periodicities and autocorrelations have been observed in historical data of loads 

on the daily basis. However, in the time frame of seconds, loads at different substations 

have much lower autocorrelations. Refer to [41], this dissertation sets the drifting 

parameter on the autocorrelations of loads as 0.5 p.u./s. 



 

66 
 

3.3 Proposed ADM-based Approach for Solving Power System SDEs 

3.3.1 Modeling Stochastic Variables 

Consider S stochastic variables y1(t), …, yS(t), which could be stochastic loads 

following S different distributions. Each yi(t) can be transformed by function gi(∙) in (3-5) 

from some i in a normal distribution. For example, if yi(t) is a load represented by a 

normal distribution with certain mean value, then i specifies a zero-mean normal 

distribution as in (3-7) and gi(∙) shifts it to around the desired mean value like in (3-3) and 

(3-4). 

   1 1 2 2( ) ( ) ( ) ( )
T

S St g g g  y     (3-5) 

The Ornstein-Uhlenbeck process is utilized to generate each i from (3-6). 

  ( ) ( ) ( )t t t  ε a ε b W        (3-6) 

where   1 2( ) ( ) ( ) ( )
T

St t t t  ε   

  1 2( ) ( ) ( ) ( )
T

St a t a t a ta   

  1 2( ) ( ) ( ) ( )
T

St b t b t b tb   

  
2(0, / 2 ) 1, 2, ,i i ib a i S       (3-7) 

3.3.2 Solving SDEs Using the ADM 

Consider a nonlinear system modeled by SDE (3-8) having M deterministic state 

variables x1, …, xM, such as the state variables of generators, exciters and speed 

governors, and S stochastic variables y1, …, yS. 
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                  ( ) ( ( ), ( ))t t tx f x y      (3-8) 

                           

 
 

1 2

1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T

M

T

M

t x t x t x t

f f f



    

x

f



  

To solve ( )tx , the procedure in [46]  can be used. First, apply Laplace 
transformation to (3-8) to obtain 

                  
(0) [ ( , )]

[ ]
s s

 
x f x y

x
     (3-9) 

Then use (3-11) and (3-12) to calculate the Adomian polynomials under the 

assumption of (3-10), 

                  
0

( ) ( )n
n

t t




x x     (3-10) 

                  , 0, 1, ,
0

( , ) ( )k k n n
n

f A




x y x x x y    (3-11) 

                 ,
0 0

1
,

!

n n
k

k n k kn
k

A f
n




  

   
      

 x y    (3-12) 

Recursive formulas (3-13) and (3-14) can be derived by matching terms of x(t) and f(∙): 

                   0 (0) sx x     (3-13) 

                     1 0n n s n  x A     (3-14) 

where, 1, 2, ,, , ,
T

n n n M nA A A   A   

The next step is to apply inverse Laplace transform to both sides of (3-13) and (3-

14) to calculate the N-th order SAS of (3-8): 
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0

( , ) ( , )
N

SAS
n

n

t t


x y x y    (3-15) 

In the resulting SAS, stochastic variables in y appear explicitly as symbolic 

variables. 

3.4 Comparison between the Euler-Maruyama Approach and ADM-

based Approach 

This section applies both the Euler-Maruyama approach and the proposed ADM-

based approach to the SMIB system with a stochastic load shown in Fig. 3.2 to illustrate 

the fundamental difference between the two approaches. 

 

jX

jXL

E’∠δ V∠0°jXd’Ra R

RL

 

Fig. 3.2. SMIB system with constant impedance load at generator bus. 

 

The stochastic load is connected to the generator bus and has its resistance RL and 

reactance XL modeled by stochastic variables. Thus, the whole system is now modeled by 

DEs (3-16a), (3-16b) and SDEs (3-16c), (3-16d).  
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(3-16a) 

(3-16b) 

(3-16c) 

(3-16d) 

where, 

                   
1

L L
L L

G jB
R jX

 


     (3-17a) 

                   
1

S S
a d

G jB
R jX

 


     (3-17b) 

                   
1

R RG jB
R jX

 


     (3-17b) 

        
2

1

( )
( )

( )
L R S

L R S
L R S

G G G
k B B B

B B B

 
   

 
   (3-17d) 

        
2

2

( )
( )

( )
L R S

L R S
L R S

B B B
k G G G

G G G

 
   

 
    (3-17e) 

2
3

1 2

( ) ( ) ( ) ( )S L R S L R S L R S L RG B B B G G B B B G G G
k E

k k

        
 

  (3-17f) 

        4 2 1( ) ( )S R S R S R S Rk k B G G B k B B G G       (3-17g) 

        5 2 1( ) ( )S R S R S R S Rk k B B G G k B G G B       (3-17h) 

In (3-17), GS, BS, GR, BR, GL, BL are the conductances and susceptances at the 

generator sending side, the infinite bus receiving side and the load side, respectively. 

Since RL and XL change stochastically, GL and BL can not be treated as constants. 
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The variances of RL and XL depend on the values of drifting parameters a1 and a2 

and diffusion parameters b1 and b2, respectively. 

To find the SAS of this system, the first step is to apply ADM to the DEs (3-16a) 

and (3-16b). The resulting 2nd order SAS for rotor speed ω is, 

                   

2

0

( ) ( )n
n

t t 


       (3-18) 

where, 

0 ( ) (0)t         (3-19) 

54
1 3

1 2 1 2

( (0) )
( ) cos( (0)) sin( (0))

2
R R

m
R

k E Vt D k E V
t P k

H k k k k

    


 
      

 
 (3-20) 

2 2
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( ) ( cos( (0)) sin( (0)))
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H k k k k

k E V k E V E V
H H H

k k k k k k

    


      

 
     


  

    


(3-21) 

Once the SAS of the system’s DEs is derived, the SAS of the SDEs can be 

derived and incorporated into it. 

For example, the 2nd order SAS of RL can be derived using ADM as, 

                   
2

,
0

( ) ( )L L n
n

R t R t


      (3-22) 

where, 

,0 1( ) (0) ( )L LR t R b B t         (3-23) 

,1 1 1 1 1 1

0

( ) (0) ( )
t

L LR t a R t a b B s ds          (3-24) 
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12
2 2

,2 1 1 1 2 2 1

0 0

( ) (0) ( )
2!

st

L L

t
R t a R a b B s ds ds          (3-25) 

B(t) is the Brownian motion starting at origin and dB(t)=W(t)dt. Similarly, the 2nd 

order SAS of XL is,  

                  
2

,
0

( ) ( )L L n
n

X t X t


       (3-26) 

where, 

,0 2( ) (0) ( )L LX t X b B t         (3-27) 

,1 2 2 2 1 1

0

( ) (0) ( )
t

L LX t a R t a b B s ds          (3-28) 

12
2 2

,2 2 2 2 2 2 1

0 0

( ) (0) ( )
2!

st

L L

t
X t a R a b B s ds ds          (3-29) 

To derive the SAS of the entire system considering both the DEs and SDEs, 

replace the symbolic variables in the DEs’ SAS representing the stochastic variables with 

the SDEs’ SAS, i.e., the 2nd order SAS of the system (3-16) can be derived by replacing 

the symbolic variables RL and XL in (3-18) with SAS (3-22) and (3-26).  

For some forms of SDE, the analytical solution may exist. In such cases, the 

SDEs’ analytical solution instead of the SAS also can be incorporated into the DEs’ SAS 

to derive the SAS of the entire system. 

