379 research outputs found

    Logical topology design for IP rerouting: ASONs versus static OTNs

    Get PDF
    IP-based backbone networks are gradually moving to a network model consisting of high-speed routers that are flexibly interconnected by a mesh of light paths set up by an optical transport network that consists of wavelength division multiplexing (WDM) links and optical cross-connects. In such a model, the generalized MPLS protocol suite could provide the IP centric control plane component that will be used to deliver rapid and dynamic circuit provisioning of end-to-end optical light paths between the routers. This is called an automatic switched optical (transport) network (ASON). An ASON enables reconfiguration of the logical IP topology by setting up and tearing down light paths. This allows to up- or downgrade link capacities during a router failure to the capacities needed by the new routing of the affected traffic. Such survivability against (single) IP router failures is cost-effective, as capacity to the IP layer can be provided flexibly when necessary. We present and investigate a logical topology optimization problem that minimizes the total amount or cost of the needed resources (interfaces, wavelengths, WDM line-systems, amplifiers, etc.) in both the IP and the optical layer. A novel optimization aspect in this problem is the possibility, as a result of the ASON, to reuse the physical resources (like interface cards and WDM line-systems) over the different network states (the failure-free and all the router failure scenarios). We devised a simple optimization strategy to investigate the cost of the ASON approach and compare it with other schemes that survive single router failures

    Spare capacity modelling and its applications in survivable iP-over-optical networks

    Get PDF
    As the interest in IP-over-optical networks are becoming the preferred core network architecture, survivability has emerged as a major concern for network service providers; a result of the potentially huge traffic volumes that will be supported by optical infrastructure. Therefore, implementing recovery strategies is critical. In addition to the traditional recovery schemes based around protection and restoration mechanisms, pre-allocated restoration represents a potential candidate to effect and maintain network resilience under failure conditions. Preallocated restoration technique is particularly interesting because it provides a trade-off in terms of recovery performance and resources between protection and restoration schemes. In this paper, the pre-allocated restoration performance is investigated under single and dual-link failures considering a distributed GMPLSbased IP/WDM mesh network. Two load-based spare capacity optimisation methods are proposed in this paper; Local Spare Capacity Optimisation (LSCO) and Global Spare Capacity Optimisation (GSCO)

    Survivable design in WDM mesh networks

    Get PDF
    This dissertation addresses several important survivable design issues in WDM mesh networks;Shared backup path protection has been shown to be efficient in terms of capacity utilization, due to the sharing of backup capacity. However, sharing of backup capacity also complicates the restoration process, and leads to slow recovery. The p-cycle scheme is the most efficient ring-type protection method in terms of capacity utilization. Recently, the concept of pre-cross-connected protection was proposed to increase the recovery speed of shared path protection. We overview these protection methods. The recovery time of these schemes are compared analytically. We formulate integer programming optimization problems for three protection methods in static traffic scenario, considering wavelength continuity constraint;We develop a p-cycle based scheme to deal with dynamic traffic in WDM networks. We use a two-step approach. In first step, we find a set of p-cycles to cover the network and reserve enough capacity in p-cycles. In second step, we route the requests as they randomly arrive one by one. We propose two routing algorithms. Compared to the shared path protection, the p-cycle based design has the advantage of fast recovery, less control signaling, less dynamic state information to be maintained. To evaluate the blocking performance of proposed method, we compare it with shared backup path protection by extensive simulations;We propose a path-based protection method for two-link failures in mesh optical networks. We identify the scenarios where the backup paths can share their wavelengths without violating 100% restoration guarantee (backup multiplexing). We use integer linear programming to optimize the total capacity requirement for both dedicated- and shared-path protection schemes;The recently proposed light trail architecture offers a promising candidate for carrying IP centric traffic over optical networks. The survivable design is a critical part of the integral process of network design and operation. We propose and compare two protection schemes. The survivable light trail design problem using connection based protection model is solved using a two-step approach. (Abstract shortened by UMI.

    Survivability issues in WDM optical networks

    Get PDF
    WDM optical networks make it possible for the bandwidth of transport networks to reach a level on which any failures would cause tremendous data loss and affect a lot of users. Thus, survivability issues of WDM optical networks have attracted a lot of research work. Within the scope of this dissertation, two categories of problems are studied, one is survivable mapping from IP topology to WDM topology, the other is p-cycle protection schemes in WDM networks.;Survivable mapping problem can be described as routing IP links on the WDM topology such that the IP topology stays connected under any single link failure in the WDM topology. This problem has been proved to be NP-complete [1]. At first, this dissertation provides a heuristic algorithm to compute approximated solutions for input IP/WDM topologies as an approach to ease the hardness of it. Then, it examines the problem with a different view, to augment the IP topology so that a survivable mapping can be easily computed. This new perspective leads to an extended survivable mapping problem that is originally proposed and analyzed in this dissertation. In addition, this dissertation also presents some interesting open problems for the survivable mapping problem as future work.;Various protection schemes in WDM networks have been explored. This dissertation focuses on methods based on the p-cycle technology. p-Cycle protection inherits the merit of fast restoration from the link-based protection technology while yielding higher efficiency on spare capacity usage [2]. In this dissertation, we first propose an efficient heuristic algorithm that generates a small subset of candidate cycles that guarantee 100% restorability and help to achieve an efficient design. Then, we adapt p-cycle design to accommodate the protection of the failure of a shared risk link group (SRLG). At last, we discuss the problem of establishing survivable connections for dynamic traffic demands using flow p-cycle

