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Abstract:

Optimal exploitation of renewable groundwater resources when extraction

affects the probability of occurrence of an irreversible event is

studied. The term irreversible signifies that the event occurrence

renders the resource obsolete. It is found that uncertainty concerning

the event occurrence has a profound effect. Under certainty-when the

stock level below which the event occurs is known in advance-the

optimal state process converges to a unique equilibrium state. Under

uncertainty, when the event occurrence level is unknown, we identify

equilibrium intervals and show that optimal processes initiated

elsewhere converge to a boundary of one of these intervals. Inside an

equilibrium interval, the expected loss due to the event occurrence is

so high that it does not pay to extract in excess of recharge, even

though under certainty doing so would be beneficial. These properties

are illuminated by means of an example for which analytic solutions are

derived.

Department of Agricultural and Applied Economics, University of Minnesota,
1994 Buford Avenue, St. Paul, MN 55108

2Center for Energy and Environmental Physics, The Jacob Blaustein Institute
for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus,
84990, Israel



1
Uncertainty and Irreversibility in Groundwater Resource Management

Yacov Tsur and Amos Zemel

1. Introduction

This study is concerned with the allocation of groundwater resources under

uncertainty with regard to the occurrence of an influential event. Such an event

may correspond, for example, to the intrusion of salt water when the groundwater

table declines below some unknown threshold level. The event is irreversible in

that the resource cannot be used after its occurrence. It is found that

uncertainty concerning the event occurrence level has a profound effect on optimal

exploitation policies.

While the focus here is on groundwater resources, the analysis extends to

other renewable resource situations and thus should have wide applications.

Possible extensions are outlined in the concluding section.

The paper is built on a few strands of literature. The first is concerned

with the exploitation of a natural resource deposit of unknown size, investigated

by Kemp (1976, 1977), Cropper (1976, Model II), Loury (1978), and Gilbert (1978).

These authors considered the case in which the uncertain event corresponds to

depletion. Extensions to situations involving more desirable events, such as the

development of a substitute product or discoveries of new deposits, were offered

by Kamien and Schwartz (1978), Dasgupta and Stiglitz (1981), and Deshmukh and

Pliska (1980, 1985), among others. This literature deals with non-renewable

resources and assumes that extraction costs are constant over time. The present

work incorporates recharge processes and allows the extraction costs to vary with

the resource state.

In her "Catastrophic Pollution" model, Cropper (1976, Model I) was the first

to incorporate (the equivalent of) a recharge process (namely, a pollution

reduction process) within models involving event uncertainty. The uncertainty in
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this model is partly exogenous, so the event may occur regardless of the pollution

stock increasing, decreasing or remaining constant. In our model, the event

occurs when the groundwater stock reaches some unknown critical level. This can

happen only when the stock decreases below the lowest level ever encountered in

the recorded history. This property has important implications for the

formulation of the exploitation model and the associated optimal extraction

policies.

Another precursor of this work is the literature on renewable resource

exploitation with state-dependent extraction costs (Burt, 1964, Dasgupta and Heal,

1979, Feinerman, 1988, Tsur and Graham-Tomasi, 1991, and many others). A parallel

line of research studies the conditions under which it is profitable to harvest a

stock of renewable resource to extinction (Clark, 1973, Lewis and Schmalensee,

1977, Cropper, 1988). The extinction event in these works, however, involves no

uncertainty, as the stock level at which extinction is bound to occur is known in

advance. By incorporating future event uncertainty, the present effort provides a

unified framework of analysis into which the variants mentioned above can be

accommodated.

In the absence of recharge, the resource stock cannot increase. This implies

(as observed by Long, 1975, in a related context) that information obtained over

time cannot affect decisions prior to the event occurrence-a property which

greatly simplifies the formulation of the decision problem. With positive

recharge, however, the state process may not be monotonic, hence learning can play

a role and the decision problem is more involved. This difficulty is removed when

we show that the optimal stock evolves monotonically in time.