For example, the general expression of the SAS terms of (3-16c) can be written 

as, 
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11

, 1 1 1 2 1

0 0 0

( ) ( 1) (0) ( 1) ( )
!

nsstn
n n n n

L n L n n

t
R t a R a b B s ds ds ds

n



         (3-30) 

Therefore the infinite order SAS of (3-16c) is, 

       
11

1
1 1 1 2 1

0 1 0 0 0

( )
( ) (0) ( ) ( ) ( )

!

issti
i

L L i i
i i

a t
R t R b B t b a B s ds ds ds

i

 

 


         (3-31) 

Apply Maclaurin expansion of an exponential function and lemma 2.3 in [50] to 

(3-31), the solution becomes, 

       1 1 1
1 1 1

0

( ) (0) ( ) ( )
t

a t a s a t
L LR t R e b B t a b e B s ds         (3-32) 

Then apply the integration by parts formula, 

       1 1 1
1

0 0

( ) ( ) ( )
t t

a s a t a se dB s e B t a e B s ds       (3-33) 

The close form solution can be found as, 

       
1 1

1

0

( ) [ (0) ( )]
t

a t a s
L LR t e R b e dB s       (3-34) 

In this case the symbolic variable RL in (3-18) can be replaced by (3-34) instead 

of (3-22). 

On the other hand, for the Euler-Maruyama approach [51][52], since the 

deterministic model described by (3-16a) and (3-16b) does not permit a close form 

solution, the sample trajectories of (3-16) have to be numerically computed. The 

numerical scheme for RL is shown in (3-35) and the same scheme also applies to XL. 

       
( ) ( ) ( ) ( )

, 1 , 1 , 1 ,
t t t t

L n L n L n L nR R a R t b R W   
         (3-35) 



 

73 
 

In practice the value of ΔW is dependent of the step size Δt for integration. 

        
1/ 2(0 , )W t         (3-36) 

3.5 Stability of Stochastic Systems 

There are a variety of definitions on the stability of a stochastic dynamical system 

in literature [54]-[57]. The definition of “asymptotic stability in probability” in [57] can 

be directly applied to a power system with stochastic variables. That definition is a 

counterpart of the asymptotic Lyapunov stability of a deterministic system. 

Definition 1: Stability in probability 

An equilibrium point is said to be stable in probability if for given μ ϵ (0, 1) and r, 

there exists σ(μ,r,t0) >0 such that, 

                       0

0 0sup ( ; , ) 1eq
t t

P t x t r 


 
    

 
x x

                  (3-37) 

whenever ||x0-xeq||<σ. 

Definition 2: Asymptotic stability in probability 

 An equilibrium point is said to be asymptotic stable in probability if it is stable in 

probability and for given μ ϵ (0, 1), there exists σ0(μ)>0 such that, 

              
 0 0lim ( ; , ) 0 1eq

t
P t x t 


     x x

                (3-38) 

whenever ||x0-xeq||<σ0 

To analyzed the stability of numerical simulation results, this dissertation 

modifies (3-38) to (3-39) so that the stability can be accessed using the results of finite 

time period simulations. 
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 0 0 0( ; , ) 1eq sP t x t r t t     x x

        (3-39) 

where ts is a predefined time instant, ||r0|| is a small positive number. 

3.6 Case Studies 

The proposed ADM-based approach is tested on the IEEE 10-machine 39-bus 

New England system as shown in Fig. 2.8 Selected loads are assumed to change 

stochastically while all generators are represented by deterministic models. In each case 

study, the stochastic simulation result by the Euler-Maruyama approach is used as the 

benchmark, and the 2nd order SASs (i.e. N=2) are used and evaluated every 0.001 s. The 

value of each stochastic variable is changed every 0.1 s. For each case, 100 sample 

trajectories are generated. The fault applied in all cases is a 10-cycle 3-phase fault at bus 

3 cleared by tripping line 3-4. All simulations are performed in MATLAB R2016a on a 

desktop computer with an Intel Core i7-3770 3.40GHz CPU and 8 GB RAM. 

3.6.1 Stochastic Loads at 5% with Low Variances 

In the first case, model the loads at buses 3 and 4 (about 5% of the system load) 

by Ornstein-Uhlenbeck process. The variances of the loads are 2% of their mean values. 

The results from the ADM-based approach and the Euler-Maruyama approach are shown 

in Fig.3.3. Among all the generators, generator 1 has the shortest the electrical distance to 

bus 3 and 4, hence the rotor angle of it is presented in the following results. 
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(a) Result from the ADM-based approach. 

 

(b) Result from the Euler-Maruyama approach. 

Fig. 3.3. Simulation results of generator 1 rotor angle with loads connecting to bus 3 and 4 represented by 

stochastic variable with 2% load variation. 
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From the simulation results, the deterministic system response is indicated by the 

mean value and is asymptotically stable. Use the stochastic system stability definition 

introduced in Section 3.5. When the loads at buses 3 and 4 have small variances, the 

system behaves similar to a deterministic system, which is asymptotically stable with a 

probability of 0.9 (ts=15 s, r0=0.05 rad/s). 

3.6.2 Stochastic Loads at 100% with Low Variances 

In the second case, extend stochastic loads to all buses with variances equal to 2% 

of their mean values.  As shown in Fig. 3.4, the simulation results from two approaches 

agree with each other, which reveal a less stable post-fault system response due to 

increased uncertainties. 

When all the system loads are stochastic, the system is asymptotically stable with 

a probability of 0.6 (ts=15 s, r0=0.05 rad/s). Compared to the first case having only two 

stochastic loads with the same r0 value, the probability of the system being 

asymptotically stable reduces from 0.9 to 0.6.  

Therefore, when the percentage of stochastic loads increases, even though the 

load uncertainties are low and the equilibrium point of the system is almost the same as 

its deterministic model, the asymptotic stability of the system in probability downgrades. 

That justifies the necessity of using stochastic load models to study the stability of power 

systems with a high penetration of stochastic loads. 
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(a) Result from the ADM-based approach. 

 
(b) Result from the Euler-Maruyama approach. 

Fig. 3.4. Simulation results of generator 1 rotor angle with all loads represented by stochastic variable with 

2% load variation. 
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3.6.3 Stochastic Loads at 100% with High Variances 

In the third case, all the loads are represented by stochastic loads and the 

variances of the loads are increased to 4% of the mean values. This case may represent a 

scenario having DERs widely deployed in distribution networks, which make the 

aggregated bus load seen from each transmission or sub-transmission substation behave 

more stochastically. The simulation results from the ADM-based approach and Euler-

Maruyama approach are shown in Fig. 3.5. 

The ADM-based approach agrees with the Euler-Maruyama approach on the 

simulation results. Both of them show that the system loses its stability when the variance 

of the loads increases to 4% of their mean values. The instability is due to the cumulative 

effect of stochastic load variations. The 90% confidence envelope can be utilized as an 

indicator of the system stability. Unlike Fig. 3.4, the 90% confidence envelope in Fig. 3.5 

is not bounded any more, indicating a 0.9 probability of the system losing stability. 

Bus voltages also reflect the impact from high load uncertainties as shown in Fig. 

3.6 about the voltage magnitude of bus 30, denoted by V30. With loads of high 

uncertainties, the system has an increased risk of under- and over-voltage issues because 

the imbalance between generation and load is magnified by increased load uncertainties. 

That also indicates the importance of stochastic power system simulation when 

penetration of DERs becomes high. 
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(a) Result from the ADM-based approach. 

