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a b s t r a c t

The strong chromatic index of a multigraph is the minimum k such
that the edge set can be k-colored requiring that each color class
induces a matching. We verify a conjecture of Faudree, Gyárfás,
Schelp and Tuza, showing that every planar multigraphwithmaxi-
mumdegree atmost 3 has strong chromatic index atmost 9, which
is sharp.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

All multigraphs in this paper are loopless. A strong k-edge-coloring of a multigraph G is a coloring
φ : E(G) → [k] such that if any two edges e1 and e2 are either adjacent to each other or adjacent to
a common edge, then φ(e1) ≠ φ(e2). In other words, the edges in each color class form an induced
matching in the originalmultigraph. The strong chromatic index ofG, denoted byχ ′

s(G), is theminimum
k for which G has a strong k-edge-coloring. This is equivalent to finding the chromatic number of the
square of the line graph of G.
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Fouquet and Jolivet [8,7] introduced the notion of strong edge-coloring, which was used to solve a
problem involving radio networks and their frequencies. More details on this application can be found
in [19,20].

For general graphs, the greedy algorithmprovides an upper bound onχ ′
s of 2(∆−1)+2(∆−1)2+1,

where ∆ denotes the maximum degree of the multigraph. At a 1985 seminar in Prague, Erdős and
Nešetřil conjectured that in fact a stronger upper bound holds, which if true, is best possible (see [4,5]).

Conjecture 1 (Erdős and Nešetřil ’85). If G is a graph with maximum degree∆, then

χ ′

s(G) ≤


5
4
∆2, if ∆ is even,

5
4
∆2

−
1
2
∆+

1
4
, if ∆ is odd.

When G has maximum degree at most 3, the conjecture was verified by Andersen [1], who proved
the conjecture for multigraphs, and independently by Horák, Qing and Trotter [13]. In general, the
problem remains open with the best known upper bound due to Molloy and Reed [17] using proba-
bilistic techniques.2

Theorem (Molloy and Reed ’97). For large enough∆, every graph G with maximum degree∆ has χ ′
s(G)

≤ 1.998∆2.

Faudree et al. [6] show that when restricted to planar multigraphs, χ ′
s(G) ≤ 4∆ + 4µ, where

µ denotes the maximum number of parallel edges connecting a pair of vertices in G. Additionally,
they show that for every positive integer k ≥ 2, there exists a planar graph G with ∆ = k and
χ ′
s(G) = 4∆− 4.
Borodin and Ivanova [2] show that if a planar graph G has maximum degree at most ∆ and girth

(i.e. the length of a shortest cycle) at least 40⌊∆2 ⌋ + 1, then χ ′
s(G) ≤ 2∆− 1.

In regard to subcubic graphs, i.e., graphs with maximum degree at most 3, Faudree et al. [6] pose
the following set of conjectures.

Conjecture 2 (Faudree et al. ’90). Let G be a subcubic graph.

2.1 χ ′
s(G) ≤ 10.

2.2 If G is bipartite, then χ ′
s(G) ≤ 9.

2.3 If G is planar, then χ ′
s(G) ≤ 9.

2.4 If G is bipartite and the degree sum along every edge is at most 5, then χ ′
s(G) ≤ 6.

2.5 If G is bipartite with girth at least 6, then χ ′
s(G) ≤ 7.

2.6 If G is bipartite with large girth, then χ ′
s(G) ≤ 5.

Andersen [1], and independently Horák, Qing and Trotter [13], proved Conjecture 2.1. Conjec-
ture 2.2 was verified by Steger and Yu [21]. Conjecture 2.4 was confirmed by Wu and Lin [22] and
was generalized by Nakprasit and Nakprasit [18]. The previously mentioned result of Borodin and
Ivanova [2] verified Conjecture 2.6 for planar graphs. The authors know of no results which pertain to
Conjecture 2.5.

The purpose of this paper is to verify Conjecture 2.3. That is, we prove the following theorem,which
is best possible by considering the complement of the cycle of length six.

Theorem 1. Every subcubic, planar multigraph G with no loops has χ ′
s(G) ≤ 9.

The proof of this result yields a polynomial time algorithm in terms of the number of vertices that
will color any subcubic, planar multigraph using at most nine colors. Theorem 1 implies the following
corollary.

2 Recently, Bruhn and Joos [3] claim to have improved this bound to 1.93∆2 .
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Corollary 2. Every subcubic, planar multigraph G with no loops contains an induced matching of size at
least |E(G)|/9.

This corollary extends a result of Kang, Mnich and Müller [16] to loopless multigraphs. Joos, Raut-
enbach and Sasse [15] later showed that the above lower bound holds for all subcubic graphs, thus
proving a conjecture of Henning and Rautenbach [10].

Hocquard et al. [11] provide upper bounds on the strong chromatic index of subcubic graphs based
on themaximum average degree. These results, which strengthen those of Hocquard and Valicov [12],
provide stronger upper bounds on the strong chromatic index of subcubic planar graphs based on
girth. In addition, they prove Conjecture 2.3 for subcubic planar graphs with no induced C4 or C5. This
result verifies Conjecture 2.3 for subcubic planar graphs with girth at least six, a statement indepen-
dently obtained by Hudák et al. [14].

We present our result as follows. In Section 2, we provide the notation we will use along with
preliminary results. The remaining sections assume the existence of a minimal counterexample. Sec-
tion 3 contains basic properties of a minimal counterexample, including the fact that it has no cycles
of length three or four. The lemmas in Section 4 will show that if a face has a 2-vertex on its boundary,
then the face has length at least eight, and additionally, if two 2-vertices exist on a face, then the dis-
tance between them is at least five on the face. Section 5 contains two lemmas showing that every face
of length five is surrounded by faces of length at least seven. Lastly, Section 6 contains a discharging
proof based on the lemmas presented in Sections 3–5.

2. Preliminaries and notation

In the proof of Theorem 1, we will often remove vertices or edges from aminimal counterexample
and obtain a strong edge-coloring of the remainingmultigraph. To aid us, we introduce some notation
and preliminary facts that we will use in explanations.

We will use some lower case Greek letters, such as α, β, γ , δ, to denote arbitrary colors, and we
will use φ, σ ,ψ to denote colorings. Also an i-vertex is a vertex of degree i in our multigraph, and a
j-face is a face of length j in our planemultigraph. An i+-vertex and j+-face is a vertex of degree at least
i and a face of length at least j, respectively.

A coloring of a multigraph G is good, if it is a strong edge-coloring of G using at most 9 colors. A
partial coloring of a graph G is a coloring of any subset of E(G), and we say it is a good partial coloring
of G, if for any colored edges e1 and e2 that are either adjacent to each other or adjacent to a common
edge, we have e1 and e2 receiving different colors. Given edges e, e′ in G, we say that e sees e′ if either
e and e′ are adjacent, or there is another edge e′′ adjacent to both e and e′. Additionally, we will also
say that e sees a color α, if e sees an edge e′ for which φ(e′) = α, where φ is a partial coloring.

Let φ be a good partial coloring of a graph G. For v ∈ V (G), let Uφ(v) denote the set of colors
used on the edges incident to v. For an uncolored edge e ∈ E(G), let Aφ(e) denote the set of colors
that can be used on e to extend φ to a new good partial coloring of G. For adjacent vertices u, v, let
Υφ(u, v) := Uφ(u) \ {φ(uv)}. That is, Υφ(u, v) denotes the set of colors used on edges incident to u
other than uv. As φ is a good partial coloring, Υφ(u, v) and Υφ(v, u) are disjoint. Often we will refer
to only one partial coloring which will not be named. In these cases we will suppress the subscripts
in the above notations.

As mentioned, we will remove vertices and edges from a multigraph G to obtain a good partial
coloring, say φ. Often, we will consider |Aφ(e)| for every uncolored e in G, in order to apply the well
known result of Hall [9] in terms of systems of distinct representatives.

Theorem (Hall ’35). Let A1, . . . , An be n subsets of a set U. A system of distinct representatives of
{A1, . . . , An} exists if and only if for all k, 1 ≤ k ≤ n and every choice of subcollection of size k,
{Ai1 , . . . , Aik}, we have |Ai1 ∪ · · · ∪ Aik | ≥ k.

This will give a coloring of the remaining uncolored edges such that for every pair of uncolored
edges e1 and e2, they will receive distinct colors from Aφ(e1) and Aφ(e2), respectively. Such an
extension of φ is a good coloring of G and yields the desired result. Thus, when left in a situation
in which we can apply Hall’s Theorem, we will say that we obtain a good coloring of G by SDR.
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3. Basic properties

Everywhere below we assume G to be a subcubic, planar multigraph contradicting Theorem 1.
Among all such counterexamples, we assume that G has the fewest vertices, and over all such coun-
terexamples, has the fewest edges. G is connected, as otherwise we can color each component by the
minimality ofG, and so obtain a good coloring ofG. AsG is planar,we assumeG to be a planemultigraph
in all the following statements. That is, we consider G together with an embedding of G into the plane.

In this section, we will show several properties of G, including that G is simple, has no small cycles
and the distance between any two 2-vertices is at least three, a fact that we will strengthen in a later
section. Similar statements are proven in [11,12,14]while consideringminimal counterexampleswith
different properties.

Lemma 3. G has no multiple edges, i.e., G is a simple graph.

Proof. Suppose that e is a parallel edge in G. By the minimality of G, G − e has a good coloring. Since
e sees at most seven edges in G, we can extend this good coloring to G. �

Lemma 4. G has minimum degree at least 2.

Proof. Suppose that v is a 1-vertex and u is the neighbor of v. Then G − v has a good coloring. Since
uv sees at most six edges in G, we can extend this good coloring to G. �

Lemma 5. G has no cut-vertex and no cut-edge.

Proof. Since G is subcubic, the existence of a cut-vertex implies the existence of a cut-edge. Thus,
it suffices to suppose that G has a cut-edge, say v1v2. For i = 1, 2, let Hi be the component of v1v2
containing vi. By Lemma 4, |V (Hi)| ≥ 2. Define G1 to be the graph consisting of H1 together with v2
and the edge v1v2. Similarly define G2 to be the graph consisting of H2 together with v1 and the edge
v1v2.

By the minimality of G, G1 and G2 have good colorings, φ1 and φ2, respectively. We may assume
Uφ1(v1) ⊆ {1, 2, 3},Uφ2(v2) ⊆ {1, 4, 5}withφ1(v1v2) = φ2(v1v2) = 1.Merging these two colorings
yields a good coloring of G. �

Lemma 6. If {e1, e2} is an edge-cut in G, then e1, e2 are adjacent to each other.

Proof. If not, then we have an edge-cut {u1w1, u2w2} in G that is a matching. Wemay assume that u1
and u2 are in the same component ofG−{u1w1, u2w2} so thatwe can defineHu to be the component of
G− {u1w1, u2w2} containing u1 and u2. Let Hw = G−Hu. We may then let Gu be the graph consisting
of Hu together with a new vertex w whose neighborhood is {u1, u2}. Similarly, let Gw be the graph
consisting of Hw together with a new vertex u whose neighborhood is {w1, w2}. Observe that Gu and
Gw are subcubic, planar multigraphs, and so by the minimality of G, Gu and Gw have good colorings φu
and φw , respectively.