With positive recharge a delicate issue is raised of whether to extract in

excess of the recharge rate, thereby advancing the (probability of the) event
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occurrence, or to extract at or below the recharge rate, thus avoiding the event

occurrence risk. We specify the conditions under which it is optimal to extract

above, at or below the recharge rate, thereby characterizing the dynamic behavior

as well as the equilibrium states. Under certainty, when the event occurrence

state is known in advance, the optimal process converges to a unique equilibrium

state from any initial state. In contrast, under uncertainty we identify

equilibrium intervals and characterize approach paths to them. In so doing, we

give precise meaning to the intuitive notion that exploitation policies under

uncertainty are more conservative.

The analysis is carried out via a relation established between the equilibrium

states and the roots of simple functions of the state variable that depend on the

structural relations and parameters (but require no knowledge of the optimal

policy).

2. Formulation of the decision problem

The state St represents the aquifer stock, R(S t ) denotes the recharge rate,

i.e., the net water inflow excluding extractions, and gt is the extraction rate at

time t. The time evolution of the stock process is given by

dSt/dt - St = R(St) - gt. (2.1)

The aquifer capacity limit is S.

The cost of extracting g at the state S is C(S)g, and the benefit of consuming

g is Y(g). The net benefit of consuming g at the state S is Y(g)-C(S)g. Note

that by letting the unit extraction cost vary with the state level, we do not

require that the instantaneous net benefit function Y(g)-C(S)g is concave in

(g,S). This complicates the analysis but allows extending the results to general

net benefit structures.

The following assumptions are made: (i) R(S) is decreasing and concave, and
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R(S) = 0; (ii) C(S) is non-increasing and convex; and (iii) Y(g) is increasing and

strictly concave, and Y(O) = 0. The assumptions with regard to Y and C are

common. The assumed properties of R(S) reflect the common observation that as the

aquifer's stock declines, recharge increases at a diminishing rate.

An extraction plan consists of the extraction process gt and the associated

state process St , t 2 0. The decision maker, however, may not be able to carry

out the original plan, as St cannot decrease below some unknown threshold level X:

as soon as St falls below the level X, the event occurs following which extraction

ceases. Our information concerning the location of X is described in terms of a

probability distribution function F(S) = Pr(X<S) and the associated density

f(S) - dF(S)/dS. A plan is feasible if, for all t, gt is piecewise continuous and

nonnegative, and St $ S, where S 2 0 is the lower support of the distribution of

X.

Let T represent the event occurrence time. The distribution on X induces a

distribution on T. Given that the event has not occurred at t = 0, the expected

benefit generated by an extraction plan is

T

ET{[Y(gt)-C(St)gt]e-Ptdt I T>o0,

0

where ET represents expectation with respect to the distribution of T and p is the

time rate of discount. The aquifer allocation problem entails finding a feasible

plan corresponding to

T

V(So) = Max ETf[Y(gt)-C(St)g t ]e- Ptdt I T> 0 (2.2)
{gt ) o

subject to St = R(St)-gt, gt 2 0, St 2 S, and So given. We assume that an optimal

plan exists.

As the process evolves in time, our assessment of the probabilities of X and T
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may be modified. At each point of time, the distribution of X, given that the

event has not yet occurred, depends on the history of the S-trajectory up to time

t. In particular, it depends on St = Min {ST), as it is known that X must lie
TE[O,tl

below this value. This complicates the allocation problem, since the expected

benefit in (2.2) involves St which depends on all history to time t. The

situation is greatly simplified if the state trajectory St evolves monotonically

in time, since then St = So or St = St for non-decreasing or non-increasing

trajectories, respectively. It turns out that the optimal S-trajectory (at least

one) is indeed monotonic, as established in

Proposition 2.1 (Monotonicity): At least one of the optimal state trajectories

corresponding to problem (2.2) evolves monotonically in time.

(For a proof, see Appendix A.) When problem (2.2) admits multiple optima, it is

possible that some are non-monotonic. Nonetheless, at least one of the optimal

plans must be monotonic. Consequently, we restrict attention to monotonic state

trajectories.