 
(a) Result from the Euler-Maruyama approach. 

Fig. 3.5. Simulation results of generator 1 rotor angle with all loads represented by stochastic variable with 

4% load variation. 
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(a) Result from the ADM-based approach. 

 
(b) Result from the Euler-Maruyama approach. 

 
Fig. 3.6. Simulation results of bus voltage at bus 30 with all loads represented by stochastic variable with 

4% load variation. 
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From results of stochastic power system simulation, how the probability 

distribution function (PDF) of a system variable evolves in time during a post-

contingency period can be estimated and fit into an anticipated probability distribution for 

analysis. As an example, if we assume V30 to follow a normal distribution at each time 

instant with the mean value and variance varying with time, Fig. 3.7 shows the evolutions 

of its PDF using simulation results from both the ADM-based approach and Euler-

Maruyama approach for comparison. Fig. 3.7a basically matches Fig. 3.7b, indicating the 

accuracy of the proposed ADM-based approach in reflecting the evaluation of the PDF. 

From Fig. 3.7, as time elapses, the PDF of the bus voltage not only shifts the mean value 

but also increases the variance indicated by the increasing width of the shape. Such 

information is not available from deterministic power system simulation. The longer the 

system is subjected to the effect of stochastic variables the bigger variance and larger 

uncertainty the system has in post-contingency dynamics.  

 

 
(a) ADM-based approach.   (b) Euler-Maruyama approach. 

Fig. 3.7. Evolution of the pdf of the voltage magnitude at bus 30 from t=10 s to 20 s. 
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3.6.4 Variances of State Variables 

To compare the accuracy of the numerical results from the ADM-based approach 

and Euler-Maruyama approach, the mean value and standard deviation of the 100 

trajectories are compared. For case A, as shown in Fig. 3.8 and Fig. 3.9, the ADM-based 

approach achieves comparable accuracy as the Euler-Maruyama approach in terms of 

both mean value and standard deviation value. 

 

 
 

Fig. 3.8. Mean value of generator 1’s rotor angle for case A. 
 

 
 

Fig. 3.9. Standard deviation of generator 1’s rotor angle for case A. 
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As more loads are modeled as stochastic, the variance of state variables grows 

accordingly. The mean value and standard deviation of the rotor angle of generator 1 for 

case B are shown in Fig. 3.10 and Fig. 3.11. In case B, the standard deviation reaches its 

largest value 0.25 rad/s during the first swing, which is larger than the largest standard 

deviation in case A, 0.1 rad/s. 

 

 
Fig. 3.10. Mean value of generator 1’s rotor angle for case B. 

 

 
Fig. 3.11. Standard deviation of generator 1’s rotor angle for case B. 

 

0 2 4 6 8 10 12 14 16 18 20
time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

ADM
Euler-Maruyama

0 2 4 6 8 10 12 14 16 18 20
time (s)

0

0.05

0.1

0.15

0.2

0.25

ADM
Euler-Maruyama



 

84 
 

3.6.5 Comparison on Time Performance 

The time performances for cases A, B and C of the ADM-based approach and 

Euler-Maruyama approach are compared in Table 3.1, from which the ADM-based 

approach takes less than 50% of the time cost of the Euler-Maruyama approach. The 

advantage of the ADM-based approach in time performance is more prominent when 

many simulation runs are required. As discussed in [21], the ADM-based approach is 

inherently suitable for parallel implementation, which could help further improve the 

time performance if high-performance parallel computers are available. 

 

Table 3.1. Time performance on the 4th-Order model System. 

Time costs (s) Stochastic loads at all buses 

(Case B, C) 

Stochastic loads at buses 3 and 4 

(Case A) 

Ito calculus single run 11.6 11.4 

Ito calculus 100 runs 1165.1 1142.4 

ADM single run 5.1 5.1 

ADM 100 runs 511. 0 503.6 

 

3.7 Conclusion 

This chapter proposes an alternative approach for stochastic simulation of power 

systems. Using the SAS derived from the ADM, the stochastic effects from load 

uncertainties can be taken into considerations. The result from the proposed approach is 
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benchmarked with that from the Euler-Maruyama approach. Since the evaluation of SASs 

is faster than the integration with the Euler-Maruyama approach, the proposed approach 

has an obviously advantage in time performance. This is critical when a large number of 

simulation runs need to be performed for simulating stochastic behaviors of a future 

power grid having a high penetration of DERs. The simulation results on different levels 

of stochastic loads show that when the level of load uncertainty is low, the deterministic 

simulation is still trustworthy compared to the mean-value trajectory from stochastic 

simulation, but, once the level of load uncertainty becomes high, the mean-value 

trajectory no longer represents the true behavior of the system.  
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CHAPTER FOUR  

PARAREAL IN TIME POWER SYSTEM SIMULATION 

Recent rapid advances of smart grid technologies have begun to change the 

landscape of the power industry and give rise to a far more dynamically controlled grid. 

Furthermore, power systems become increasingly uncertain as the penetration of 

intermittent renewable sources such as wind and solar increases. There is a need for real-

time, online action which requires faster-than-real-time computation and decision 

making. The Parareal method, along with other advances in parallel and high 

performance computing, promises to give answer to this challenging problem. 

4.1 Parareal Application to Power System 

The Parareal algorithm includes two layers of solution propagations. The first 

layer is the approximate and fast (coarse) solution propagation. It is computed both 

before the fine solution propagation and during each correction of the fine solution. The 

coarse solver gives a less accurate but computationally cheaper solution to guide the fine 

solver to the true solution. 

1 1: ( , , )n T n nCoarse U C T U T       (4-1) 

where nU is the system state obtained from coarse solver at time nT , and T  is the coarse 

solver integration step-size. 

The second layer is the accurate (fine) solver correction. For fine solver, more 

detailed integrators and smaller integration increments are used.  



 

87 
 

1 1
ˆ: ( , , )n t n nFine U F T U t       (4-2) 

where 
ˆ

nU is the system state obtained from the fine solver at time nT , and t  is the fine 

solver’s integration increment. 

Initially, the coarse solver first propagates the coarse solution through the entire 

simulation interval. 

0 0 0
1

1 0
0 0

( )

1
n n T nU U G U

n N

U U

  
  





     (4-3) 

where the superscript denotes the iteration.  

The fine solver corrects the initial guess provided by the coarse solver in an 

iterative way. In each iteration, the fine solution propagates over each coarse interval. 

The error between the new fine solution and the last coarse solution is computed. 

1
1

ˆ ( ) 1k k
n t nU F U n N

         (4-4) 

1ˆ 1k k k
n n nU U n N     

   (4-5) 

where N is the number of intervals for the fine solver.  

Then the error is utilized to update the coarse solution. After the update, the 

coarse solver propagates a new coarse solution corresponding to those updated values. 

1( )

k k k
n n n

k k
n T n

U U

where U C U 

  




     (4-6) 
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After M iterations, the first M coarse intervals are corrected to the true solution. If 

it takes the total number of coarse solutions coarseN  = N iterations to converge, the 

Parareal algorithm will have the same speed as the traditional sequential computation. If 

it takes iterationN  < coarseN to converge, the theoretical speedup [58] of the Parareal approach 

is, 

coarse
theoretical

iteration

N
Speedup

N
     (4-7) 

However, this speedup is based on the assumption that the coarse solver time to 

update and propagate is negligible, which is the ideal case. In practice, the actual speedup 

is, 

sequential algorithm
actual

parallel algorithm

CPU Time
Speedup

CPU Time
    (4-8) 

Choices for a coarse solver can be based on the following: 

1) Using a larger time increment than that for the fine solver; 

2) Using a time-stepping method faster and less accurate than that for the fine solver; 

3) Using a reduced model; 

4) Limiting the total number of iterations in a coarse solver. 