    A New Survivable Mapping Problem in IP-over-WDM Networks

    Get PDF
    We introduce a new version of the widely studied survivable mapping problem in IP-over-WDM networks. The new problem allows augmenting the given logical topology and is described as follows: given a physical topology and a logical topology, compute a survivable logical topology that contains the given logical topology such that the minimal survivable mapping cost for the result logical topology is minimized. The problem is significant for two reasons: 1) If there does not exist a survivable mapping for the given logical topology, we can add logical links to the given logical topology to make it survivable; 2) Even if a survivable mapping for the given logical topology can be found, it is still possible to reduce the minimal survivable mapping cost by adding logical links selectively. We first prove the existence of a solution to the problem, then provide a straightforward Integer Linear Program (ILP) formulation for the problem. Moreover, we present a theoretical result that leads to a simple NP-hardness proof of the problem and an improved ILP formulation. Simulation results demonstrate the significance of both the new survivable mapping problem and the theoretical result

    Characterization, design and re-optimization on multi-layer optical networks

    Get PDF
    L'augment de volum de tràfic IP provocat per l'increment de serveis multimèdia com HDTV o vídeo conferència planteja nous reptes als operadors de xarxa per tal de proveir transmissió de dades eficient. Tot i que les xarxes mallades amb multiplexació per divisió de longitud d'ona (DWDM) suporten connexions òptiques de gran velocitat, aquestes xarxes manquen de flexibilitat per suportar tràfic d’inferior granularitat, fet que provoca un pobre ús d'ample de banda. Per fer front al transport d'aquest tràfic heterogeni, les xarxes multicapa representen la millor solució. Les xarxes òptiques multicapa permeten optimitzar la capacitat mitjançant l'empaquetament de connexions de baixa velocitat dins de connexions òptiques de gran velocitat. Durant aquesta operació, es crea i modifica constantment una topologia virtual dinàmica gràcies al pla de control responsable d’aquestes operacions. Donada aquesta dinamicitat, un ús sub-òptim de recursos pot existir a la xarxa en un moment donat. En aquest context, una re-optimizació periòdica dels recursos utilitzats pot ser aplicada, millorant així l'ús de recursos. Aquesta tesi està dedicada a la caracterització, planificació, i re-optimització de xarxes òptiques multicapa de nova generació des d’un punt de vista unificat incloent optimització als nivells de capa física, capa òptica, capa virtual i pla de control. Concretament s'han desenvolupat models estadístics i de programació matemàtica i meta-heurístiques. Aquest objectiu principal s'ha assolit mitjançant cinc objectius concrets cobrint diversos temes oberts de recerca. En primer lloc, proposem una metodologia estadística per millorar el càlcul del factor Q en problemes d'assignació de ruta i longitud d'ona considerant interaccions físiques (IA-RWA). Amb aquest objectiu, proposem dos models estadístics per computar l'efecte XPM (el coll d'ampolla en termes de computació i complexitat) per problemes IA-RWA, demostrant la precisió d’ambdós models en el càlcul del factor Q en escenaris reals de tràfic. En segon lloc i fixant-nos a la capa òptica, presentem un nou particionament del conjunt de longituds d'ona que permet maximitzar, respecte el cas habitual, la quantitat de tràfic extra proveït en entorns de protecció compartida. Concretament, definim diversos models estadístics per estimar la quantitat de tràfic donat un grau de servei objectiu, i diferents models de planificació de xarxa amb l'objectiu de maximitzar els ingressos previstos i el valor actual net de la xarxa. Després de resoldre aquests problemes per xarxes reals, concloem que la nostra proposta maximitza ambdós objectius. En tercer lloc, afrontem el disseny de xarxes multicapa robustes davant de fallida simple a la capa IP/MPLS i als enllaços de fibra. Per resoldre aquest problema eficientment, proposem un enfocament basat en sobre-dimensionar l'equipament de la capa IP/MPLS i recuperar la connectivitat i el comparem amb la solució convencional basada en duplicar la capa IP/MPLS. Després de comparar solucions mitjançant models ILP i heurístiques, concloem que la nostra solució permet obtenir un estalvi significatiu en termes de costos de desplegament. Com a quart objectiu, introduïm un mecanisme adaptatiu per reduir l'ús de ports opto-electrònics (O/E) en xarxes multicapa sota escenaris de tràfic dinàmic. Una formulació ILP i diverses heurístiques són desenvolupades per resoldre aquest problema, que permet reduir significativament l’ús de ports O/E en temps molt curts. Finalment, adrecem el problema de disseny resilient del pla de control GMPLS. Després de proposar un nou model analític per quantificar la resiliència en topologies mallades de pla de control, usem aquest model per proposar un problema de disseny de pla de control. Proposem un procediment iteratiu lineal i una heurística i els usem per resoldre instàncies reals, arribant a la conclusió que es pot reduir significativament la quantitat d'enllaços del pla de control sense afectar la qualitat de servei a la xarxa.The explosion of IP traffic due to the increase of IP-based multimedia