For non-decreasing trajectories, it is known with certainty that the event

will never occur and the objective function in (2.2) reduces to

00

J[Y(gt)-C(St ) g t ] e - Pt d t . (2.3)
0

For non-increasing state processes, the distribution of T is given by

I-FT(t) - Pr{T>tlT>O} = Pr(X<StlX<So ) = F(St)/F(So) (2.4)

with the density

fT(t) - dFT(t)/dt = f(St)[gt-R(St)]/F(So).

The hazard rate associated with T is
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fT(t)
-= (St)[gt-R(St)],

l-FT(t)

where

f(St)ist) - = . (2.5)

co

Express the expectation in (2.2) as ET{I[Y(gt)-C(St)g t I(T>t)e Ptdt T >O ,

0

with I( ) denoting the indicator function that assumes the values one or zero when

its argument is true or false, respectively. Since ET{I(T>t) IT>O} = l-FT(t) =

F(St)/F(So), the objective function for non-increasing trajectories becomes

0

|lY~gtg-C(S Igje- P^ dt. (2.6)

The allocation problem for which (2.3) is the objective is denoted the

certainty problem, while that for which (2.6) is the objective is denoted the

auxiliary problem. It is verified in Appendix A that

Remark 2.1: Proposition 2.1 holds for the optimal state trajectories corresponding

to the certainty and auxiliary problems.

In the following two sections we characterize the dynamic behavior and

equilibrium states of the optimal trajectories corresponding to the certainty and

auxiliary problems. Studying the dynamic and equilibrium properties of the

optimal state trajectory of the aquifer problem (2.2), we show, in Section 5, that

this trajectory coincides with that of the certainty problem when it increases,

and that it coincides with the optimal trajectory of the auxiliary problem when it

decreases. The complete characterization of the optimal process requires,

therefore, to determine the conditions under which the process increases,

decreases or remains constant; this task is undertaken in Section 5.
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3. Certainty

In this case, X is known in advance and the allocation problem is to find the

state process corresponding to

0D

VC(So;X) = Max Y(gt)-C(St)gt]etdt (3.1)
{gt} o

subject to: St = R(St)-gt, gt > 0, and St t X, where X < S is a given constant and

So E (X,S) is the initial state. The current-value Hamiltonian and Lagrangian

functions corresponding to (3.1) are

H(St,gt'ptt) = Y(gt) - C(St)gt + pt[R(St)-g t ]

and

2(St'gt'pt'at'yt't) = H(Stgt,pt,t) + ' tgt + t[St-X]

where Pt is the current value costate variable, and y, and a t are the current

value Lagrange multipliers associated with the constraints gt 2 0 and St 2 X.

Necessary conditions for an optimal process include (Arrow and Kurz, 1970, pp. 48-

49): a8 /ag = 0, giving

Y'(gt) - C(St) = Pt - Tt, (3.2)

Pt-PPt = -8at/8St, yielding

='"' t (St)gt- crt (3.3)Pt = Pt[p-R'(S)] + C'(S)g - (3.3)

and the complimentary slackness conditions

t 2 0, ct> O, 0 tgt = 0, atf[S-X] = 0. (3.4)

(The superscript "c" indicates optimal quantities.)

From (3.2)-(3.3), we obtain

Pt= [Y(g)-C(Sc)+'t][p-R (St)] + gC(Sc) - t. (3.5)

Using the time evolution of the state variable

S = R(S) - g (3.6)

to eliminate gt from (3.5), we find(35,wefn
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Pt = {-C'(S)-[(p-R'(St)]Y"(g)}St + L(S[) + t,[p-R'(SN)] - at, (3.7)

where g is a value between gt and R(St),

L(S) - [p-R'(S)][Y'(R(S)) - C(S) - J(S)] (3.8)

and

(S) -C'(S)R(S) (39)J(S) p-R'(S) 

An "equilibrium (or steady) state" refers to the S member of the (S,p) pair

for which p = S = O. It follows from (3.7) that an equilibrium state S must

satisfy

L(S) + 7[p-R'(§)] - a = 0. (3.10)

This result could have been attained more directly by substituting R(S t ) for gt in

(3.5) and equating Pt to zero. The above derivation, however, conveys additional

information on the process evolution, since (3.7) holds also when the system is

away from equilibrium, and is therefore presented.