In previous studies [59], the combination of 1) and 4) has been tested. For 2), 

some other fast time domain simulation technique [60] has the potential of improving the 

Parareal algorithm performance. Choice 3) has not been investigated in power systems 

problems and is the subject of this dissertation. 



 

89 
 

The coarse solver utilized in this dissertation is the Midpoint-Trapezoidal 

predictor-corrector method. 

( )
1 ( , ( , ))

2 2
k

n n n n n n

h h
y y hf t y f t y       (4-9) 

( 1) ( )
1 1 1( , ) ( , )

2
k k

n n n n n n

h
y y f t y f t y

         (4-10) 

The Midpoint-Trapezoidal predictor-corrector method is an implicit method. In 

order to achieve accurate solutions, many iterations may be required. However, since the 

accuracy of coarse solution is not of a major concern, only one iteration is computed.  

The fine solver is the Runge-Kutta 4th order (R-K 4) integration method. 

1

2 1

3 2

2 3

1 1 2 3 4

( , )

( , )
2 2

( , )
2 2

( , )

1
[ 2 2 ]

6

n n

n n

n n

n n

n n

k f t y

h h
k f t y k

h h
k f t y k

k f t h y hk

y y k k k k



  

  

  

    

   (4-11) 

The step-size of the R-K 4 fine solver is chosen to be much smaller than that of 

the Midpoint-Trapezoidal coarse solver. 

Even though previous results in [59] show that there is a speedup with such a 

coarse solver configuration, there is still a large gap between the actual and theoretical 

speedups. In order to improve the performance, the time consumed by the coarse solver 

has to be as short as possible. The next sub-section investigates how to simplify the 
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underlying physics and modeling of the synchronous generators and apply a reduced 

model for the coarse solver to achieve a time performance closer to the theoretical 

speedup. 

4.2 Simplified Generator Model 

The synchronous machines in this sub-section are modeled as IEEE Model 2.2 

shown in Fig. 4.1. On the d-axis, there are one damper winding and the field winding, 

while on the q-axis, there are two damper windings. Sub-transient saliency is considered 

using a dummy coil approach [61]. There are 9 state variables for this generator model 

listed in (4-12)-(4-20):  

B m

d
S

dt

       (4-12) 

2 m
m e m

dS
H T T DS

dt
       (4-13) 

f B f B f B f
f ad fd

fl fl ad

d R R R
E

dt x x x

   
       (4-14) 

g B g B g
g aq

gl gl

d R R

dt x x

  
       (4-15) 

h B h B h
h ad

hl hl

d R R

dt x x

         (4-16) 

k B k B k
k aq

kl kl

d R R

dt x x

  
        (4-17) 
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1
( )dummy

dummy qs ds q
dummy

dE
E x x i

dt T


           (4-18) 

1

ˆ 1
ˆ ( , , )ads

ads s g g ad

dx
x F V I x

dt T


        (4-19) 

1

ˆ 1
ˆ ( , , )aqs

aqs s g g aq

dx
x F V I x

dt T


         (4-20) 

 

 

Fig. 4.1. 2.2 model of a synchronous machine. 

 

where:   is rotor angle; mS  is speed slip; H is inertia constant of a generator; D is 

mechanical damping; B is base speed; mT is mechanical input torque; eT is electromagnetic 

torque; f is the flux linkage of field winding; h is the flux linkage of damper winding 

along d-axis; g and k are the flux linkages of the two damper windings along q-axis; ad
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is d-axis mutual flux linkage; aq is q-axis mutual flux linkage; fdE is generator field 

voltage; fR , hR , gR , kR  are the resistances of each coil; flx , hlx , glx , klx are the leakage 

reactances of each coil; adx  is d-axis mutual synchronous reactance; dummyE is a fictitious 

voltage source of the dummy coil; dummyT is the open circuit time constant of the dummy 

coil; dsx , qsx are the saturated sub-transient reactances of d-axis and q-axis, respectively; qi is 

q-axis winding current; ˆadsx and ˆaqsx are the saturated sub-transient mutual reactances of d-

axis and q-axis, respectively. 

More information about IEEE 2.2 generator model can be found in [61]. The 

complete model including the IEEE type 1 excitation system and the 1st order turbine-

governor models has 15 states variables for each generator. However, if only (4-12)-(4-

15) are considered, the generator model can be reduced to the IEEE Model 1.1, which is a 

4th order model. By equating the left hand side of (4-16)-(4-20) to zero, the 2.2 model is 

converted to the 1.1 type model and (4-21)-(4-25) are turned into the constraints of the 5th 

to 9th state variables’ values. Those values are updated using the solution of the algebraic 

equations ignoring related fast dynamics for every integration step. 

h ad       (4-21) 

k aq       (4-22) 

( )dummy qs ds qE x x i         (4-23) 

1
ˆ ( , , )

1 1 1ads s g g ad

ad fl hl

x F V I x

x x x

  
 

   (4-24) 
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1
ˆ ( , , )

1 1 1aqs s g g aq

aqs gl kl

x F V I x

x x x

  
 

   (4-25) 

Equations (4-16)-(4-20) model the eddy current, the sub-transient process and the 

relaxation of sub-transient saliency in the generators, and their dynamics are deemed to 

be already damped out within each coarse interval. Therefore, it is reasonable to 

substitute the differential equations (4-16)-(4-20) with algebraic equations (4-21)-(4-25) 

for the coarse solver to simplify the model and reduce the computational burden of the 

coarse solution propagation. But the obvious question is whether this assumption will 

negatively impact the convergence performance of the Parareal algorithm.  

4.3 Simplified Generator Model Case Study 

Three different test cases have been studied to validate the speedup of applying a 

simplified model for the coarse solver. They are the IEEE 3-generator 9-bus system, the 

IEEE New England 10-generator 39-bus system and the IEEE 327-generator 2383-bus 

Polish system. The test platform is a workstation with Intel Xeon E5-2650, 16-core 

processor. Ideal parallelism is assumed. (i.e. each fine interval is computed in an 

individual processor, and the communication overhead between processors are 

neglected.) In all 3 cases, there are 500 coarse intervals covering a 10 s simulation period. 

It has been reported in [59] that dividing the simulation into windows can reduce the 

required iteration number and overall execution time despite introducing sequential 

computations. Therefore, the simulation is divided in ten 1 s windows each containing 50 

coarse intervals.   Within each coarse interval, there are 20 fine intervals. Due to space 
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constraints, results for single severe disturbances are shown in each system, 

representative of performances for other possible contingencies. 

4.3.1 IEEE 3-generator 9-bus system 

A 3-phase fault on bus 5 is applied and cleared after 4 cycles. As shown in Fig. 

4.2, there is no significant difference between the coarse solutions using the 2.2 model 

and 1.1 model.  

 

 

a)Initial coarse propagation of the 1st window with 2.2 model. 

 

b)Initial coarse propagation of the 1st window with 1.1 model. 

Fig. 4.2. Initial coarse solution comparison of 2.2 and 1.1 model. 
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The time performances are listed in TABLE 4.1. A considerable percentage of the 

total simulation time is taken by the coarse solver. When the 1.1 model is utilized, the 

coarse solver still takes 1.6050 s, but it is 0.0417 s shorter than the 2.2 model. The coarse 

simulation is reduced by 3%. For a larger system, this percentage is expected to be larger, 

because the more generators a system has, the fewer differential equations will have to be 

integrated. 