Now, if |Uφw (w1)∪Uφw (w2)| ≤ 5, thenwemay assume thatUφw (w1)∪Uφw (w2) ⊆ [5]with uwi
being colored i. Since |Uφu(u1) ∪ Uφu(u2)| ≤ 6, we may similarly assume that Uφu(u1) ∪ Uφu(u2) ⊆

{1, 2, 6, 7, 8, 9} with wui being colored i. We may then merge these two colorings to obtain a good
coloring of G in which uiwi receives color i for i ∈ {1, 2}.

So, we have |Uφw (w1) ∪ Uφw (w2)| = |Uφu(u1) ∪ Uφu(u2)| = 6. This implies u1u2, w1w2 ∉ E(G).
Thus, we may assume that Uφu(u1) = {1, 3, 4}, Uφw (w2) = {2, 3, 4}, Uφu(u2) = {2, 5, 6},
Uφw (w1) = {1, 5, 6}with uwi, wui being colored i. Again, we canmerge these two colorings to obtain
a good coloring of G in which uiwi receives color i. �

Lemma 7. G has no triangles.

Proof. Suppose thatw0w1w2 is a triangle in G. Ifw0 is a 2-vertex, then as G−w0 has a good coloring,
and since each ofw0w1 andw0w2 sees at most colored 5 edges in G, we can extend this good coloring
to G. Thus, eachwi is a 3-vertex, and we may assume NG(w0) = {u0, w1, w2}, NG(w1) = {w0, u1, w2}

and NG(w2) = {w0, w1, u2}.
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Now, G− {w0, w1, w2} has a good coloring, which applied to G is a good partial coloring such that
|A(wiui)| ≥ 3 and |A(wiwi+1)| ≥ 5 for i ∈ {0, 1, 2} taken modulo 3. If there are at least six colors
available on these six uncolored edges, then we can extend to a good coloring of G by SDR. So wemay
assume A(w0w1) = A(w1w2) = A(w2w0) and |A(w0w1)| = 5. Without loss of generality, we may
assume A(w0w1) = {1, 2, 3, 4, 5}. However, this implies that for i ∈ {0, 1, 2}, U(ui) and U(ui+1)
partition {6, 7, 8, 9}, which cannot happen. �

Lemma 8. G has no separating cycle of length four or five.

Proof. We first show that G has no 4-cycle with a 2-vertex. Suppose that w1w2w3w4 is a 4-cycle. If
w1 is a 2-vertex, then G − w1 has a good coloring, such that |A(w1w2)|, |A(w4w1)| ≥ 2, and we can
extend this to a good coloring of G. Thus, if G has a 4-cycle, then each vertex of the cycle is a 3-vertex.
We will use this below to show that G has no separating 4-cycle or 5-cycle.

If on the contrary, G has a separating 4-cycle or 5-cycle, call it C . By Lemma 7, C has no chords,
and as G is subcubic, each vertex of C is incident to at most one edge not on C . Since ⌊

5
2⌋ = 2, by

symmetry we may assume that there are at most two edges inside C that are incident to vertices on
C (recall that G is assumed to be embedded in the plane). If there is exactly one such edge, then G has
a cut-edge, contradicting Lemma 5. So, we have two such edges, which are in fact cut-edges, and by
Lemma 6, these edges share a common endpoint, say u, inside of C . Now, u is a 2-vertex, as otherwise
it would be a cut-vertex with a cut-edge. However, u together with the vertices of C has either a trian-
gle or a 4-cycle containing a 2-vertex, contradicting Lemma 7 or the above, respectively. Thus, G has
no separating 4-cycle or 5-cycle. �

Lemma 9. G has no 4-cycle.

Proof. Suppose that x0x1x2x3 is a 4-cycle in G. By Lemma 8, this cycle is a 4-face and as is shown
in the proof of Lemma 8, each xi is a 3-vertex. As a result, we let yi denote the third neighbor of xi,
which is not on this 4-cycle. By Lemmas 7 and 8, the yi’s are distinct and y0y2, y1y3 ∉ E(G). Let G′

denote the graph obtained from G by removing x0, x1, x2, x3 and adding the edge y0y2. Observe that
G′ is a subcubic, planar multigraph, and so by the minimality of G, G′ has a good coloring. Ignoring
y0y2, we have a good partial coloring of G that we extend by coloring x0y0, x2y2 with the same color
that y0y2 received. This extended coloring is a good partial coloring, and we will refer to it as φ. As
|Aφ(x1y1)|, |Aφ(x3y3)| ≥ 2, we can greedily color these two edges and obtain another good partial
coloring, which we will call σ .

Note that the edges of the 4-cycle are the only uncolored edges of G under σ , and |Aσ (xixi+1)| ≥ 2
for each i ∈ {0, 1, 2, 3} taken modulo 4. Additionally Uσ (y0) ∩ Uσ (y2) = {σ(x0y0)}. So, without loss
of generality, we may assume that Uσ (y0) ⊆ {1, 2, 3} and Uσ (y2) ⊆ {1, 4, 5}.

Suppose that |Aσ (x0x1) ∪ Aσ (x2x3)| = 2 so that without loss of generality, Aσ (x0x1) = Aσ (x2x3) =

{8, 9}. This implies

Uσ (y0) ∪ Uσ (y1) ∪ {σ(x3y3)} = Uσ (y2) ∪ Uσ (y3) ∪ {σ(x1y1)} = [7]

and additionally Υσ (y1, x1) = {4, 5},Υσ (y3, x3) = {2, 3}. However, this implies |Aσ (x1x2)|,
|Aσ (x3x0)| ≥ 4, and we can obtain a good coloring of G by coloring the edges x0x1, x2x3, x1x2, x3x0
in this order.

Sowe have |Aσ (x0x1)∪Aσ (x2x3)| ≥ 3 and by symmetry |Aσ (x1x2)∪Aσ (x3x0)| ≥ 3.Wemay assume
that |Aσ (x0x1) ∪ Aσ (x1x2) ∪ Aσ (x2x3) ∪ Aσ (x3x0)| ≤ 3, otherwise we can obtain a good coloring of G
by SDR.

Now, if |Aσ (x0x1)| = 2, thenΥσ (y0, x0) = {2, 3}, and additionally, 2, 3 ∉ Uσ (y1)∪{σ(x3y3)}. Since
Uσ (y2) ⊆ {1, 4, 5}, we have 2, 3 ∈ Aσ (x1x2), but 2, 3 ∉ Aσ (x0x1). Thus, |Aσ (x0x1) ∪ Aσ (x1x2)| ≥ 4,
a contradiction. So, |Aσ (x0x1)| = 3, and by symmetric arguments, we have Aσ (x0x1) = Aσ (x1x2) =

Aσ (x2x3) = Aσ (x3x0).
If Υσ (y0, x0) ⊆ Uσ (y1) ∪ {σ(x3y3)}, then |Aσ (x0x1)| ≥ 4, a contradiction. Thus, say 2 ∉ Uσ (y1) ∪

{σ(x3y3)}. However, 2 ∉ Uσ (y2) so that 2 ∈ Aσ (x1x2) \ Aσ (x0x1), again a contradiction. Thus, in all
cases we can extend σ and obtain a good coloring of G. �
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Lemma 10. The distance between any two 2-vertices is at least three.

Proof. Let u, v be 2-vertices in G. Suppose first that u, v are adjacent, and letw be the other neighbor
of v, which is possibly the other neighbor of u as well. Now, G − v has a good coloring, and since uv
sees at most 5 colored edges in G and vw sees at most seven colored edges in G, we can extend this
good coloring to G. Thus, u and v are at least distance two apart in G.

Now suppose u and v are distance two apart and are both incident to a 3-vertex x. Let NG(u) =

{u′, x}, NG(v) = {v′, x} and NG(x) = {u, v, x′
}, where u′, v′, x′ are not necessarily distinct. By the

minimality of G, G − {u, v, x} has a good coloring such that uu′, vv′, xx′ each see at most six different
colors, and ux, vx each see at most four different colors. Thus, we can extend this good partial coloring
to G by coloring the edges uu′, vv′, xx′, ux, vx in this order. �

4. Faces without 2-vertices

In this section, we show that if a face has a 2-vertex, then that face must have length at least eight.
Additionally, if a face does have two 2-vertices on its boundary, then the distance between them along
the face is at least five.

Lemma 11. Every vertex of a 5-cycle in G is a 3-vertex.

Proof. By Lemma 8, it suffices to consider 5-faces. Suppose on the contrary that x1x2x3x4x5 is a 5-
face in G and x5 is a 2-vertex. Lemma 10 implies that each xi other than x5 has a third neighbor yi. By
Lemmas 7–9, these yi are distinct, not on our cycle and pairwise nonadjacent except for possibly y1y4.

Let G′ denote the graph obtained from G by removing x1, x2, x3, x4, x5 and adding the edge y2y4.
Observe that G′ is a subcubic, planar multigraph, and so by theminimality of G, G′ has a good coloring.
Ignoring y2y4, we have a good partial coloring of G that we can extend by coloring x4x5, x2y2 with the
color of y2y4. Call this good partial coloring, φ. Note that |Aφ(x3y3)|, |Aφ(x4y4)| ≥ 2 so that we can
color these two edges greedily to obtain a new good partial coloring σ .

Now, |Aσ (x1y1)|, |Aσ (x2x3)|, |Aσ (x3x4)| ≥ 2, |Aσ (x1x2)| ≥ 3 and |Aσ (x5x1)| ≥ 5. If Aσ (x1y1) ∩

Aσ (x3x4) = ∅, then we can extend this to a good coloring of G by SDR. So we can color x1y1, x3x4 with
the same color, α. We can then color the remaining three uncolored edges by SDR. �

Lemma 12. The distance between any two 2-vertices is at least four.

Proof. By Lemma 10, we may consider a path x1x2x3x4x5x6 such that x2, x5 are 2-vertices. By
Lemma 10, all other xi are 3-vertices, and so, we let y3, y4 be the third neighbors of x3, x4, respectively.
By Lemmas 7, 9, 8 and 11, y3, y4 are distinct, not on this path and the only possible adjacency between
these eight vertices other than those on the path and x3y3, x4y4, is x1x6. However, regardless of the
existence of x1x6, the following argument holds.

By the minimality of G, G − {x2, x3, x4, x5} has a good coloring such that |A(x1x2)|, |A(x3y3)|,
|A(x4y4)|, |A(x5x6)| ≥ 3 and |A(x2x3)|, |A(x3x4)|, |A(x4x5)| ≥ 5 (when x1x6 ∈ E(G), then we get
|A(x1x2)|, |A(x5x6)| ≥ 4).

If there exists α ∈ A(x2x3) \ A(x4x5) (or if |A(x4x5)| ≥ 6), then we can color x2x3 with α (or color
x2x3 first) and then color x1x2, x3y3, x4y4, x3x4, x5x6, x4x5 in this order to obtain a good coloring of G.
So, we may assume that |A(x4x5)| = 5 and A(x2x3) = A(x4x5).

