10,456 research outputs found

    UNCERTAINTY AND IRREVERSIBILITY IN GROUNDWATER RESOURCE MANAGEMENT

    Get PDF
    Optimal exploitation of renewable groundwater resources when extraction affects the probability of occurrence of an irreversible event is studied. The term irreversible signifies that the event occurrence renders the resource obsolete. It is found that uncertainty concerning the event occurrence has a profound effect. Under certainty - when the stock level below which the event occurs is known in advance - the optimal state process converges to a unique equilibrium state. Under uncertainty, when the event occurrence level is unknown, we identify equilibrium intervals and show that optimal processes initiated elsewhere converge to a boundary of one of these intervals. Inside an equilibrium interval, the expected loss due to the event occurrence is so high that it does not pay to extract in excess of recharge, even though under certainty doing so would be beneficial. These properties are illuminated by means of an example for which analytic solutions are derived.Resource /Energy Economics and Policy,

    A Map of Update Constraints in Inductive Inference

    Full text link
    We investigate how different learning restrictions reduce learning power and how the different restrictions relate to one another. We give a complete map for nine different restrictions both for the cases of complete information learning and set-driven learning. This completes the picture for these well-studied \emph{delayable} learning restrictions. A further insight is gained by different characterizations of \emph{conservative} learning in terms of variants of \emph{cautious} learning. Our analyses greatly benefit from general theorems we give, for example showing that learners with exclusively delayable restrictions can always be assumed total.Comment: fixed a mistake in Theorem 21, result is the sam

    Approximating Likelihood Ratios with Calibrated Discriminative Classifiers

    Full text link
    In many fields of science, generalized likelihood ratio tests are established tools for statistical inference. At the same time, it has become increasingly common that a simulator (or generative model) is used to describe complex processes that tie parameters θ\theta of an underlying theory and measurement apparatus to high-dimensional observations xRp\mathbf{x}\in \mathbb{R}^p. However, simulator often do not provide a way to evaluate the likelihood function for a given observation x\mathbf{x}, which motivates a new class of likelihood-free inference algorithms. In this paper, we show that likelihood ratios are invariant under a specific class of dimensionality reduction maps RpR\mathbb{R}^p \mapsto \mathbb{R}. As a direct consequence, we show that discriminative classifiers can be used to approximate the generalized likelihood ratio statistic when only a generative model for the data is available. This leads to a new machine learning-based approach to likelihood-free inference that is complementary to Approximate Bayesian Computation, and which does not require a prior on the model parameters. Experimental results on artificial problems with known exact likelihoods illustrate the potential of the proposed method.Comment: 35 pages, 5 figure

    Formal Verification of Input-Output Mappings of Tree Ensembles

    Full text link
    Recent advances in machine learning and artificial intelligence are now being considered in safety-critical autonomous systems where software defects may cause severe harm to humans and the environment. Design organizations in these domains are currently unable to provide convincing arguments that their systems are safe to operate when machine learning algorithms are used to implement their software. In this paper, we present an efficient method to extract equivalence classes from decision trees and tree ensembles, and to formally verify that their input-output mappings comply with requirements. The idea is that, given that safety requirements can be traced to desirable properties on system input-output patterns, we can use positive verification outcomes in safety arguments. This paper presents the implementation of the method in the tool VoTE (Verifier of Tree Ensembles), and evaluates its scalability on two case studies presented in current literature. We demonstrate that our method is practical for tree ensembles trained on low-dimensional data with up to 25 decision trees and tree depths of up to 20. Our work also studies the limitations of the method with high-dimensional data and preliminarily investigates the trade-off between large number of trees and time taken for verification

    On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling

    Get PDF
    A multi-fidelity surrogate model for highly nonlinear multiscale problems is proposed. It is based on the introduction of two different surrogate models and an adaptive on-the-fly switching. The two concurrent surrogates are built incrementally starting from a moderate set of evaluations of the full order model. Therefore, a reduced order model (ROM) is generated. Using a hybrid ROM-preconditioned FE solver, additional effective stress-strain data is simulated while the number of samples is kept to a moderate level by using a dedicated and physics-guided sampling technique. Machine learning (ML) is subsequently used to build the second surrogate by means of artificial neural networks (ANN). Different ANN architectures are explored and the features used as inputs of the ANN are fine tuned in order to improve the overall quality of the ML model. Additional ANN surrogates for the stress errors are generated. Therefore, conservative design guidelines for error surrogates are presented by adapting the loss functions of the ANN training in pure regression or pure classification settings. The error surrogates can be used as quality indicators in order to adaptively select the appropriate -- i.e. efficient yet accurate -- surrogate. Two strategies for the on-the-fly switching are investigated and a practicable and robust algorithm is proposed that eliminates relevant technical difficulties attributed to model switching. The provided algorithms and ANN design guidelines can easily be adopted for different problem settings and, thereby, they enable generalization of the used machine learning techniques for a wide range of applications. The resulting hybrid surrogate is employed in challenging multilevel FE simulations for a three-phase composite with pseudo-plastic micro-constituents. Numerical examples highlight the performance of the proposed approach

    On the Complexity of Case-Based Planning

    Full text link
    We analyze the computational complexity of problems related to case-based planning: planning when a plan for a similar instance is known, and planning from a library of plans. We prove that planning from a single case has the same complexity than generative planning (i.e., planning "from scratch"); using an extended definition of cases, complexity is reduced if the domain stored in the case is similar to the one to search plans for. Planning from a library of cases is shown to have the same complexity. In both cases, the complexity of planning remains, in the worst case, PSPACE-complete
    corecore