 

Table 4.1. IEEE 3-Generator 9-Bus System Time Performance. 

Coarse Solver 2.2 model 1.1 model 
Total Parareal time 2.2439 s 2.1959 s 
Coarse time 1.6467 s 1.6050 s 
Coarse time 
reduced 

3% 

Sequential time 13.1381 s 
Actual speed up 5.8550 5.9830 

 

More importantly, the coarse solution with 1.1 model takes the same number of 

iterations to converge to the fine solution as 2.2 model does. Fig. 4.3 shows the process of 

the coarse solution converging to the true solution after 5 iterations. 
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a)Iteration 1 of the 1st window with 1.1 model. 

 

b)Iteration 3 of the 1st window with 1.1 model. 

 

c)Iteration 5 of the 1st window with 1.1 model. 

Fig. 4.3. Iterations of 1st window with 1.1 model. 
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4.3.2 IEEE New England 10-generator 39-bus system 

A temporary 3-phase fault on the line between bus 11 and bus 2 is applied and 

disappears after 4 cycles without any line tripping. As with the IEEE 3-generator 9-bus 

system, after replacing the generator model in the coarse solver by the 1.1 model, the 

accuracy of the solution is not affected. As shown in Fig. 4.4, the coarse solution with the 

1.1 model converges to true solution after 2 iterations for window No. 5, which is the 

same number of iterations taken by using the 2.2 model. 

Table 4.2 shows the time performances for this system. The percentage of the 

reduced coarse time is similar to that for the IEEE 3-generator 10-bus system, because 

the system size is not significantly larger as indicated by the sequential computation 

times in TABLE 4.1 and TABLE 4.2. There is not a big difference between these two 

systems. The potential of using the reduced models in the coarse solver is truly tested on 

the following, much bigger system.  

 

Table 4.2. IEEE 10-Generator 39-Bus  System Time Performance. 

Coarse Solver 2.2 model 1.1 model 

Total Parareal time 2.2544 s 2.2230 s 

Coarse time 1.6617 s 1.6348 s 

Coarse time reduced 2% 

Sequential time 13.7689 s 

Actual speed up 6.1075 6.1938 
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a)Iteration 1 of the 10th window with 1.1 model. 

 

b)Iteration 2 of the 10th window with 1.1 model. 

Fig. 4.4. Iterations of 10th window with 1.1 model.  
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4.3.3 IEEE 327-generator 2382-bus Polish system 

A 3-phase bus fault is applied to bus 11 and cleared after 4 cycles. Same as with 

the smaller systems, the simulation accuracy is not influenced by the simplification of the 

generator model for the coarse solver through the entire simulation period as shown in 

Fig. 4.5. 

The time performances are listed in Table 4.3. For this system with 327 

generators, the coarse time is significantly reduced. The 14% reduction of coarse time 

gives the Parareal algorithm 13% improvement of speedup. Although the coarse time still 

takes almost half of the total simulation time, the idea of applying a reduced model for 

the coarse solver to improve the time performance of the Parareal algorithm is validated 

and is expected to scale up when solving larger systems.  

 

Table 4.3. IEEE 327-Generator 2383-Bus Polish System Time Performance. 

Coarse Solver 2.2 model 1.1 model 

Total Parareal time 82.3150 s 72.6367 s 

Coarse time 49.4318 s 43.3946 s 

Coarse time reduced 14% 

Sequential time 682.0455 s 

Actual speed up 8.2858 9.3898 
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 a)Iteration 1 of the 10th window with 1.1 model. 

 

b)Iteration 2 of the 10th window with 1.1 model. 

Fig. 4.5. Iterations of 10th window with 1.1 model. 

  

8.8 9 9.2 9.4 9.6 9.8 10
38.5

39

39.5

40

Time, sR
ot

or
 A

n
gl

e,
 0  

 

 

Actual Solution
Fine Solution
Coarse Approximation

8.8 9 9.2 9.4 9.6 9.8 10
0.992

0.994

0.996

Time, s

V
ol

ta
ge

, p
u

 

8.8 9 9.2 9.4 9.6 9.8 10
38.5

39

39.5

40

Time, s

R
ot

or
 A

n
gl

e,
 0  

 

 

Actual Solution
Fine Solution
Coarse Approximation

8.8 9 9.2 9.4 9.6 9.8 10
0.992

0.994

0.996

Time, s

V
ol

ta
ge

, p
u

 



 

101 
 

4.4 Embedding Spatial Decomposition in Parareal in Time Algorithm 

The Parareal in time approach provides only one dimension of decomposition – 

temporal decomposition. To further improve the execution time performance of the 

numerical integration process of power system dynamic simulation, another dimension of 

decomposition, spatial decomposition, can be considered. 

Spatial decomposition can be interpreted in its literal meaning here, as a 

separation of the system into two or more areas. In the simplest case, the system is 

typically divided between a study area and an external area. The numerical integration of 

each area is carried out simultaneously but, instead of treating them as two independent 

systems, information has to be exchanged at the boundary (interface) of these two areas 

to maintain the accuracy of the solution of the entire system. The solution at the boundary 

is achieved by considering the input from both areas. This calculation is done at every 

numerical integration step, thus keeping the integrity of the whole system even though 

each area is being simulated separately in parallel. If the system is decomposed into N 

areas and the time for boundary synchronization is negligible, then the theoretical 

speedup of the parallel simulation would be N times faster than simulation of the whole 

system. 

The spatial decomposition in this dissertation follows the approach proposed in 

[62]. Given a whole system shown in Fig. 4.6a, the two individual subsystems can be 

defined as shown in Fig. 4.6b and Fig. 4.6c, with fictitious generators representing the 

rest of the system attached to the boundary buses. 
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(a) Whole system. 

 

(b) Subsystem 1. 

 

(c) Subsystem 2. 

Fig. 4.6. Spatial decomposition that decomposes the whole system into 2 subsystems. 
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The spatial decomposition procedure is implemented as shown in Fig. 4.7. Each 

subsystem is first simulated to find their respective solutions for a certain time period. 

When a preset time for matching up the boundary is reached, the two subsystems will 

exchange the information of the voltage phasors at the boundary buses and solve (4-26) 

using Newton’s method as proposed in [62]. 

,1 ,1 ,2

,2 ,2 ,1

( )

( )

bb fg bb

bb fg bb


 

V V V

V V V     (4-26) 

Where Vbb,1, Vbb,2 are the vectors comprised of all voltage phasors of the boundary buses 

in areas 1 and 2, respectively;  Vfg,1 and Vfg,2 are the vectors comprised of  all voltage 

phasors of the fictitious generators in subsystem 2 and 1 respectively. After several 

iterations, Vbb,1 and Vbb,2 are solved as the boundary bus values for the next time step. 

This spatial decomposition structure allows the parallelism across different 

subsystems. However, the frequency of boundary bus information exchange is the key to 

maintaining an acceptable accuracy. These spatial information exchanges have to be 

properly designed to be compatible with the temporal information exchanges introduced 

by Parareal in time algorithm. 