If A(x1x2) ∩ A(x2x3) = ∅, then we can color x5x6, x4x5, x4y4, x3y3, x3x4, x2x3, x1x2 in this order
to obtain a good coloring of G. Thus, it remains to consider the case when A(x2x3) = A(x4x5) and
there exists some β ∈ A(x1x2) ∩ A(x2x3). In this case, we color x1x2 and x4x5 with β and then color
x5x6, x4y4, x3y3, x3x4, x2x3 in this order to obtain a good coloring of G. �

Lemma 13. If the boundary of a face in G contains a pair of 2-vertices, then the distance on the boundary
between them is at least five.
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Proof. By Lemma 12, any face contradicting the statement has length at least eight and contain a
path x1x2x3x4x5x6x7 such that x2 and x6 are 2-vertices. By Lemma 12, all other xi are 3-vertices, and
so, for j ∈ {3, 4, 5} we let yj be the neighbor of xj other than xj−1, xj+1. By Lemmas 7–9, we have
that y3, y4, y5 are distinct, pairwise nonadjacent and not on this path. By the same lemmas, the only
possible adjacencies between these ten vertices other than those on the path and x3y3, x4y4, x5y5, are
x1y5, x7y3. However, both edges cannot exist simultaneously and their existence will not affect the
following argument.

Let G′ be obtained from G by removing x2, x3, x4, x5, x6 and adding the edge y3y5. Observe that G′ is
a subcubic, planar multigraph, and so by the minimality of G, G′ has a good coloring. Ignoring y3y5, we
have a good partial coloring of G that we can extend by coloring x3y3 and x5y5 with the color of y3y5.
Wewill refer to this coloring asφ. Note that |Aφ(x1x2)|, |Aφ(x4y4)|, |Aφ(x6x7)| ≥ 2 and |Aφ(xixi+1)| ≥ 4
for i ∈ {2, 3, 4, 5}. From here we see that the existence of x1y5 does not affect coloring x1x2 as φ(x5y5)
is already excluded from Aφ(x1x2) since x1x2 sees x3y3. Symmetrically, the existence of x7y3 does not
affect coloring x6x7 as φ(x3y3) is already excluded from Aφ(x6x7) since x6x7 sees x5y5.

If there exists α ∈ Aφ(x4x5) \ Aφ(x2x3) (or if |Aφ(x2x3)| ≥ 5), then we can color x4x5 with α (or
color x4x5 first) and then color x6x7, x4y4, x5x6, x3x4, x1x2, x2x3 in this order to obtain a good coloring
of G. So, we may assume that |Aφ(x2x3)| = 4 and Aφ(x2x3) = Aφ(x4x5).

If Aφ(x1x2) ∩ Aφ(x4x5) = ∅ (and consequently, Aφ(x1x2) ∩ Aφ(x2x3) = ∅), then we can color
x6x7, x4y4, x5x6, x4x5, x3x4, x2x3, x1x2 in this order to obtain a good coloring of G. Thus, it remains to
consider the case when there exists some β ∈ A(x1x2) ∩ A(x4x5). In this case we color x1x2, x4x5 with
β and then color x6x7, x4y4, x5x6, x3x4, x2x3 in this order to obtain a good coloring of G. �

Lemma 14. Every vertex of a 6-cycle in G is a 3-vertex.

Proof. Suppose that G has a 6-cycle C given by x0x1x2x3x4x5 on which x0 is a 2-vertex. By Lemma 12,
x0 is the only 2-vertex of C .
Case 1. C is a separating 6-cycle.

By Lemmas 7–9, C has no chords. Just as in the proof of Lemma 8, we may assume that C has at
most two edges inside C that are incident to vertices on C . If there is exactly one such edge, then G has
a cut-edge, contradicting Lemma 5. So, we have two such edges, and by Lemma 6 these edges share
a common endpoint, say u, inside of C . Now, u is a 2-vertex, else it is a cut-vertex with a cut-edge.
However, u together with the vertices of C contains either a triangle, a 4-cycle, or a 5-cycle containing
a 2-vertex, contradicting Lemmas 7, 9, 8, or 11, respectively.
Case 2. C is not a separating 6-cycle.

Recall that G is assumed to be embedded into the plane. Thus C must be the boundary of a 6-
face. As mentioned above, each xi, other than x0, is a 3-vertex and so has a third neighbor yi. We
claim that these yi’s are distinct, pairwise disjoint and not on C . Indeed, if any yi was on C , we would
create either a triangle or 4-cycle, contradicting Lemmas 7 and 9. For i ∈ [4], if yi = yi+1, we have
a triangle contradicting Lemma 7. For i ∈ {1, 2, 3, 5} taken modulo 5, if yi = yi+2, we have a 4-
cycle contradicting Lemma 9. For i ∈ {1, 2}, if yi = yi+3, then yixixi+1xi+2xi+3yi+3 is a separating
5-cycle contradicting Lemma 8. Thus, the yi’s are distinct. For i ∈ [4], if yiyi+1 ∈ E(G), we have a 4-
cycle contradicting Lemma 9. For i ∈ [3] if yiyi+2 ∈ E(G), we have a separating 5-cycle contradicting
Lemma 8. If y5y1 ∈ E(G), then y1x1x0x5y5y1 is a 5-cycle containing a 2-vertex contradicting Lemma 11.
For i ∈ {1, 2} if yiyi+3 ∈ E(G), then yixixi+1xi+2xi+3yi+3yi is a separating 6-cycle contradicting Case 1.
Thus, the yi’s are pairwise disjoint.

Now, let G′ denote the plane graph obtained from G by adding a new vertex z inside the face
bounded by C , deleting x0, . . . , x5, and adding the new edges zy1, zy3, zy4. Observe that G′ is a
subcubic, planar graph, and so by the minimality of G, it has a good coloring φ. Ignoring zy1, zy3, zy4,
this yields a good partial coloring of G that can be extended by coloring x1y1 and x3x4 with φ(zy1). This
coloring, call it σ , is indeed a good partial coloring as φ(zy1) cannot appear in Υφ(y3, x3) ∪ Υφ(y4, x4)
since φ was a partial good coloring.

Without loss of generality, suppose σ(x1y1) = σ(x3x4) = 1. Note that |Aσ (xiyi)| ≥ 2 for
i ∈ {2, 3, 4, 5}, |Aσ (xjxj+1)| ≥ 4 for j ∈ {1, 2, 4} and |Aσ (xℓxℓ+1)| ≥ 6 for ℓ ∈ {0, 5} taken modulo 6.
As a result, if we can extend σ to a good partial coloring on the edges x2y2, x3y3, x4y4, x5y5, x2x3, x4x5,
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Fig. 4.1. Forming G′ from G.

then we can extend this further by coloring x1x2, x0x1, x0x5 in this order to obtain a good coloring of
G. Thus, it suffices to consider the edges x2y2, x3y3, x4y4, x5y5, x2x3, x4x5.

For i ∈ {2, 3, 4, 5}, if there exists α ∈ Aσ (xiyi)\Aσ (x2x3) (or |Aσ (x2x3)| ≥ 5), then we can color xiyi
with α (or color xiyi first). If i = 2, we color x3y3, x4y4, x5y5, x4x4, x2x3 in this order. If i = 5, we color
x4y4, x3y3, x2y2, x4x5, x2x3 in this order. If i ∈ {2, 3}, we color xi−1yi−1, . . . , x2y2, xi+1yi+1, . . . , x5y5,
x4x5, x2x3 in this order. In all cases, we obtain our good partial coloring of G. As a consequence,
|Aσ (x2x3)| = 4 and Aσ (xiyi) ⊆ Aσ (x2x3) for i ∈ {2, 3, 4, 5}. By a symmetric argument, |Aσ (x4x5)| = 4
and Aσ (xiyi) ⊆ Aσ (x4x5).

Now, if there exists β ∈ Aσ (x3y3) \ Aσ (x2y2) (or |Aσ (x2y2)| ≥ 3), then we can color x3y3 with β
(or color x3y3 first) and then color x4y4, x5y5, x4x5, x2x3, x2y2 in this order to obtain our good partial
coloring of G. So we may assume that |Aσ (x2y2)| = 2 and Aσ (x2y2) = Aσ (x3y3). A similar argument
shows that |Aσ (x5y5)| = 2 and Aσ (x5y5) = Aσ (x4y4).

Lastly, if there exists γ ∈ Aσ (x2y2) ∩ Aσ (x4y4), then we can color x2y2, x4y4 with γ and then color
x3y3, x5y5, x4x5, x2x3 in this order to obtain our good partial coloring of G.

Thus, Aσ (x2y2) = Aσ (x3y3) and Aσ (x4y4) = Aσ (x5y5). Furthermore, Aσ (x2y2) and Aσ (x4y4)
partition Aσ (x2x3) and Aσ (x4x5) so that Aσ (x2x3) = Aσ (x4x5). So without loss of generality, we
may assume that Aσ (x2y2) = Aσ (x3y3) = {2, 3}, Aσ (x4y4) = Aσ (x5y5) = {4, 5} and Aσ (x2x3) =

Aσ (x4x5) = {2, 3, 4, 5}. We can then obtain a good partial coloring of G by coloring xiyi with i for
i ∈ {2, 3, 4, 5}, x2x3 with 5 and x4x5 with 2. Asmentioned above, these good partial colorings can each
be extended to obtain good colorings of G.

This completes the case that C is the boundary of a 6-face, and so proves the lemma. �

Lemma 15. Every vertex of a 7-face in G is a 3-vertex.

Proof. Recall that G is assumed to be embedded into the plane. Suppose on the contrary that G has a
7-face with boundary x0x1x2 . . . x6 with x0 being a 2-vertex. By Lemma 13, each xi other than x0 has a
third neighbor yi ∉ {xi−1, xi+1}where i is takenmodulo 7. Similarly to Case 2 of Lemma 14, Lemmas 7,
9, 8, 11 and 14, imply that the yi’s are not on the 7-face, are distinct and the only possible adjacencies
other than those on this face or xiyi, i ∈ [6], are y1y4, y2y5, y3y6. Note by Lemma 14, y2y6, y1y5 ∉ E(G).

Let G′ be obtained from G by removing x0, x1, . . . , x6 and adding the edges y1y6, y2y4 (see Fig. 4.1).
Observe that G′ is a subcubic, planar multigraph, and so by theminimality of G, G′ has a good coloring,
which ignoring y1y6, y2y4, is a good partial coloring φ of G.

Claim 1. Aφ(x2y2) ∩ Aφ(x4y4) ∩ Aφ(x6y6) = ∅.

Proof. Without loss of generality, suppose on the contrary that 1 ∈ Aφ(x2y2) ∩ Aφ(x4y4) ∩ Aφ(x6y6).
We can obtain another good partial coloring of G, σ , by coloring x2y2, x4y4, x6y6 with 1. Recall that
yiyi+3, i ∈ [3] are possible edges of G. However, the existence of these edges will not affect the
following argument as we will be sure to not color x1y1, x3y3, x5y5 with 1.

Note that |Aσ (xiyi)| ≥ 2 for i ∈ {1, 3, 5}, |Aσ (xjxj+1)| ≥ 4 for j ∈ [5] and |Aσ (x6x0)|, |Aσ (x0x1)| ≥ 6.
As a result, if we can somehow extend σ to a good partial coloring on the edges x1y1, x3y3, x5y5, x1x2,



388 A.V. Kostochka et al. / European Journal of Combinatorics 51 (2016) 380–397

x2x3, x3x4, x4x5, thenwe can extend this further by coloring x5x6, x6x0, x0x1 in this order. Thus, it suffices
to consider the edges x1y1, x3y3, x5y5, x1x2, x2x3, x3x4, x4x5.

