10 research outputs found

    Strong edge-colouring of sparse planar graphs

    Get PDF
    A strong edge-colouring of a graph is a proper edge-colouring where each colour class induces a matching. It is known that every planar graph with maximum degree Δ\Delta has a strong edge-colouring with at most 4Δ+44\Delta+4 colours. We show that 3Δ+13\Delta+1 colours suffice if the graph has girth 6, and 4Δ4\Delta colours suffice if Δ7\Delta\geq 7 or the girth is at least 5. In the last part of the paper, we raise some questions related to a long-standing conjecture of Vizing on proper edge-colouring of planar graphs

    From light edges to strong edge-colouring of 1-planar graphs

    Get PDF
    International audienceA strong edge-colouring of an undirected graph GG is an edge-colouring where every two edges at distance at most~22 receive distinct colours. The strong chromatic index of GG is the least number of colours in a strong edge-colouring of GG. A conjecture of Erd\H{o}s and Ne\v{s}et\v{r}il, stated back in the 8080's, asserts that every graph with maximum degree Δ\Delta should have strong chromatic index at most roughly 1.25Δ21.25 \Delta^2. Several works in the last decades have confirmed this conjecture for various graph classes. In particular, lots of attention have been dedicated to planar graphs, for which the strong chromatic index decreases to roughly 4Δ4\Delta, and even to smaller values under additional structural requirements.In this work, we initiate the study of the strong chromatic index of 11-planar graphs, which are those graphs that can be drawn on the plane in such a way that every edge is crossed at most once. We provide constructions of 11-planar graphs with maximum degree~Δ\Delta and strong chromatic index roughly 6Δ6\Delta. As an upper bound, we prove that the strong chromatic index of a 11-planar graph with maximum degree Δ\Delta is at most roughly 24Δ24\Delta (thus linear in Δ\Delta). The proof of this result is based on the existence of light edges in 11-planar graphs with minimum degree at least~33

    Strong chromatic index of subcubic planar multigraphs

    Get PDF
    The strong chromatic index of a multigraph is the minimum k such that the edge set can be k-colored requiring that each color class induces a matching. We verify a conjecture of Faudree, Gyarfas, Schelp and Tuza, showing that every planar multigraph with maximum degree at most 3 has strong chromatic index at most 9, which is sharp. (C) 2015 Elsevier Ltd. All rights reserved

    Coloring, List Coloring, and Painting Squares of Graphs (and other related problems)

    Full text link
    We survey work on coloring, list coloring, and painting squares of graphs; in particular, we consider strong edge-coloring. We focus primarily on planar graphs and other sparse classes of graphs.Comment: 32 pages, 13 figures and tables, plus 195-entry bibliography, comments are welcome, published as a Dynamic Survey in Electronic Journal of Combinatoric

    Extremal problems on cycle structure and colorings of graphs

    Get PDF
    In this Thesis, we consider two main themes: conditions that guarantee diverse cycle structure within a graph, and the existence of strong edge-colorings for a specific family of graphs. In Chapter 2 we consider a question closely related to the Matthews-Sumner conjecture, which states that every 4-connected claw-free graph is Hamiltonian. Since there exists an infinite family of 4-connected claw-free graphs that are not pancyclic, Gould posed the problem of characterizing the pairs of graphs, {X,Y}, such that every 4-connected {X,Y}-free graph is pancyclic. In this chapter we describe a family of pairs of graphs such that if every 4-connected {X,Y}-free graph is pancyclic, then {X,Y} is in this family. Furthermore, we show that every 4-connected {K_(1,3),N(4,1,1)}-free graph is pancyclic. This result, together with several others, completes a characterization of the family of subgraphs, F such that for all H in ∈, every 4-connected {K_(1,3), H}-free graph is pancyclic. In Chapters and 4 we consider refinements of results on cycles and chorded cycles. In 1963, Corrádi and Hajnal proved a conjecture of Erdös, showing that every graph G on at least 3k vertices with minimum degree at least 2k contains k disjoint cycles. This result was extended by Enomoto and Wang, who independently proved that graphs on at least 3kvertices with minimum degree-sum at least 4k - 1 also contain k disjoint cycles. Both results are best possible, and recently, Kierstead, Kostochka, Molla, and Yeager characterized their sharpness examples. A chorded cycle analogue to the result of Corrádi and Hajnal was proved by Finkel, and a similar analogue to the result of Enomoto and Wang was proved by Chiba, Fujita, Gao, and Li. In Chapter 3 we characterize the sharpness examples to these statements, which provides a chorded cycle analogue to the characterization of Kierstead et al. In Chapter 4 we consider another result of Chiba et al., which states that for all integers r and s with r + s ≥ 1, every graph G on at least 3r + 4s vertices with ẟ(G) ≥ 2r+3s contains r disjoint cycles and s disjoint chorded cycles. We provide a characterization of the sharpness examples to this result, which yields a transition between the characterization of Kierstead et al. and the main result of Chapter 3. In Chapter 5 we move to the topic of edge-colorings, considering a variation known as strong edge-coloring. In 1990, Faudree, Gyárfás, Schelp, and Tuza posed several conjectures regarding strong edge-colorings of subcubic graphs. In particular, they conjectured that every subcubic planar graph has a strong edge-coloring using at most nine colors. We prove a slightly stronger form of this conjecture, showing that it holds for all subcubic planar loopless multigraphs
    corecore