4.4.1 Initial Coarse Propagation 

This step tolerates a simpler solver and longer coarse time increment for 

integration. The propagation along time axis is sequential with optional parallelization of 

spatial areas. 
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Fig. 4.7. Spatial decomposition simulation procedure. 
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Since in the expression for the theoretical speedup of the Parareal algorithm it is 

assumed that the initial coarse propagation takes no time (compared to the overall 

required time), it is preferable to simulate different areas in parallel to make the actual 

speedup closer to the theoretical. However, the larger coarse interval size delays the 

boundary information exchanges between different areas. Therefore, the inaccuracy of 

the initial coarse solution is due to not only the simpler solver and large integration steps 

(coarse intervals), but also the delayed boundary information exchange. The extra 

inaccuracy caused by the last may become “the final drop” that leads to the divergence of 

later coarse propagations. Therefore, in this dissertation, the initial coarse propagation is 

sequential both spatially and temporally. 

4.4.2 Fine Propagation 

The fine propagation function has two levels of parallelism. The first level is the 

parallelism within the coarse intervals. For each iteration, the fine solution is propagated 

within all the coarse intervals simultaneously. The second level is the parallelism 

between the different spatial areas within each coarse interval. In the second level, unlike 

the typical spatial decomposition approach, the boundary synchronization is skipped, 

which can minimize the communication between processors for the entire fine 

propagation function. 

The essence of both spatial decomposition method and temporal decomposition 

method is to, first, separate the entire task into independent tasks to yield a set of less 

accurate solutions, and, then, correct them by exchanging information between tasks. 
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For the Parareal in time approach, the first step is designed to be the fine 

propagation and the second step is the coarse propagation. In the former, the 

communication between tasks is limited to the minimum. The correction of the 

mismatches between tasks is left for coarse propagation. To integrate spatial 

decomposition with temporal decomposition, the same principle is followed. For each 

fine interval, the mismatch between areas is kept without correction. This design 

sacrifices the accuracy of the fine solution for independency of tasks. The loss of 

accuracy is temporary as the mismatches between areas (spatial) and coarse intervals 

(temporal) are corrected all together in the coarse propagation function later. 

4.4.3 Coarse Propagation 

The coarse propagation function is temporally sequential, because it needs to link 

all the coarse intervals along time axis and correct the mismatch. The spatial parallelism 

is optional in this step depending on the complexity of the system. The boundary 

information exchange is integrated into this function to correct the spatial mismatch. In 

terms of accuracy, either propagating the coarse solution from different areas 

simultaneously or one by one gives the same solution. At the first glance, the spatial 

parallelism should be a preferable choice. But after taking a closer look at the structure of 

the coarse propagation, it is not difficult to notice that the tasks of simulating different 

areas are not as independent as in the fine propagation. If the spatial parallelism is 

implemented, all processors have to communicate for each integration step (coarse 

interval). This means the task assigned for each processor is just one step of integration of 

one area (in contrast, in the case of fine propagation each processor has Nf fine steps of N 
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areas to compute), which could be too trivial a task to assign an individual processor to. 

When the task for each processor is too simple to run, the communication overhead may 

outweigh the computational time gain and the parallelism may become impractical. 

However, if the system is very large, one step of integration of one area is already a 

heavy task, in which case  it is still worth to implement spatial parallelism in the coarse 

propagation function. In this dissertation, since the system is relatively small, the iterative 

coarse propagation is sequential both spatially and temporally. 

4.5 Case Study for Spatial Temporal Decomposition 

The test system is formed by connecting the IEEE 16-machine 68-bus system 

(area 1 as study) to the IEEE 50-machine 145-bus system (area 2 as external) through 

buses 1, 2, 3, respectively, in each area shown in Fig. 4.8. The fault is applied at bus 6 in 

area 1 and cleared by tripping the line 6-11 at the near and remote ends after 0.05s and 

0.1s, respectively. The same test system has been used in [62]. The coarse interval is set 

at 0.01 s for pre-fault and during-fault simulation, and 0.03 s for after fault simulation. 

The fine interval is set as 0.001 s, for pre-fault and during-fault simulation, and 0.003 s 

for after fault simulation. The 15 s simulation period is comprised of 512 coarse intervals, 

each coarse comprised of 10 fine intervals. The solution converges in 2 iterations. 
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(a) Area 1.    (b) Area 2. 
 

 

 

c) Whole test system. 

Fig. 4.8. Test system. 
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The simulation results of all generator rotor angles in the study area are shown in 

Fig. 4.9. The simulation results from the proposed approach agree with those from the 

sequential simulation of the whole system. 

 

 

Fig. 4.9. Comparison of relative rotor angles (machine 13 in area 1 as reference) in area 1 from sequential 

simulation (blue curves) and spatial-temporal decomposition (red curves). 

 

As shown in Table 4.4, using the combined spatial-temporal decomposition 

Parareal approach can achieve a 12.2 times theoretical speedup. However, Fig. 4.10 

shows that the majority of the computing time is comprised of initial and iterative course 

propagations. This means there is still room left for further improvement in the 

performance of this approach. 
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Table 4.4. Time Performance of Spatial Temporal Decomposition Parareal. 

 Spatial-Temporal 

Decomposition Parareal 

Temporal 

Decomposition Parareal 

Initial Coarse Time 6.1685 s 

Fine Time 0.6331 s 0.9556 s 

Fine Time Speedup 1.5094 

Coarse Time 13.3120 

Total Parareal Time 20.1136 s 20.4361 

Sequential Time 245.7169 s 

Spatial-Temporal Decomposition 

Parareal Speedup 

12.2165 12.0237 

 

  



 

111 
 

The comparison of time performance for the 15 s simulation between Parareal 

with spatial decomposition and Parareal only is shown in Table 4.4. The former is broken 

down between functional steps in Fig. 4.10.  

 

 

Fig. 4.10. Different steps and their percentage in the total computing time. 

 

To test the generality of the spatial decomposition, a fault that excites inter-area 

mode has also been studied. Using the small signal analysis tool from power system 

toolbox (PST) [23], a 3-phase fault on bus 19 in area 1, cleared by tripping the line 19-20 

at the near and remote ends after 0.05s and 0.1s, respectively, is identified to be able to 

excite a 0.7 Hz oscillation between machine 3 in area 2 and machines 4, 6, 7 and 9 in area 

1. The compass plot of the rotor angle terms of the inter-area mode eigenvector is shown 

in Fig. 4.11.  
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Fig. 4.11. Compass plot of rotor angle terms of the inter-area mode eigenvector. 
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The simulation results for this case are shown in Fig. 4.12. Again, the proposed 

approach is as accurate as the sequential simulation of the whole system. This confirms 

the validity of the proposed approach that it can provide accurate simulation results for 

not only the contingencies that excite local oscillation modes in certain area, but also the 

contingencies that excite inter-area oscillations and may be challenging to capture in the 

decomposed system. 

 

 

Fig. 4.12. Comparison of relative rotor angles (machine 13 in area 1 as reference) of machines 4, 6, 7 and 9  

in area 1 and  machine 3 in area 2  from sequential simulation (blue curves) and from spatial-temporal 

decomposition (red curves). 
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4.6 Test on EI system 

The basic parareal algorithm is tested on the US Eastern Interconnection (EI). A 

modification regarding to the network solution efficiency is made to accommodate the 

large number of buses. Also a MATLAB base graphic user interface (GUI) is building to 

facilitate the choice of continence and the analysis of the simulation results. 

4.6.1 EI System Overview 

The system data is based on the 2014 summer data in PSSE format. Since the 

parareal solver is coded in MATLAB and it calls Matpower as its power flow solver, the 

following modification has been made to the data. 