services such as HDTV or video conferencing poses new challenges to network operators to provide a cost-effective data transmission. Although Dense Wavelength Division Multiplexing (DWDM) meshed transport networks support high-speed optical connections, these networks lack the flexibility to support sub-wavelength traffic leading to poor bandwidth usage. To cope with the transport of that huge and heterogeneous amount of traffic, multilayer networks represent the most accepted architectural solution. Multilayer optical networks allow optimizing network capacity by means of packing several low-speed traffic streams into higher-speed optical connections (lightpaths). During this operation, a dynamic virtual topology is created and modified the whole time thanks to a control plane responsible for the establishment, maintenance, and release of connections. Because of this dynamicity, a suboptimal allocation of resources may exist at any time. In this context, a periodically resource reallocation could be deployed in the network, thus improving network resource utilization. This thesis is devoted to the characterization, planning, and re-optimization of next-generation multilayer networks from an integral perspective including physical layer, optical layer, virtual layer, and control plane optimization. To this aim, statistical models, mathematical programming models and meta-heuristics are developed. More specifically, this main objective has been attained by developing five goals covering different open issues. First, we provide a statistical methodology to improve the computation of the Q-factor for impairment-aware routing and wavelength assignment problems (IA-RWA). To this aim we propose two statistical models to compute the Cross-Phase Modulation variance (which represents the bottleneck in terms of computation time and complexity) in off-line and on-line IA-RWA problems, proving the accuracy of both models when computing Q-factor values in real traffic scenarios. Second and moving to the optical layer, we present a new wavelength partitioning scheme that allows maximizing the amount of extra traffic provided in shared path protected environments compared with current solutions. Specifically, we define several statistical models to estimate the traffic intensity given a target grade of service, and different network planning problems for maximizing the expected revenues and net present value. After solving these problems for real networks, we conclude that our proposed scheme maximizes both revenues and NPV. Third, we tackle the design of survivable multilayer networks against single failures at the IP/MPLS layer and WSON links. To efficiently solve this problem, we propose a new approach based on over-dimensioning IP/MPLS devices and lightpath connectivity and recovery and we compare it against the conventional solution based on duplicating backbone IP/MPLS nodes. After evaluating both approaches by means of ILP models and heuristic algorithms, we conclude that our proposed approach leads to significant CAPEX savings. Fourth, we introduce an adaptive mechanism to reduce the usage of opto-electronic (O/E) ports of IP/MPLS-over-WSON multilayer networks in dynamic scenarios. A ILP formulation and several heuristics are developed to solve this problem, which allows significantly reducing the usage of O/E ports in very short running times. Finally, we address the design of resilient control plane topologies in GMPLS-enabled transport networks. After proposing a novel analytical model to quantify the resilience in mesh control plane topologies, we use this model to propose a problem to design the control plane topology. An iterative model and a heuristic are proposed and used to solve real instances, concluding that a significant reduction in the number of control plane links can be performed without affecting the quality of service of the network

    Protection and restoration algorithms for WDM optical networks

    Get PDF
    Currently, Wavelength Division Multiplexing (WDM) optical networks play a major role in supporting the outbreak in demand for high bandwidth networks driven by the Internet. It can be a catastrophe to millions of users if a single optical fiber is somehow cut off from the network, and there is no protection in the design of the logical topology for a restorative mechanism. Many protection and restoration algorithms are needed to prevent, reroute, and/or reconfigure the network from damages in such a situation. In the past few years, many works dealing with these issues have been reported. Those algorithms can be implemented in many ways with several different objective functions such as a minimization of protection path lengths, a minimization of restoration times, a maximization of restored bandwidths, etc. This thesis investigates, analyzes and compares the algorithms that are mainly aimed to guarantee or maximize the amount of remaining bandwidth still working over a damaged network. The parameters considered in this thesis are the routing computation and implementation mechanism, routing characteristics, recovering computation timing, network capacity assignment, and implementing layer. Performance analysis in terms of the restoration efficiency, the hop length, the percentage of bandwidth guaranteed, the network capacity utilization, and the blocking probability is conducted and evaluated
    corecore