Now, if there exists α ∈ Aσ (x2x3) \ Aσ (x4x5) (or |Aσ (x4x5)| ≥ 5), we can color x2x3 with α (or just
color x2x3 first) and then color x1y1, x3y3, x1x2, x3x4, x5y5, x4x5 in this order to obtain our good partial
coloring of G. So, we may assume that |Aσ (x4x5)| = 4 and Aσ (x4x5) = Aσ (x2x3).

If Aσ (x5y5) ∩ Aσ (x2x3) = ∅ (and consequently, Aσ (x5y5) ∩ Aσ (x4x5) = ∅), then we can color
x1y1, x3y3, x1x2, x2x3, x3x4, x4x5, x5y5 in this order to obtain our good partial coloring of G. Thus, it
remains to consider the case when there exists some β ∈ Aσ (x5y5) ∩ Aσ (x2x3). In this case, we color
x5y5, x2x3 with β and then color x1y1, x3y3, x1x2, x3x4, x4x5 in this order to obtain a good coloring of
G. This proves the claim. �

Recall that we originally constructed the auxiliary graph G − {x0, . . . , x6} + y1y6 + y2y4 to
obtain φ. By Claim 1, the colors placed on y1y6, y2y4 are distinct, as they are colors in Aφ(x6y6) and
Aφ(x2y2) ∩ Aφ(x4y4), respectively. So we may assume that y1y6 and y2y4 received the colors 1 and 2,
respectively.

Coloring x1y1, x6y6 with 1 and x2y2, x4y4 with 2, extends φ to a good partial coloring of G.
Additionally, under this new partial coloring, x5y5 sees at most eight colored edges, including edges
colored 1 and 2, so that we can extend further by coloring x5y5 with some α. We will refer to this new
good partial coloring in which x1y1, x6y6 are colored 1, x2y2, x4y4 are colored 2 and x5y5 is colored α,
as ψ .

Under ψ , the existence of y1y4, y2y5 will not affect our arguments as the edges x1y1, x4y4, x2y2,
x5y5 are already colored in a good partial coloring. The existence of the edge y3y6 will not affect our
arguments as we will not color x3y3 with 1.

Observe that |Aψ (x3y3)|, |Aψ (x4x5)|, |Aψ (x5x6)| ≥ 2, |Aψ (xixi+1)| ≥ 3 for i ∈ [3] and
|Aψ (x6x0)|, |Aψ (x0x1)| ≥ 5. As a result, if we can somehow extendψ to a good partial coloring on the
edges x1x2, x2x3, x3x4, x4x5, x5x6, x3y3, then we can extend this further by coloring x0x1, x6x0. Thus, it
suffices to consider the edges x1x2, x2x3, x3x4, x4x5, x5x6, x3y3 below.

Claim 2. Aψ (x4x5) = Aψ (x5x6) and |Aψ (x4x5)| = 2.

Proof. Suppose on the contrary that either |Aψ (x5x6)| ≥ 3 or Aψ (x4x5) \ Aψ (x5x6) ≠ ∅. In either case,
we color x4x5 first, where in the latter case we use a color from Aψ (x4x5) \ Aψ (x5x6). Suppose that β is
the color we can apply to x4x5. Note that there exists some γ1 ∈ Aψ (x3y3) \ {β} as an available color
for x3y3.

We aim to show that it is impossible for Aψ (x2x3) = Aψ (x3x4) = {β, γ1, γ2} for some γ2 ∉ {β, γ1}.
If this was the case, then as 1, 2 ∉ Aψ (x2x3), we may assume that β = 3, γ1 = 4 and γ2 = 5.
Additionally, as α ∉ {β, γ1, γ2}, we may assume that α = 6. Thus, we have Υψ (y3, x3)∪Υψ (y4, x4) =

{1, 7, 8, 9} and Υψ (y2, x2) ∪ Υψ (y3, x3) = {6, 7, 8, 9}. This implies that Υψ (y2, x2) ∩ Υψ (y4, x4) ≠ ∅.
However, recall that the auxiliary graph used to obtain φ contained y2y4. As a result, Υψ (y2, x2) ∩

Υψ (y4, x4) = ∅, a contradiction. So we cannot have Aψ (x2x3) = Aψ (x3x4) = {β, γ1, γ2}, as desired.
As a result, if we color x4x5 with β and x3y3 with γ1, we can further color x2x3, x3x4 to obtain a good

partial coloring of G, which we will call τ . Let γ2, γ3 denote τ(x2x3), τ (x3x4), respectively. Without
loss of generality, we may assume γ1 = 7, γ2 = 8, γ3 = 9. Recall that we are assuming either
|Aψ (x5x6)| ≥ 3 or β ∈ Aψ (x4x5) \ Aψ (x5x6). So Aτ (x5x6) ≠ ∅, and if Aτ (x1x2) ≠ ∅, we can greedily
color x1x2, x5x6 to obtain a good partial coloring which we can extend to all of G as mentioned above.

Thus, we had Aψ (x1x2) = {7, 8, 9}. We may also assume that Uψ (y1) = {1, 3, 4} and Uψ (y2) =

{2, 5, 6}. Under τ , if we could recolor x2x3 with either 3 or 4, thenwe could color x1x2 with 8 and color
x5x6 last to obtain our goodpartial coloring ofG. Thus, 3, 4 ∈ Υτ (y3, x3)∪{β}. A similar argument holds
if we could recolor x3x4 with 1, 3, 4, 5, or 6, implying 1, 3, 4, 5, 6 ∈ Υτ (y3, x3) ∪ Υτ (y4, x4) ∪ {α, β}.

Recall that y2y4 was an edge ofG′ so thatΥτ (y2, x2)∩Υτ (y4, x4) = ∅. In particular, 5, 6 ∉ Υτ (y4, x4).
Thus, we have 5, 6 ∈ Υτ (y3, x3) ∪ {α, β}, and consequently, Υτ (y3, x3) ∪ {α, β} = {3, 4, 5, 6} =

Υτ (y1, x1) ∪ Υτ (y2, x2), and 1 ∈ Υτ (y4, x3).
Let us reconsider ψ . As 1 ∈ Υψ (y4, x3), we have |Aψ (x4x5)| ≥ 3. If either |Aψ (x5x6)| ≥ 3 or

|Aψ (x4x5) \ Aψ (x5x6)| ≥ 2, then instead of coloring x4x5 with β , we could color it with some β ′
≠ β

such that x5x6 would still have at least two colors available on it. By repeating an argument similar to
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the above, wewould then conclude thatΥτ (y3, x3)∪{α, β ′
} = Υτ (y1, x1)∪Υτ (y2, x2), a contradiction,

as it would imply β = β ′.
As a result, we have |Aψ (x5x6)| = 2 and |Aψ (x4x5) \ Aψ (x5x6)| = 1. We may assume that

Aψ (x5x6) = {δ1, δ2} and Aψ (x4x5) = {β, δ1, δ2}. Recall that Υψ (y3, x3) ∪ {α, β} = {3, 4, 5, 6} so
that β ∉ Υψ (y3, x3), and consequently, β ∈ Aψ (x3x4).

If {δ1, δ2} ≠ {7, 8}, thenwe can color x4x5 with a color in {δ1, δ2}\{7, 8}, color x3x4 withβ , x3y3 with
7, x2x3 with 8, x1x2 with 9 and color x5x6 last to obtain our good partial coloring ofG. If {δ1, δ2} = {7, 8},
then we can color x1x2, x4x5 with 8 and x3y3, x5x6 with 7. This good partial coloring of G leaves at least
one available color on each of x2x3, x3x4. In particular, 5 and 6 are not available on x2x3. If 5 or 6 is in
Υψ (y3, x3), then x2x3 has at least two available colors and we obtain our good partial coloring of G.
Since we cannot have 5 or 6 in Υψ (y4, x4), we must have either 5 or 6 available on x3x4. Thus, we can
color x3x4, x2x3 and obtain our good partial coloring of G.

As mentioned above, these good partial colorings of G can be extended to good colorings of G, and
this proves the claim. �

Without loss of generality suppose α = 3. As 1, 2, 3 ∉ Aψ (x4x5), we may assume that Aψ (x4x5) =

Aψ (x5x6) = {8, 9}. Additionally, we may assume that Υψ (y6, x6) = {4, 5} = Υψ (y4, x4) and
Υψ (y5, x5) = {6, 7}. If 1 ∈ Aψ (x3x4), we can color x3x4 with 1 and then color x3y3, x4x5, x5x6, x2x3, x1x2
in this order to obtain our good partial coloring of G. Thus, 1 ∈ Υψ (y3, x3), and so |Aψ (x2x3)| ≥ 4.

Recall that |Aψ (x3x4)| ≥ 3, and thus, x3x4 has an available color not in {8, 9}. As 1, 2, 3, 4, 5 ∉

Aψ (x3x4), we may assume without loss of generality that it is 6. So, we color x3x4 with 6 and then
color x3y3, x4x5, x5x6, x2x3 in this order. Call this good partial coloring of G, τ . It remains only to color
x1x2 to obtain a good partial coloring of G that we can extend to all of G.

We must have Aψ (x1x2) = {6, τ (x2x3), τ (x3y3)}, otherwise we can color x1x2. Recall that our
auxiliary graph G′ contained the edges y1y6, y2y4 so that Υψ (y1, x1) ∩ Υψ (y6, x6) = Υψ (y2, x2) ∩

Υ (y4, x4) = ∅. Since Υψ (y4, x4) = Υ (y6, x6) = {4, 5}, we have 4, 5 ∈ Aψ (x1x2), and in particular,
Aψ (x1x2) = {4, 5, 6} with {τ(x2x3), τ (x3y3)} = {4, 5}.

Without loss of generality assume τ(x3y3) = 4. We may then extend ψ by coloring x3x4 with 6,
x3y3 with 4, x1x2 with 5 and then color x2x3, x4x5, x5x6 in this order to obtain our good partial coloring
of G.

In all cases, we obtain a partial good coloring of G from which we can extend to a good coloring of
G as mentioned above. This proves the lemma. �

5. Adjacent faces

By the lemmas in Section 3, every face in G is a 5+-face. In this section we show that if a face has
length five, then it can only be adjacent to 7+-faces.

Lemma 16. No two 5-faces in G share an edge.

Proof. Suppose the contrary. By Lemma11, the boundaries of the two faces forman8-cycle, x0x1 . . . x7
with x4x0 ∈ E(G). By Lemmas 7, 9, 8 and 11, each xi other than x4, x0 has a third neighbor yi not on
the 8-cycle that are distinct from each other, except possibly y2 = y6. Additionally, the only possible
adjacencies between the yi’s are yiyj for i ∈ [3] and j ∈ {5, 6, 7}.