• Extracted the largest island in the raw data. (Ignore part of the Canadian system) 

• Renumbered the bus number in sequential order. 

• Fixed several incorrect machine base values in raw data. 

• Converted the data from PSSE format to Matpower format. 

• Converted 3-winding transformers to equivalent 2-winding transformers. 

• Converted sectional lines to equivalent lines with fictitious middle buses. 

• Converted switchable shunts to fix shunts after reaching power flow solution. 

• Matched up the DC lines’ real power transfers at inverter and rectifier buses to 

eliminate DC lines. 

• Created the dynamic data in Parareal format using machine MVA bases. 

• Fine-tuned the exciter and governor output limits to ensure reasonable no-fault 

simulation results in Parareal. 
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The fine-tuned EI system has the statistics listed in Table 4.5 

 

Table 4.5. EI system statistics. 

Device Number 

Bus 70285 

Line 85639 

Generator 5617 

 

4.6.2 Solving the Network Equation 

The Parareal algorithm uses a partitioned approach to solve the DEs and AEs 

alternatively during the simulation. For every integration step, the network voltages V 

need to be recalculated considering the updated current injections I from generator buses.  

YV I      (4-27) 

where Y is the admittance matrix of the system. In the EI system case, it is a 70285 by 

70285 sparse matrix. The location of non-zero elements in the Y matrix is shown in Fig. 

4.13. There are 235683 non-zero elements. 

Equation (4-27) is solved using LU factorization. However, directly applying LU 

factorization to the Y matrix shown in Fig. 4.13 results an enormous number 

(28358730+29464704-235683=57587751) of fill-in elements as shown in Fig. 4.14. 

While using the LU factorization shown in Fig. 4.14 to solve (4-27), 80% of the 

total simulation time is consumed by the network equation solving process.  
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Fig. 4.13. Non-zero elements in the EI system  Y matrix. 

 

 

a) L matrix.     b) U matrix. 

Fig. 4.14. LU factorization of EI system  Y matrix. 
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To overcome this issue, apply a pre-conditioner called column approximate 

minimum degree permutation to Y matrix before applying LU factorization to it. The bus 

numbers in the Y matrix is reordered after that and the reordered Y matrix is shown in 

Fig. 4.15. 

 

 

Fig. 4.15. Non-zero elements in the reordered EI system  Y matrix. 

 

The resulting LU factorization is shown in Fig. 4.16. The number of fill-in 

elements is more than 100 times smaller than the original case. (356109+404093-

235683=524519) 

 

 

a) L matrix.     b) U matrix. 

Fig. 4.16. LU factorization of the reordered EI system  Y matrix. 
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4.6.3 Test Results 

Fig. 4.17 shows the GUI for Parareal Algorithm testing. Contingencies and be 

selected in the GUI shown in Fig. 4.17 a) and the simulation results can be viewed in the 

GUI shown in Fig. 4.17 b). 

 

  

a) Contingency Selection GUI.  b)Simulation results viewing GUI. 

Fig. 4.17. GUI for Parareal Algorithm. 

 

The test environment is a work station with Intel Xeon CPU E5-2650, 64 GB 

RAM, 16 physical cores. During the simulation, there are 16 workers in MATLAB 

parallel pool. It takes 273 s to simulate the first 1 s of the EI system for sequential 

simulation and 98 s for Parareal simulation. The iteration numbers of the different 1 s 

windows are given in Fig. 4.18. It shows that the theoretical speedup is 50/6 

(approximately 8 times). Compare to the theoretical speedup, the actual speedup is 

273/98 (approximately 2.7 times). 

 



 

119 
 

 

Fig. 4.18. Iteration numbers of the Parareal algorithm. 
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To close the gap between the actual speedup and the theoretical speedup, the 

communication overhead between processors has to be investigated. 

The selected simulation results are shown in Fig. 4.19. The converged coarse 

solution agrees with the sequential simulation results. 

 

 

Fig. 4.19. Selected simulation results of the fault bus and a neighboring bus voltage. 

 

4.7 Improving the Convergence Rate of Parareal-in-time Power System 

Simulation using the Krylov Subspace 

Parareal algorithm thrives on how fast it converges. As reported in [14], if the 

number of iterations meets the number of coarse intervals, the theoretical speedup of 

parareal would downgrade to be the same as a sequential approach. Moreover, the time 

cost of coarse solution is neglected in theoretical time cost analysis. In fact, a large 

percentage of the total time could be spent on calculating a coarse solution. Some 

existing literature exploits the Hamiltonian nature of a system to design a Hamiltonian 

projection enhanced parareal to improve its convergence rate [63]. However, since power 

systems are not Hamiltonian, such type of enhancement is not applicable. Ad hoc 

V
b

us
1
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solution of parareal is needed for fully realizing the potential of parareal in power system 

simulation applications.  

Building a Krylov subspace using the coarse solution from the past iterations has 

been reported in [64]-[66] as an effective tool to speed up the convergence of parareal 

algorithm. The convergence accelerator improves the accuracy of the coarse solution to 

the level of fine solution by replacing the coarse propagation with the propagation of the 

basis of Krylov subspace using fine solver, which can be computed in parallel. In this 

dissertation, the plain parareal approach is augmented with a Krylov subspace based 

convergence accelerator to simultaneously improve the convergence rate and reduce the 

coarse time cost for power system simulation. Instead of abandoning the coarse solutions 

from previous iterations, the proposed approach saves them to span a Krylov subspace. 

Then, the basis of the Krylov subspace is propagated by using the fine solver to create a 

new space to which the coarse solution of the latest iteration can be projected. The 

proposed approach improves the accuracy of the coarse propagation to the level of fine 

propagation and, therefore, reduces the number of iterations. The coarse solver is only 

used once for the initial guess. The subsequent coarse propagations are replaced by fine 

propagations of the Krylov subspace’s basis. Those fine propagations are independent 

tasks that can be assigned to parallel processors. 

4.7.1 Projection to the Krylov Subspace  

There are two subspaces. One is built from the coarse solutions but, in practice, 

another subspace built on the fine solution (the last point of each fine trajectory, to be 

precise) turns out to be more useful for nonlinear system case. 
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Denote the space spanned from coarse solutions as, 

 span : 0,..., 1, 0, ...,k j
i ci N j k   q   (4-28) 

Denote the space spanned from fine solutions as, 

 ( ) span : 0,..., 1, 0,...,k j
i ci N j k   q    (4-29) 

In the Krylov enhanced coarse correction step, 

1 1 1( , , ) : (( ) , , ) ( , , )k k
t i i t i i t i it t t t t t      q I P q P q    (4-30) 

The basis of k , 1,..., rs s  will be used to calculate kP , 

1( )k T T
k k k k

P S S S S     (4-31) 

where 1 2[ ]k rS s s s . 

The basis of ( )k  , 1,..., rs s   will be used to bypass 
1( , , )k

t i it t P q : 

1 1 1
1 1

( , , ) ( , , ) ( , , )
r r

k
t i i t i i i i i t i i i

i i

t t s t t s t t     
 

  P q     (4-32) 

Note that k kP q  , therefore, 

1
1

( , , ) ( )
r

k
t i i i i

i

s t t  


      (4-33) 

where 

1
1 1

( , , )
r r

i t i i i i i
i i

s t t s 
 

       (4-34) 

In practice, i  does not need to be calculated explicitly. The purpose of defining i  is to 

illustrate (4-33). 
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The additional computation is equivalent to applying fine solver ( )t  to r more 

coarse intervals (r is the column rank of basis matrix kS ). Since the initial values of those 

propagations are the elements 1,..., rs s of the basis kS , those computations can be executed 

in parallel during fine propagations. 

