27,013 research outputs found

    WR 7a: a V Sagittae or a qWR star?

    Full text link
    The star WR 7a, also known as SPH 2, has a spectrum that resembles that of V Sagittae stars although no O VI emission has been reported. The Temporal Variance Spectrum - TVS - analysis of our data shows weak but strongly variable emission of O VI lines which is below the noise level in the intensity spectrum. Contrary to what is seen in V Sagittae stars, optical photometric monitoring shows very little, if any, flickering. We found evidence of periodic variability. The most likely photometric period is P(phot) = 0.227(14) d, while radial velocities suggest a period of P(spec) = 0.204(13) d. One-day aliases of these periods can not be ruled out. We call attention to similarities with HD 45166 and DI Cru (= WR 46), where multiple periods are present. They may be associated to the binary motion or to non-radial oscillations. In contrast to a previous conclusion by Pereira et al. (1998), we show that WR 7a contains hydrogen. The spectrum of the primary star seems to be detectable as the N V 4604A absorption line is visible. If so, it means that the wind is optically thin in the continuum and that it is likely to be a helium main sequence star. Given the similarity to HD 45166, we suggests that WR 7a may be a qWR - quasi Wolf-Rayet - star. Its classification is WN4h/CE in the Smith et al. (1996) three dimensional classification system.Comment: 6 pages, 6 figures, preprint of an article accepted for publication in Monthly Notices of The Royal Astronomical Societ

    Transient jets in V617 Sagittarii

    Full text link
    Some of the luminous Compact Binary Supersoft X-Ray sources (CBSS) have shown indications of jets, also called satellites due to their appearance in the spectra. In V Sagittae (V Sge) stars, the galactic counterparts of the CBSS, such features have been reported only for WX Cen. If V Sge stars are indeed the analogs of CBSS, one may expect transient jet emission in other objects of this class. Spectroscopic observations of the V Sge star V617 Sgr have been made, both at high photometric state and at decline. We show that V617 Sgr presents Halpha satellites at high photometric state with velocities of +/-780 km/s. This feature confirms, once more, the CBSS nature of the V Sge stars, however the details of the spectral characteristics also suggest that the two groups of stars display some intrinsic spectroscopic differences, which are likely to be due to a selection effect related to chemical abundance.Comment: Four pages, accepted to be published as a Letter in A&

    Quark Matter in Neutron Stars: An apercu

    Get PDF
    The existence of deconfined quark matter in the superdense interior of neutron stars is a key question that has drawn considerable attention over the past few decades. Quark matter can comprise an arbitrary fraction of the star, from 0 for a pure neutron star to 1 for a pure quark star, depending on the equation of state of matter at high density. From an astrophysical viewpoint, these two extreme cases are generally expected to manifest different observational signatures. An intermediate fraction implies a hybrid star, where the interior consists of mixed or homogeneous phases of quark and nuclear matter, depending on surface and Coulomb energy costs, as well as other finite size and screening effects. In this brief review article, we discuss what we can deduce about quark matter in neutron stars in light of recent exciting developments in neutron star observations. We state the theoretical ideas underlying the equation of state of dense quark matter, including color superconducting quark matter. We also highlight recent advances stemming from re-examination of an old paradigm for the surface structure of quark stars and discuss possible evolutionary scenarios from neutron stars to quark stars, with emphasis on astrophysical observations.Comment: 15 pages, 1 figure. Invited review for Modern Physics Letters

    Wind-wind collision in the eta Carinae binary system - III. The HeII 4686 line profile

    Get PDF
    We modeled the HeII 4686 line profiles observed in the eta Carinae binary system close to the 2003.5 spectroscopic event, assuming that they were formed in the shocked gas that flows at both sides of the contact surface formed by wind-wind collision. We used a constant flow velocity and added turbulence in the form of a gaussian velocity distribution. We allowed emission from both the primary and secondary shocks but introduced infinite opacity at the contact surface, implying that only the side of the contact cone visible to the observer contributed to the line profile. Using the orbital parameters of the binary system derived from the 7 mm light curve during the last spectroscopic event (Paper II) we were able to reproduce the line profiles obtained with the HST at different epochs, as well as the line mean velocities obtained with ground based telescopes. A very important feature of our model is that the line profile depends on the inclination of the orbital plane; we found that to explain the latitude dependent mean velocity of the line, scattered into the line of sight by the Homunculus, the orbit inclination should be close to 90 degrees, meaning that it does not lie in the Homunculus equatorial plane, as usually assumed. This inclination, together with the relative position of the stars during the spectroscopic events, allowed us to explain most of the observational features, like the variation of the Purple Haze with the orbital phase, and to conciliate the X-ray absorption with the postulated shell effect used to explain the optical and UV light curves.Comment: to appear in the MNRA
    • …
    corecore