Let G′ denote the graph obtained from G by removing x0, . . . , x7, adding two new vertices u, v and
the edges uy1, uy2, uy3, vy5, vy6, vy7 (see Fig. 5.1). Observe that G′ is a subcubic, planar multigraph,
and so by theminimality of G, G′ has a good coloring, which ignoring uy1, uy2, uy3, vy5, vy6, vy7 gives
us a good partial coloring of G that can be extended by coloring xjyj with the same color as uyj, j ∈ [3]
and xℓyℓ with the same color as vyℓ, for ℓ ∈ {5, 6, 7}. This new partial coloring of G is still a good
partial coloring, and we will refer to it as φ.

By the construction of G′, we see that φ(x1y1) ≠ φ(x3y3) and φ(x5y5) ≠ φ(x7y7). Without loss of
generality, we may assume that φ(x1y1) = 1 and φ(x3y3) = 2. We will break the following into cases
depending on (φ(x5y5), φ(x7y7)).
Case 1. (φ(x5y5), φ(x7y7)) = (3, 4).



390 A.V. Kostochka et al. / European Journal of Combinatorics 51 (2016) 380–397

Fig. 5.1. Forming G′ from G.

Observe that |Aφ(xixi+1)| ≥ 2 for i ∈ {1, 2, 5, 6}, |Aφ(xjxj+1)| ≥ 4 for j ∈ {0, 3, 4, 7} taken modulo
8 and Aφ(x4x0) = {5, 6, 7, 8, 9}. By the construction of G′, we can extend φ to another good partial
coloring ofGby coloring x3x4, x4x5, x7x0, x0x1 with 1, 4, 3, 2, respectively.Wewill call this goodpartial
coloring σ . Note that |Aσ (xixi+1)| ≥ 1 for i ∈ {1, 2, 5, 6} and Aσ (x4x0) = {5, 6, 7, 8, 9}.

If |Aσ (x1x2) ∪ Aσ (x2x3)|, |Aσ (x5x6) ∪ Aσ (x6x7)| ≥ 2, we can color x1x2, x2x3, x5x6, x6x7, x4x0 in this
order to obtain a good coloring of G. By symmetry, we have two subcases to consider.
Subcase 1.1. |Aσ (x1x2) ∪ Aσ (x2x3)| = |Aσ (x5x6) ∪ Aσ (x6x7)| = 1.

Let Aσ (x1x2) = Aσ (x2x3) = {α} and Aσ (x5x6) = Aσ (x6x7) = {β}. Since α ∉ {1, 2, 3, 4}, we
have 3 ∈ Υσ (y2, x2) ∪ Υ (y3, x3). However, if 3 ∈ Uσ (y2), then |Aσ (x1x2)| ≥ 2, a contradiction.
Thus, Uσ (y3) = {2, 3, γ } for some γ ∉ [4], since G is a counterexample. By a similar argument,
we have 4 ∈ Uσ (y1), and as Aσ (x1x2) = Aσ (x2x3), we have Uσ (y1) = {1, 4, γ }. Symmetrically,
Uσ (y5) = {2, 3, δ} and Uσ (y7) = {1, 4, δ}, where δ ∉ [4].

Now, as 4 ∈ Uσ (y1) and |Aσ (x1x2)| = 1,we cannot have 4 ∈ Uσ (y2). Thus, 4 ∈ Aφ(x2x3). Similarly,
2 ∈ Aφ(x6x7). Thus, we can extend φ by coloring x1x2 with α, x2x3 with 4, x3x4 with 1, x5x6 with β ,
x6x7 with 2, x7x0 with 3 and color x4x5, x0x1, x4x0 in this order. This gives us a good partial coloring of
G and completes this subcase.
Subcase 1.2. |Aσ (x1x2) ∪ Aσ (x2x3)| ≥ 2 and |Aσ (x5x6) ∪ Aσ (x6x7)| = 1.

Suppose Aσ (x5x6) = Aσ (x6x7) = {β}. Now 2 ∉ Uφ(y6) ∪ Uφ(y7), as otherwise |Aσ (x6x7)| ≥ 2,
a contradiction. Thus, 2 ∈ Aφ(x6x7), and by symmetry, 1 ∈ Aφ(x5x6). Now, we can alter σ to
another good partial coloring by uncoloring x0x1 and then coloring x5x6 with β and x6x7 with 2. Call
this new partial coloring ψ . Note that |Aψ (x0x1)| ≥ 2 and |Aψ (xixi+1)| ≥ 1 for i ∈ {1, 2}. Since
the only change affecting the edges available on x1x2, x2x3 was the uncoloring of x0x1, we still have
|Aψ (x1x2) ∪ Aψ (x2x3)| ≥ 2.

If |Aψ (x0x1) ∪ Aψ (x1x2) ∪ Aψ (x2x3)| ≥ 3, then we can obtain a good coloring of G by SDR. So we
have |Aψ (x0x1)| = 2 and Aψ (x1x2) ∪ Aψ (x2x3) = Aψ (x0x1). In particular, Aψ (x1x2) ⊆ Aψ (x0x1).

Since |Aψ (x0x1)| = 2 and x0x1 sees x7y7 colored 4, we cannot have 4 ∈ Uψ (y1) ∪ {ψ(x2y2)}.
If 4 ∉ Υψ (y2, x2), then 4 ∈ Aψ (x1x2) \ Aψ (x0x1), a contradiction to Aψ (x1x2) ⊆ Aψ (x0x1). Thus,
4 ∈ Υψ (y2, x2), and so |Aψ (x2x3)| = 2. Furthermore, we cannot have 4 in Uψ (y3) = Uσ (y3), as
otherwise |Aψ (x2x3)| ≥ 3. Returning to φ, this implies 4 ∈ Aφ(x3x4).

Recall that 1 ∈ Aφ(x5x6). By a symmetric argument, 3 ∈ Υψ (y2, x2). Thus Υψ (y2, x2) = Υσ
(y2, x2) = {3, 4}. Now,we can alter σ by first uncoloring x4x5, then recoloring x3x4 with 4 and coloring
x5x6 with 1, x6x7 with β . By the above, this is another good partial coloring, call it τ .

Note that |Aτ (x4x5)| ≥ 1, |Aτ (x1x2)|, |Aτ (x2x3)| ≥ 2 and |Aτ (x4x0)| ≥ 4. We can then color
x4x5, x2x3, x1x2, x4x0 in this order to obtain a good coloring of G.
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This completes the subcase and so proves the case.
Case 2. (φ(x5y5), φ(x7y7)) = (1, 3).

First, notice that one can recolor x1y1 with a color other than 1, call it α, and still maintain a good
partial coloring of G. We will proceed in this case based on whether or not α is 2.
Subcase 2.1. α ≠ 2.

We can extend our good partial coloring of G by coloring x2x3, x7x0 with 1, x4x5 with 3 and x0x1
with 2. Call this new coloring σ .

Note that |Aσ (x1x2)|, |Aσ (x6x7)| ≥ 1, |Aσ (x5x6)| ≥ 2, |Aσ (x3x4)| ≥ 3 and |Aσ (x4x0)| ≥ 5. Thus, we
can color x6x7, x5x6, x1x2, x3x4, x4x0 in this order to obtain a good coloring of G.
Subcase 2.2. α = 2.

We can extend our good partial coloring of G by coloring x2x3, x7x0 with 1 and x4x5 with 3. Call this
new coloring σ .

Note that |Aσ (xixi+1)| ≥ 2 for i ∈ {1, 5, 6}, |Aσ (x3x4)|, |Aσ (x0x1)| ≥ 3 and |Aσ (x4x0)| ≥ 6.
If there exists some β ∈ Aσ (x6x7) ∩ Aσ (x1x2), we can color x1x2, x6x7 with β and then color
x5x6, x3x4, x1x0, x4x0 in this order to obtain a good partial coloring of G.

As a result, either |Aσ (x1x0)| ≥ 4 or there exists some γ ∈ (Aσ (x1x2) ∪ Aσ (x6x7)) \ Aσ (x1x0). In
either case, we color x1x2, x6x7 in this order (in particular, using γ on at least one edge in the latter
case), then color x5x6, x3x4, x1x0, x4x0 in this order to obtain a good coloring of G.

This completes the subcase, and so proves the case.
Case 3. (φ(x5y5), φ(x7y7)) = (1, 2).

As in the previous case, we can recolor x1y1 with a color α ≠ 1 so that we still maintain a good
partial coloring of G. We proceed in subcases as above.
Subcase 3.1. α = 2.

We can extend our good partial coloring of G by coloring x2x3, x7x0 with 1. Call this new coloring σ .
Note that |Aσ (xixi+1)| ≥ 2 for i ∈ {1, 5, 6}, |Aσ (xjxj+1)| ≥ 4 for j ∈ {0, 3, 4} modulo 8 and

|Aσ (x4x0)| ≥ 7. Now, either |Aσ (x1x2)| ≥ 4 or there exists β ∈ Aσ (x3x4) \ Aσ (x1x2). In either case, we
color x3x4 first (in particular, with β in the latter case), then color x5x6, x6x7, x4x5, x0x1, x1x2, x4x0 to
obtain our good coloring of G.
Subcase 3.2. α ≠ 2.

Just as with x1y1, we can recolor x3y3 with another color β ≠ 2 and still maintain a good partial
coloring of G. By the above subcase, we may assume that β ≠ 1, but it is possible that α = β . We can
extend our good partial coloring of G by coloring x1x2, x4x5 with 2 and x2x3, x7x0 with 1. Call this new
coloring σ .

Note that |Aσ (x5x6)|, |Aσ (x6x7)| ≥ 2, |Aσ (x3x4)|, |Aσ (x0x1)| ≥ 3 and |Aσ (x4x0)| ≥ 5. We can then
color x5x6, x6x7, x0x1, x3x4, x4x0 in this order to obtain a good partial coloring of G.

This completes the subcase and so proves the case.
Case 4. (φ(x5y5), φ(x7y7)) = (2, 1).

Again, we recolor x1y1 with α ≠ 1.
Subcase 4.1. α = 2.

This subcase is symmetric to Subcase 3.1.
Subcase 4.2. α ≠ 2.

We can extend our good partial coloring of G by coloring x1x2, x4x5 with 1 and x7x0 with 2. Call this
new coloring σ .

Note that |Aσ (x2x3)| ≥ 1, |Aσ (x5x6)|, |Aσ (x6x7)| ≥ 2, |Aσ (x0x1)| ≥ 3, |Aσ (x3x4)| ≥ 4 and
|Aσ (x4x0)| ≥ 6. We can color x2x3, x5x6, x6x7, x0x1, x3x4, x4x0 in this order to obtain a good partial
coloring of G. This completes the subcase and so completes the case.
Case 5. (φ(x5y5), φ(x7y7)) = (3, 1).

Observe that |Aφ(xixi+1)| ≥ 2 for i ∈ {1, 2, 5, 6}, |Aφ(xjxj+1)| ≥ 4 for j ∈ {3, 4}, |Aφ(xℓxℓ+1)| ≥ 5
for ℓ ∈ {0, 7} modulo 8 and Aφ(x4x0) = {4, 5, 6, 7, 8, 9}. We can extend φ by coloring x3x4, x7x0, x0x1
with 1, 3, 2 respectively. We can further extend this new coloring by coloring x1x2, x2x3 in this order
as |Aφ(x1x2) \ {1, 2, 3}| ≥ 1 and |Aφ(x2x3) \ {1, 2, 3}| ≥ 2. This is another good partial coloring of G,
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Fig. 5.2. Forming G′ from G.

and we will refer to it as σ in this case. Let α := σ(x2x3), and since x1x2 sees 1, 2, 3, we may assume
that σ(x1x2) = 4.