The new correction step with Krylov subspace based convergence accelerator is,  

1 1
1 1 1 1( , , ) ( , , )k k k k

i t i i i i t i i it t t t 
       q q q q      (4-35) 

Since power systems are inhomogeneous, one more step is required to 

compensate the inhomogeneous input to the system (i.e. control reference input of power 

control devices) 

1( , , )t i it t 0      (4-36) 

The aforementioned procedure is designed for the linear system. Since for 

nonlinear system, 

1
1 1

( , , )
r r

i t i i i i i
i i

s t t s 
 

       (4-37) 

the practical convergence rate improvement lies between the linear system speedup and 

the plain parareal. In terms of computational structure, the Krylov subspace convergence 

accelerator requires Nb = dim( kS ) more worker processors to propagate the basis in 

addition to the Nc worker processors for the plain parareal algorithm. 
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4.7.2 Construction of Krylov Subspace and Its Basis 

The Krylov subspace is built by adding new vectors from new iterations of the 

coarse solution. Therefore, after the k-th iteration, the Krylov subspace is represented by 

matrix Kk  

0 0
0 1 0 1c c

k k k
N N    K q q q q     (4-38) 

The basis of Kk can be calculated through singular value decomposition (SVD), 

k TK UΣV     (4-39) 

If the rank of U is r, then the first r columns of U form the basis of the vector 

space Kk. The computation of SVD can be done by one of many fast large-scale SVD 

algorithms, such as the bi-diagonalization algorithm proposed in [67]. 

4.7.3 Computational Structure 

The proposed convergence accelerator requires marginal computational resources 

in the master processor.The calculation of the basis is performed by fast SVD algorithms, 

as mentioned above. The proposed approach replaces the time consuming and sequential 

coarse propagation with a much cheaper coarse projection step, which improves the 

speed of every iteration significantly. The majority of the additional computation of 

propagating the basis of the Krylov subspace is performed by additional worker 

processors. In the case of modern HPC where the number of available worker processors 

is no longer a limiting factor, an increase in worker processors is an acceptable price to 

pay for the improvement of the coarse solution accuracy. A diagram of the parareal 

algorithm with the convergence accelerator (highlighted in red) and without it is 

presented in Fig. 4.20. 
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Fig. 4.20. Computational structure of parareal algorithm with convergence accelerator. 
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4.7.4 Relation between the Growth of the Krylov Subspace and Convergence Rate 

The Krylov subspace-enhanced parareal is applied to the SMIB in (4-40), 

deliberately choosing a large coarse step size of 0.5s to reduce the accuracy of the coarse 

solver. The converged simulation result of rotor angle δ is shown in Fig. 4.21. The plain 

parareal converges in 7 iterations and the parareal with Krylov subspace projection 

converges in 4 iterations. 

2 sin cosH P D EB EG

 
   

  


    




    (4-40) 

 

 

Fig. 4.21.Rotor angle simulation result from the Krylov subspace enhanced parareal approach. 

 

The basis of the Krylov subspace shows similar convergence behavior. As shown 

in Fig. 4.22, the basis converges close to unit vectors [0 1]T and [1 0]T after 4 iterations. 

Fig. 4.23 shows that the error decreases much slower for the plain parareal algorithm. 
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The reason is that the coarse propagation step of the plain parareal has a lower accuracy 

than the coarse projection step of the proposed approach. The largest change of the basis 

occurs between iteration 1 and iteration 2, which is consistent with the decrease of the 

coarse solution error as shown in Fig. 4.23.  

In terms of numerical accuracy, undamped system is more challenging to 

simulate, because the numerical error is maintained and accumulated without being 

reduced by the system damping. Moreover, the idea of Krylov subspace is proposed 

under linear system assumption and its performance may downgrade under large 

disturbance. 

 

 

Fig. 4.22. Krylov subspace’s basis for different iterations of the damped SMIB system simulation. 
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Fig. 4.23. Error comparison between the Krylov subspace-enhanced parareal and the plain parareal for each 

iteration (damped SMIB system). 
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To evaluate how the proposed convergence accelerator performs under such 

conditions, the D parameter in (4-40) is set to zero and a large disturbance to induce 

marginally stable oscillation is tested. As expected, both the plain parareal and the 

proposed approach takes more iterations to converge. For this extreme case, the plain 

parareal outperforms the proposed approach. However, the proposed approach still 

provides accurate system response. The simulation results for rotor angle δ are shown in 

Fig. 4.24 and the numbers of iterations required are listed in Table 4.6. 

 

Table 4.6. Numbers of iterations. 

Disturbance Plain 
Parareal 

Krylov Subspace 
enhanced Parareal  

Small 7 4 

Large 8 10 

 

 

Fig. 4.24. Rotor angle simulation result from the Krylov subspace-enhanced parareal approach for the 

undamped system under large disturbance 
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In contingency screening applications, one more procedure can be added to help 

making the decision of whether the plain parareal or the proposed approach should be 

applied to a specific contingency as shown in Fig. 4.25. This step checks the initial coarse 

propagation. If its rotor angle is larger than a certain threshold, then the plain parareal 

should be used; otherwise, the proposed approach should be used. Since there is only a 

small number of such extreme cases in real life operation studies, the proposed approach 

can still benefit the simulation of the majority of contingencies. 

 

Start

New Contingency Setup

Initial Coarse

δ > δthd

All
Contingencies

Finised?

END

YES

Krylov Subspace 
Enhanced Parareal

No

Plain PararealYES

Save Results

NO

 

Fig. 4.25. Contingency screening procedure having the options of both plain parareal and the Krylov 

subspace-enhanced parareal. 
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4.7.5 Case Study 

To show the generality of the proposed approach, it is tested on the IEEE 10-

machine 39-bus system. All generators are represented by the classical model. A 3-phase 

bus fault is applied at bus 1 and cleared after 10 cycles. The fine step size is 0.01 s and 

the coarse step size is 0.1 s. The simulation result for the rotor speed deviations is shown 

in Fig. 4.26. 

The error comparison of both the plain parareal and the proposed approach is 

shown in Fig. 4.27. The proposed approach only takes 4 iterations compared to 8 

iterations required for the plain parareal to achieve the same level of accuracy. 

 

 

Fig. 4.26. IEEE 10-machine 39-bus system rotor speed deviation simulation results from the Krylov 

subspace-enhanced parareal approach. 
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Fig. 4.27. Error comparison between the Krylov subspace-enhanced parareal and the plain parareal for each 

iteration (IEEE 10-machine 39-bus system). 
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CHAPTER FIVE  

CONCLUSIONS AND FUTURE WORK 

This dissertation investigates the feasibilities of two approaches for achieving 

faster-than-real-time power system simulation. The first one is a semi-analytical 

approach, by which an SAS is derived for power system DAEs having the form of a 

summation of many CUs to be computed in parallel by parallel processors. The second 

approach is temporal decomposition of the simulation period using the Parareal-in-time 

algorithm. For both approaches, the time performances demonstrated in MATLAB 

environment suggest promising speedup of power system simulation. 

To further reduce the gap to faster-than-real-time power system simulation, both 

approaches will need to be implemented on high-performance computers using 

professional languages for parallel computing, and the communications among parallel 

processors will need to be optimized to reduce the computation overhead.  
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