Note that |Aσ (x6x7)| ≥ 1, |Aσ (x5x6)|, |Aσ (x4x5)| ≥ 2 and |Aσ (x4x0)| ≥ 5. We have Aσ (x6x7) ⊆

Aσ (x5x6) = Aσ (x4x5) and |Aσ (x4x5)| = 2, otherwise we obtain a good coloring of G by SDR. So let
Aσ (x5x6) = Aσ (x4x5) = {β1, β2}. Note that 1, 2, 3, α ∉ {β1, β2}.

Since |Aσ (x4x5)| = 2 and x4x5 sees 2 and α, we cannot have 2, α ∈ Uσ (y5) ∪ {σ(x6y6)}. As
x5x6 must also see 2 and α, we have Υσ (y6, x6) = {2, α}. Thus, |Aσ (x6x7)| ≥ 2, and in particular,
Aσ (x6x7) = {β1, β2} as Aσ (x6x7) ⊆ Aσ (x4x5).

Now, we can return to φ and obtain a different partial coloring of G by coloring x4x5 with 1, x5x6
with β1, x6x7 with β2, x7x0 with 3 and x0x1 with 2. This partial coloring is also good, andwewill denote
it by ψ1.

Note that |Aψ1(x1x2)| ≥ 1 and |Aψ1(x2x3)|, |Aψ1(x3x4)| ≥ 2. As above, we have Aψ1(x1x2) ⊆

Aψ1(x2x3) = Aψ1(x3x4) and |Aψ1(x2x3)| = 2, otherwise we obtain a good coloring of G by SDR. As
x3x4 sees 3, β1 and |Aψ1(x3x4)| = 2, we cannot have 3, β1 ∈ Uψ1(y3) ∪ {ψ1(x2y2)}. However, as
Aψ1(x2x3) = Aψ1(x3x4), we have Υψ1(y2, x2) = {3, β1}. Note that Υφ(y2, x2) = {3, β1} as a result.

Now, if we switch β1, β2 so that x5x6 is colored with β2 and x6x7 is colored with β1, we still have a
good partial coloring of G, call it ψ2. The same argument however, shows that Υψ2(y2, x2) = {3, β2},
so that Υφ(y2, x2) = {3, β2} and β1 = β2, a contradiction. This completes the proof of the case.

As we have exhausted all cases, the lemma holds. �

Lemma 17. No 5-face in G can share an edge with a 6-face.

Proof. Suppose that a 5-face and a 6-face share an edge. By Lemmas 7 and 11, their boundaries form
a 9-cycle, u0u1 . . . u8 so that u5u0 ∈ E(G). By Lemmas 11 and 14, each ui is a 3-vertex. Additionally,
Lemmas 7–9 imply that each ui other than u5, u0 has a third neighbor vi not on the 9-cycle. By
these same lemmas, the vertices v1, v2, v3, v4, u6, u8 are distinct from each other, as are the vertices
u4, u1, v6, v7, v8.

By Lemmas 8, 9 and 16, the edges v2v3, v4v6, v8v1 do not exist. So let G′ denote the graph obtained
from G by deleting u1, u2, . . . , u0 and adding the edges v2v3, v4v6, v8v1 (see Fig. 5.2). Observe that
G′ is a subcubic, planar multigraph, and so by the minimality of G, G′ has a good coloring. Ignoring
v2v3, v4v6, v8v1, we have a good partial coloring of G that we can extend by coloring u1v1, u8v8 with
the same color that v8v1 received in G′ and u4v4, u6v6 with the same color that v4v6 received in G′. We
can further extend this good partial coloring of G by coloring u2v2, u3v3 and u7v7. Call this extended,
good partial coloring, φ, and let α denote φ(u7v7).



A.V. Kostochka et al. / European Journal of Combinatorics 51 (2016) 380–397 393

Case 1. φ(u1v1) ≠ φ(u4v4).
Without loss of generality, we may assume that φ(u1v1)=φ(u8v8)=2 and φ(u4v4)=φ(u6v6)=1.

Subcase 1.1. 1 ∈ Υφ(v1, u1) and 2 ∈ Υφ(v4, u4).
By the existence of v4v6, v8v1 in our auxiliary graph G′, we cannot have 2 ∈ Uφ(v6) or 1 ∈ Uφ(v8).

So, we can extend φ to another good partial coloring of G by coloring u5u6 with 2 and u8u0 with 1. Call
this new coloring σ .

Observe |Aσ (u2u3)| ≥ 1, |Aσ (uiui+1)| ≥ 2 for i ∈ {1, 3, 6, 7}, |Aσ (u4u5)|, |Aσ (u0u1)| ≥ 5 and
|Aσ (u5u0)| ≥ 7. Thus, if we can somehow extend σ to a good partial coloring on u1u2, u2u3, u3u4, we
can further extend this to a good coloring of G by coloring u6u7, u7u8, u4u5, u0u1, u5u0 in this order.
Thus, it suffices to color u1u2, u2u3, u3u4.

If we cannot, then we have Aσ (u1u2) = Aσ (u3u4) and |Aσ (u1u2)| = 2. As 1, 2 ∉ Aσ (u1u2), we
may assume that Aσ (u1u2) = Aσ (u3u4) = {8, 9}. Additionally, we may assume that Uσ (v4) =

{1, 2, 3}, Aσ (v3) = {4, 5, 6}with σ(u3v3) = 4 and σ(u2v2) = 7. Since Aσ (u1u2) = Aσ (u3u4), we have
5or 6 inΥσ (v2, u2). However,v2v3 is an edge in our auxiliary graphG′ so thatΥσ (v2, u2)∩Υσ (v3, u3) =

∅, a contradiction.
Subcase 1.2. 1 ∈ Υφ(v1, u1), but 2 ∉ Υ (v4, u4).

Recall thatφ colors both u2v2 and u3v3. In this case, wemay chooseφ(u3v3) so thatφ(u3v3) ≠ 2. As
a result, 2 ∈ Aφ(u4u5). As in Subcase 1.1, we can extend φ by coloring u8u0 with 1. Call this new, good
partial coloring σ . We proceed to prove this subcase by considering whether or not 2 is in Υσ (v3, u3).
Subcase 1.2.1. 2 ∉ Υσ (v3, u3).

As a result, 2 ∈ Aσ (u3u4), and we can extend σ by coloring u3u4 with 2, and then u2u3, u1u2
in this order. Call this good partial coloring ψ . Observe that |Aψ (u6u7)|, |Aψ (u7u8)| ≥ 2,
|Aψ (u4u5)|, |Aψ (u0u1)| ≥ 3, |Aψ (u5u6)| ≥ 4 and |Aψ (u5u0)| ≥ 6. If |Aψ (u4u5) ∪ Aψ (u7u8)| ≥ 5,
then we obtain a good coloring of G by SDR. Otherwise, there exists some β with which we can color
u4u5, u7u8 and then color u6u7, u0u1, u5u6, u5u0 in this order to obtain a good coloring of G.
Subcase 1.2.2. 2 ∈ Υφ(v3, u3).

Recall that 2 ∈ Aσ (u4u5). Additionally, we can recolor u1v1 with some β ≠ 2 and still maintain a
good partial coloring of G. Thus, we adjust σ by recoloring u1v1 with β , coloring u1u2, u4u5 with 2 and
then coloring u2u3, u3u4 in this order. Call this good partial coloring ψ .

Observe that |Aψ (u6u7)|, |Aψ (u7u8)| ≥ 2, |Aψ (u5u6)|, |Aψ (u0u1)| ≥ 3 and |Aψ (u5u0)| ≥ 5. We
then color u6u7, u7u8, u5u6, u0u1, u5u0 in this order to obtain a good coloring of G.

This completes the subcase, and by symmetry, it remains to consider the following subcase.
Subcase 1.3. 1, 2 ∉ Υφ(v1, u1) ∪ Υφ(v4, u4).

Just as in Subcase 1.2, wemay assume that φ(u3v3) ≠ 2, and as a result, 2 ∈ Aφ(u4u5). We proceed
to prove this final subcase based on the color of φ(u2v2).
Subcase 1.3.1. φ(u2v2) ≠ 1.

As a result, 1 ∈ Aφ(u0u1). Additionally, there exists some color in Aφ(u2u3). Thus, we can extend
φ to another good partial coloring of G by coloring u1u0 with 1, u4u5 with 2 and then coloring u2u3
with some available color. We can further extend φ by coloring u6u7 and u7u8 with some β and γ ,
respectively. Call this good partial coloring σ .

Now, we can choose β and γ such that either {α, β} ≠ Υσ (v1, u1) or {α, γ } ≠ Υσ (v4, u4). We
show the former as the latter is done by a similar argument. Since |Aφ(u6u7)|, |Aφ(u7u8)| ≥ 2, if α ∉

Υφ(v1, u1), thenwe are done, and if α ∈ Υφ(v1, u1), thenwe can choose β from Aφ(u6u7)\Υφ(v1, u1).
Now, if Υφ(v1, u1) ∩ Υφ(v4, u4) = ∅, then we can choose β and γ such that both Υφ(v1, u1) ≠

{α, β} and Υφ(v4, u4) ≠ {α, γ }. Indeed, if α ∉ Υφ(v1, u1) ∪ Υφ(v4, u4), then we are done. So either
α ∈ Υφ(v1, u1) \ Υφ(v4, u4) or α ∈ Υφ(v4, u4) \ Υφ(v1, u1). If the former holds, then we proceed as
above since we are guaranteed that {α, γ } ≠ Υφ(v4, u4), and a similar argument holds in the latter
case.

In Subcase 1.3.1, we will assume that β, γ are chosen so that {α, γ } ≠ Υφ(v4, u4). Additionally, as
σ(u2v2), σ (u2u3), σ (u3v3) ∉ {1, 2} and are distinct from each other, we may assume that σ(u3v3) =

3, σ (u2v2) = 4 and σ(u2u3) = 5.
Since Aσ (u1u2) and Aσ (u3u4) are possibly empty, we proceed by considering whether they are

empty or not.
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Subcase 1.3.1.1. Aσ (u1u2) = Aσ (u3u4) = ∅.
As u1u2, u3u4 each see all nine colors and v2v3 was an edge of G′, wemay assume thatΥσ (v1, u1) =

Υσ (v3, u3) = {6, 7} and Υσ (v2, u2) = Υ (v4, u4) = {8, 9}. Therefore, we can adjust σ by uncoloring
u0u1, u4u5 and then coloring u1u2 and u3u4 with 1 and 2, respectively. Call this good partial coloring
ψ . Since Υσ (v1, u1) ∩ Υσ (v4, u4) = ∅, we can assume that β, γ were chosen so that {α, β} ≠ {6, 7}
and {α, γ } ≠ {8, 9}.

Note that |Aψ (uiui+1)| ≥ 2 for i ∈ {0, 4, 5, 8} modulo 9 and |Aψ (u5u0)| ≥ 5. In particular,
Aψ (u4u5) ⊆ {4, 6, 7} and Aψ (u0u1) ⊆ {3, 8, 9} so that |Aψ (u4u5) ∪ Aψ (u0u1)| ≥ 4.

Now, suppose Aψ (u4u5) = Aψ (u5u6) and |Aψ (u4u5)| = 2. As u4u5 sees edges colored 8 and 9, and
Υψ (v4, u4) ∩ Υψ (v6, u6) = ∅, we have 8, 9 ∈ {α, β, γ }. However, as |Aψ (u4u5)| = 2, β ∉ {8, 9} so
that {8, 9} = Υψ (v4, u4) = {α, γ }, a contradiction. Thus, we have |Aψ (u4u5)∪ Aψ (u5u6)| ≥ 3, and by
a symmetric argument, |Aψ (u0u1) ∪ Aψ (u8u0)| ≥ 3. Thus, we obtain a good coloring of G by SDR.
Subcase 1.3.1.2. There exists δ ∈ Aσ (u1u2) and Aσ (u3u4) = ∅.

As u3u4 sees all nine colors, we may assume that Υσ (v3, u3) = {6, 7} and Υσ (v4, u4) = {8, 9}. We
can adjust σ by uncoloring u4u5 and then coloring u3u4 with 2 and u1u2 with δ. Call this good partial
coloring ψ .

Observe that |Aψ (u8u0)| ≥ 1, |Aψ (u4u5)|, |Aψ (u5u6)| ≥ 2 and |Aψ (u5u0)| ≥ 4. If |Aψ (u4u5) ∪

Aψ (u5u6)| ≥ 3, then we obtain a good coloring of G by SDR. So we have Aψ (u4u5) = Aψ (u5u6)
and |Aψ (u4u5)| = 2. However, a similar argument to that used in Subcase 1.3.1.1 implies that
{α, γ } = Υψ (v4, u4), a contradiction.
Subcase 1.3.1.3. There exists ϵ ∈ Aσ (u3u4) and Aσ (u1u2) = ∅.

Note that the choice of β and γ does not affect Aσ (u1u2) or Aσ (u3u4). Thus, we can rechoose β and
γ , if necessary, so that {α, β} ≠ Υφ(v1, u1). We then repeat a symmetric argument to the above.
Subcase 1.3.1.4. There exist δ ∈ Aσ (u1u2) and ϵ ∈ Aσ (u3u4).

Suppose first that 2 ∉ Υσ (v3, u3). We can adjust σ by uncoloring u4u5 and then coloring u3u4 with
2 and u1u2 with δ. Fromhere, the argument is identical to that in Subcase 1.3.1.2. Thus, 2 ∈ Υσ (v3, u3).
By symmetry, we also have 1 ∈ Υσ (v2, u2).

We can adjust σ by uncoloring u2u3 and then coloring u3u4, u1u2, u2u3 in this order. As each of
these edges sees 1, 2, 3 and 4, we may assume that they are colored 5, 6, 7, respectively. Call this good
partial coloring ψ . Observe that |Aψ (u5u6)|, |Aψ (u8u0)| ≥ 1 and |Aψ (u5u0)| ≥ 3.

If |Aψ (u5u6)∪ Aψ (u8u0)| ≥ 2, then we obtain a good coloring of G by SDR. So we have Aψ (u5u6) =

Aψ (u8u0) = {ζ }. Since u5u6 sees an edge colored 5, we cannot have 5 ∈ {α, β, γ }. Since Aψ (u8u0) =

Aψ (u5u6), u8u0 also sees 5, and so, 5 ∈ Υψ (v8, u8). Since v8v1 is an edge of G′, we cannot have
5 ∈ Υψ (v1, u1). Similarly, as |Aψ (u8u0)| = 1 and u8u0 sees 1, we cannot have 1 ∈ Υψ (v8, u8).

Thus, if we recolor u0u1 with 5, color u8u0 with 1, we can than color u5u6 and u5u0 in this order to
obtain a good coloring of G.

This completes the proof of Subcase 1.3.1.
Subcase 1.3.2. φ(u2v2) = 1.

We can extend φ to a good partial coloring of G, call it σ , such that u4u5 is colored with 2, and
u6u7 and u7u8 are colored with β and γ , respectively. Just as in Subcase 1.3.1, we can choose β, γ
so that {α, β} ≠ Υσ (v1, u1), and additionally require that {α, γ } ≠ Υσ (v4, u4) when Υσ (v1, u1) ∩

Υσ (v4, u4) = ∅. Also, as σ(u3v3) ≠ 2, we may assume that σ(u3v3) = 3.
Note that here, σ does not color u2u3. Thus, we proceed based on whether or not we can extend σ

to u1u2, u2u3, u3u4.
Subcase 1.3.2.1.We cannot extend σ by coloring u1u2, u2u3, u3u4.

As |Aσ (uiui+1)| ≥ 2 for i ∈ [3], wemay assume that Aσ (u1u2) = Aσ (u2u3) = Aσ (u3u4) = {4, 5}. So
without loss of generality, Υσ (v2, u2) = Υσ (v4, u4) = {8, 9} and Υσ (v1, u1) = Υσ (v3, u3) = {6, 7}.
Recall that just as in Subcase 1.3.1, Υσ (v1, u1) ∩ Υσ (v4, u4) = ∅, we may assume {α, β} ≠ {6, 7} and
{α, γ } ≠ {8, 9}.

Now, we can adjust σ by uncoloring u4u5, coloring u3u4 with 2, and then coloring u1u2, u2u3 from
{4, 5} so that u1u2 is not coloredwith β . We call this good partial coloring of G,ψ , andwemay assume
that ψ(u1u2) = 4, ψ(u2u3) = 5.
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Observe that |Aψ (uiui+1)| ≥ 2 for i ∈ {0, 4, 5, 8} modulo 9 and |Aψ (u5u0)| ≥ 4. In particular,
Aψ (u4u5) ⊆ {4, 6, 7}, Aψ (u0u1) ⊆ {3, 8, 9} and |Aψ (u4u5) ∪ Aψ (u0u1)| ≥ 4. Now, as β ≠ 4, we have
4 ∈ Aψ (u4u5), and additionally, 4 ∉ Aψ (u8u0) ∪ Aψ (u0u1).

Also, |Aψ (u8u0) ∪ Aψ (u0u1)| ≥ 3, otherwise we can apply an argument similar to that used in
Subcase 1.3.1.1 to show that {α, β} = Υψ (v1, u1), a contradiction. Thus, we can color u4u5 with 4, and
then obtain a good coloring of G by SDR from the rest.
Subcase 1.3.2.2.We can extend σ by coloring u1u2, u2u3, u3u4.

Without loss of generality, we may assume that u1u2, u2u3, u3u4 are colored with 4, 5, 6, respec-
tively, and call this good partial coloring ψ . Observe that |Aψ (u5u6)| ≥ 1, |Aψ (u8u0)|, |Aψ (u0u1)| ≥ 2
and |Aψ (u5u0)| ≥ 3. Additionally, |Aψ (u8u0) ∪ Aψ (u0u1)| ≥ 3, otherwise we can apply an argument
similar to that used in Subcase 1.3.1.1 to show that {α, β} = Υψ (v1, u1) (observe that |Aψ (u0u1)| = 2
implies that |Υψ (v1, u1) ∪ {1, 2, 4, 5, γ }| = 7).

First, β, γ ∉ {4, 6}, otherwise |Aψ (u5u0)| ≥ 4, and we obtain a good coloring of G by SDR.
Additionally, 1 ∈ Υψ (v8, u8), otherwise we can color u8u0 with 1 and then color u5u6, u0u1, u5u0

in this order to obtain a good coloring of G.
We claim 6 ∈ Υψ (v1, u1). If on the contrary, 6 ∉ Υψ (v1, u1), then as γ ≠ 6, we could color

u0u1 with 6. Then we have Aψ (u5u6) = {δ} and Aψ (u8u0) = {6, δ}, otherwise we could color
u5u6, u8u0, u5u0 in this order to obtain a good coloring ofG. However, since |Aψ (u8u0)∪Aψ (u0u1)| ≥ 3
(so that Aψ (u0u1) ≠ {6, δ}), we can color u5u6 with δ, u8u0 with 6 and then color u0u1, u5u0 in this
order to obtain a good coloring of G.

We may also assume that α = 6. Observe that 6 ∉ {β, γ }, and as v8v1 is an edge of G′, 6 ∉

Υψ (v8, u8). Thus, if α ≠ 6, we can color u8u0 with 6 and then color u5u6, u0u1, u5u0 in this order to
obtain a good coloring of G.

Now, we also have 4 ∈ Υψ (v6, u6). If not, then since 4 ∉ {β, γ }, we can color u5u6 with 4 and then
color u0u1, u8u0, u5u0 in this order to obtain a good coloring of G. As v4v6 is an edge of G′, we have
4 ∉ Υψ (v4, u4).

Lastly, we claim that 2 ∈ Υψ (v6, u6). If not, then we can recolor u4u5 with 4, color u5u6 with 2 and
then color u8u0, u0u1, u5u0 in this order to obtain a good coloring of G.

Now, we uncolor the edges u6u7, u7u8, and call this new coloring τ . Observe that |Aτ (uiui+1)| ≥ 3
for i ∈ {0, 6, 7}modulo 9, |Aτ (u8u0)| ≥ 4 and |Aτ (u5u6)|, |Aτ (u5u0)| ≥ 5. If |Aτ (u6u7)∪Aτ (u0u1)| ≥ 6,
thenwe obtain a good coloring ofG by SDR. Thus, there exists some ϵ such thatwe can color u6u7, u0u1
with ϵ and then color u7u8, u5u6, u8u0, u5u0 in this order to obtain a good coloring of G.

This completes all subcases of Case 1.
Case 2. φ(u1v1) = φ(u4v4).

Without loss of generality, we may assume that φ(uivi) = 1 for i ∈ {1, 4, 6, 8}, φ(u2v2) = 2 and
φ(u3v3) = 3.
Subcase 2.1.We can extend φ by coloring u1u2, u2u3, u3u4.

Let us extend φ by coloring u1u2, u2u3, u3u4, and then uncolor u7v7. Call this new good partial
coloring σ . Without loss of generality, we may assume that σ(u1u2) = 4, σ (u2u3) = 5, σ (u3u4) = 6.
Subcase 2.1.1. Either 6 ∉ Υσ (v1, u1) or 4 ∉ Υσ (v4, u4).

By symmetry, we may assume that 4 ∉ Υσ (v4, u4). As a result, we can extend σ by coloring u4u5
with 4. Call this good partial coloring ψ . Note that |Aψ (u7v7)| ≥ 2, |Aψ (u6u7)|, |Aψ (u0u1)| ≥ 3,
|Aψ (u5u6)|, |Aψ (u7u8)| ≥ 4, |Aψ (u0u1)| ≥ 5 and |Aψ (u5u0)| ≥ 6.

First, we show that |Aψ (u7v7) ∪ Aψ (u0u1)| ≥ 5. If not, then we can color u7v7, u0u1 with some
β and then color u6u7, u5u6, u7u8, u8u0, u5u0 in this order to obtain a good coloring of G. In a similar
manner, we show that |Aψ (u6u7)∪Aψ (u0u1)| ≥ 6 by otherwise coloring u6u7, u0u1 with some γ , and
then coloring u7v7, u7u8, u5u6, u8u0, u5u0 in this order to obtain our good coloring of G.

Now, if |Aψ (u7v7) ∪ Aψ (u5u0)| ≥ 7, then we can obtain a good coloring of G by SDR. Otherwise,
we can color u7v7, u5u0 with some δ, and then obtain a good coloring of G by SDR from the remaining
edges using the above.
Subcase 2.1.2. 6 ∈ Υσ (u1v1) and 4 ∈ Υσ (u4v4).

We first note that there exists β ∈ Aσ (u7v7) \ {4} and that 4 ∈ Aσ (u5u6). Thus, we can obtain
another good partial coloring of G by coloring u5u6 with 4 and u7v7 with β . Call this new coloring ψ .
Observe |Aψ (u6u7)|, |Aψ (u7u8)| ≥ 2, |Aψ (u4u5)|, |Aψ (u0u1)| ≥ 3, |Aψ (u8u0)| ≥ 4 and |Aψ (u5u0)| ≥ 6.
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First, if |Aψ (u6u7) ∪ Aψ (u0u1)| ≥ 5, then we obtain a good coloring of G by SDR. Thus, there
exists some γ ∈ Aψ (u6u7) ∩ Aψ (u0u1) so that we can color u6u7, u0u1 with γ and then color
u7u8, u8u0, u4u5, u5u0 in this order to obtain a good coloring of G.
Subcase 2.2.We cannot extend φ by coloring u1u2, u2u3, u3u4.

As |Aφ(uiui+1)| ≥ 2 for i ∈ {1, 2, 3}, wemay assume that Aφ(uiui+1) = {8, 9} for i ∈ {1, 2, 3}. Thus,
without loss of generality, Υφ(v2, u2) = Υφ(v4, u4) = {4, 5} and Υφ(v1, u1) = Υφ(v3, u3) = {6, 7}.
We can recolor u4v4 with some β ≠ 1 and still maintain a good partial coloring of G.

Thus, we can obtain another good partial coloring of G by first recoloring u4v4 with β , color
u3u4 with 1 and then color u2u3, u1u2 in this order. As in Subcase 2.1, we also uncolor u7v7, and
call this new coloring σ . Note that {σ(u1u2), σ (u2u3)} = {8, 9}, and so without loss of generality,
σ(u1u2) = 8, σ (u2u3) = 9.
Subcase 2.2.1. β ≠ 8.

As 8 ∈ Aφ(u3u4), we cannot have 8 ∈ Uσ (y4). Thus, we can extend σ by coloring u4u5 with 8 and
then proceed in the same way as in Subcase 2.1.1 replacing 8 with 4.
Subcase 2.2.2. β = 8.

By the existence of v8v1 in our auxiliary graph G, 6 ∈ Υσ (v1, u1) implies that 6 ∉ Υσ (v1, u1) so
that 6 ∈ Aσ (u8u0). Note that there exists some γ ∈ Aσ (u7v7) \ {6}.

We can then extend σ to another good coloring of G by coloring u7v7 with γ and u8u0 with 6.
Call this ψ . Observe that Aψ (u4u5) = {2, 7}, Aψ (u0u1) = {3, 4, 5}, |Aψ (u6u7)|, |Aψ (u7u8)| ≥ 2,
|Aψ (u5u6)| ≥ 3 and |Aψ (u5u0)| ≥ 6. As Aψ (u4u5) ∩ Aψ (u0u1) = ∅, coloring u4u5 does not affect
coloring u0u1.

Now, if |Aψ (u4u5) ∪ Aψ (u7u8)| ≥ 4, we can color u4u5, u5u6, u6u7, u7u8 by SDR and then color
u0u1, u5u0 in this order to obtain a good coloring of G. Thus, there exists some δ so that we can color
u4u5, u7u8 with δ and then color u6u7, u5u6, u0u1, u5u0 in this order to obtain a good coloring of G.

This completes the proof of the final subcase of Case 2, and so proves the lemma. �

6. Proof of Theorem 1

We are now ready to prove Theorem 1 via discharging using the lemmas from Sections 3–5,

Proof. By Euler’s formula,
v∈V (G)

(2d(v)− 6)+


f∈F(G)

(d(f )− 6) = −12.

Thus, if we assign to each vertex v the initial charge 2d(v)− 6 and to each face f the initial charge
d(f )− 6, then the total charge will be −12. We design appropriate discharging rules and redistribute
charges among faces and vertices so that the final charge of every face and every vertex is nonnegative,
a contradiction.
Discharging Rules:

(R1) Every 2-vertex receives 1 from each incident face.
(R2) Every 5-face receives 1

5 from each adjacent face.

By Rule (R1), at the end of discharging, each 2-vertex will have charge −2+ 1+ 1 = 0. The charge
of each 3-vertex does not change and remains 0.

By Rule (R2) and Lemmas 11 and 16, the final charge of every 5-face is 5 − 6 + 5 ×
1
5 = 0.

By Lemmas 14 and 17, each 6-face gives no charge. Thus, as it starts with zero charge and does not
receive any charge, the final charge is zero.

By Lemmas 15 and 16, each 7-face contains only 3-vertices and is adjacent to atmost three 5-faces.
Thus, the final charge is at least 7 − 6 − 3 ×

1
5 =

2
5 .

By Lemmas 16 and 13, each k-face, k ≥ 8, is adjacent to at most ⌊
k
2⌋ 5-faces and contains at most

⌊
k
5⌋ 2-vertices on its boundary. Thus, the final charge is at least k − 6 −

 k
5


× 1 −

 k
2


×

1
5 , which is

positive for k ≥ 8.
This completes the proof. �
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Conclusion. There aremany unresolved questions regarding the strong chromatic index of graphs.We
present a few that pertain specifically to subcubic planar graphs. As mentioned, Theorem 1 is shown
to be best possible by the complement of C6. To the authors’ knowledge, this is the only such example.
Perhaps the result can be improved for graphs outside of a potentially finite family. Additionally, a list-
coloring result is unknown and does not extend naturally from the proofs given in this paper. Thus, a
list-coloring result similar to that of Theorem 1 would be of interest.

Acknowledgments

The authors thank the referees for their comments and careful reading of this paper. First author’s
research is supported in part byNSF grantDMS-1266016 and by grants 12-01-00631 and 12-01-00448
of the Russian Foundation for Basic Research. Second author’s research is supported in part by the
Natural Science Foundation of China (11171129) and by Doctoral Fund of Ministry of Education of
China (20130144110001). Third author’s research is supported in part byDevelopment and Promotion
of Science and Technology Talents Project (DPST). Fourth author’s research is supported in part by the
NSF grants DMS-1266016 ‘‘AGEP-GRS’’ andDMS08-38434 ‘‘EMSW21 -MCTP: Research Experience for
Graduate Students.’’ Fifth author’s research is supported by the National Natural Science Foundation
of China (11101125) and partially supported by the Fundamental Research Funds for Universities in
Henan. The author would like to thank Prof. Kostochka for his hospitality. Sixth author’s research is
supported in part by NSA grant H98230-12-1-0226.

References

[1] L.D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math. 108 (1992) 231–252.
[2] O.V. Borodin, A.O. Ivanova, Precise upper bound for the strong edge chromatic number of sparse planar graphs, Discuss.

Math. Graph Theory 33 (4) (2013) 759–770.
[3] H. Bruhn, F. Joos, A stronger bound for the strong chromatic index, arXiv:1504.02583 [math.CO].
[4] P. Erdős, Problems and results in combinatorial analysis and graph theory, Discrete Math. 72 (1988) 81–92.
[5] P. Erdős, J. Nešetřil, [Problem], in: G. Halász, V.T. Sós (Eds.), Irregularities of Partitions, Springer, Berlin, 1989, pp. 161–165.
[6] R.J. Faudree, R.H. Schelp, A. Gyárfás, Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205–211.
[7] J.L. Fouquet, J. Jolivet, Strong edge-coloring of graphs and applications to multi-k-gons, Ars Combin. 16A (1983) 141–150.
[8] J.L. Fouquet, J. Jolivet, Strong edge-coloring of cubic planar graphs, in: Progress in Graph Theory (Waterloo 1982), 1984,

pp. 247–264.
[9] P. Hall, On representatives of subsetes, J. Lond. Math. Soc. 10 (1935) 26–30.

[10] M.A. Henning, D. Rautenbach, Inducedmatchings in subcubic graphs without short cycles, Discrete Math. 315–316 (2014)
165–172.

[11] H. Hocquard, M.Montassier, A. Raspaud, P. Valicov, On strong edge-colouring of subcubic graphs, Discrete Appl. Math. 161
(2013) 2467–2479.

[12] H. Hocquard, P. Valicov, Strong edge colouring of subcubic graphs, Discrete Appl. Math. 159 (2011) 1650–1657.
[13] P. Horák, H. Qing, W.T. Trotter, Induced matchings in cubic graphs, J. Graph Theory 17 (1993) 151–160.
[14] D. Hudák, B. Lužar, R. Soták, R. Škrekovski, Strong edge-coloring of planar graphs, Discrete Math. 324 (2014) 41–49.
[15] F. Joos, D. Rautenbach, T. Sasse, Induced matchings in subcubic graphs, SIAM J. Discrete Math. 28 (1) (2014) 468–473.
[16] R.J. Kang, M. Mnich, T. Müller, Induced matchings in subcubic planar graphs, SIAM J. Discrete Math. 26 (3) (2012)

1383–1411.
[17] M. Molloy, B. Reed, A bound on the strong chromatic index of a graph, J. Combin. Theory Ser. B 69 (1997) 103–109.
[18] K. Nakprasit, K. Nakprasit, The strong chromatic index of graphs and subdivisions, Discrete Math. 317 (2014) 75–78.
[19] T. Nandagopal, T. Kim, X. Gao, V. Bharghavan, AchievingMAC layer fairness in wireless packet networks, in: Proc. 6th ACM

Conf. on Mobile Computing and Networking, 2000, pp. 87–98.
[20] S. Ramanathan, A unified framework and algorithm for (T/F/C) DMA channel assignment in wireless networks, in: Proc.

IEEE INFOCOM’97, 1997, pp. 900–907.
[21] A. Steger, M.L. Yu, On induced matchings, Discrete Math. 120 (1993) 291–295.
[22] J. Wu, W. Lin, The strong chromatic index of a class of graphs, Discrete Math. 308 (2008) 6254–6261.

http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref1
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref2
http://arxiv.org/1504.02583
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref4
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref5
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref6
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref7
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref8
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref9
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref10
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref11
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref12
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref13
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref14
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref15
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref16
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref17
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref18
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref21
http://refhub.elsevier.com/S0195-6698(15)00168-7/sbref22

	Strong chromatic index of subcubic planar multigraphs
	Recommended Citation

	Strong chromatic index of subcubic planar multigraphs
	Introduction
	Preliminaries and notation
	Basic properties
	Faces without 2-vertices
	Adjacent faces
	Proof of Theorem 1
	Acknowledgments
	References