If the equilibrium state falls in (X,S), then (3.4) requires that a = y = 0,

hence L(S) = 0. For an equilibrium to occur at S = X, where a 2 0 and 7 = 0, it

must be, according to (3.10), that L(X) = a 2 0. If an equilibrium occurs at a

full aquifer S, i.e., the aquifer does not admit profitable exploitation, then

a = 0, O > 0 and (3.10) requires that L(S) = -$[p-R'(S)] - 0; noting (3.8)-(3.9),

this case occurs when Y'(0) s C(S).

The vanishing of L(S) at an interior equilibrium can be motivated by noting,

from (3.3), that the costate (shadow price) variable p equals J(S) at this state.

Since p-R'(S) > 0, the roots of L(S) are the same as the roots of

Y'(R(S)) - C(S) - J(S). Thus, L(S) = 0 is consistent with condition (3.2) at an

interior equilibrium.

Since Y is strictly concave, R is decreasing and concave, and C is non-

increasing and convex, the difference Y'(R(S)) - C(S) - J(S) must increase with S
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and there must exist a unique state level S in [X,S], satisfying

= X if L(X) > 0I S= if L(S) < 0 (3.11)
L(§) = 0 otherwise

It is evident from (3.10) and the above discussion that any equilibrium state must

satisfy (3.11). Hence, § is the unique equilibrium state. Now, the optimal state

trajectory is monotonic (Remark 2.1) and bounded (between X and S), hence it must

converge to an equilibrium state. We have thus established:

Proposition 3.1: When X is known with certainty, S is the unique steady state to

which the optimal state process converges from any initial state.

The situation is depicted in Figure 1.

Figure 1

4. The Auxiliary Problem

In this section we assume that S < S < S. Let K e (§,S] be a given constant.

The auxiliary problem is formulated as:

V (So;S,K) = Max {[Y(gt)-C(St)gt]F() Ptdt (4.1)
(gt) 

subject to: St = R(St)-gt, St S t, S, S K, and gt a O. So E [S,K] is the initial

state.

With A(St) = log[F(St)/F(So)] and dA/dSt = f(St)/F(St) a A(St), the current

value Hamiltonian and Lagrangian functions corresponding to (4.1) are:

H(S,g,p,t) = [Y(g)-C(S)g]e A ( S ) + p[R(S)-g]

and

e(S,g,p,a,/3,y,t) = H(S,g,p,t) + a[S-§] + 3[K-S] + 'g,

where p, a and , are as defined in Section 3 and 3 is the Lagrange multiplier
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corresponding to St s K. Necessary conditions for optimum include: 8a/ag = o,

giving

Y' (g) - C(Ss) = [pt-t]le-A , (4.2)

p-pp = -a8./aS, yielding

Pt = Pt[P-R'(St)] + {gtCCt) - S )[gt)-C( gt])e - t + t (4.3)

and the complimentary slackness conditions

oct o, ,t £ 0, t 2 O0, t[St-g] = 0, =t[K-St] = O, tt = 0. (4.4)

(The superscript "a" indicates optimal quantities.)

From (4.2) and (4.3) we obtain

Pt = [Y'(g)-C(Sa)][p-R(Sta ] + gtC'(St) - A(St)[y(gt)-C(St)g]

+ r[p-R'(S )] - at + At (4.5)

Following Section 3, we use (3.6) to eliminate gt from (4.5) and find

Pt =eA(S) (AtS)[Y )-C(St)] - C'(S t ) )[p-R' (St)I t +

eA(S)L,(S) + yIp-R'(S)] - t + t. (4.6)

In (4.6), g and g are some values between gt and R(St),

LM(S) m [p-R'(S)][Y'(R(S)) - C(S) - J(S)] - M(S) - L(S) - M(S), (4.7)

L(S) and J(S) are defined in (3.8)-(3.9), and

M(S) - A(S)[Y(R(S))-C(S)R(S)]. (4.8)

Observing (4.6), one finds that at every steady state

LM(S) + r[p-R'(S)]e ( - (a-g)e = (4.9)

must hold.

Consider the roots of LM(S) in the open interval (S,K). In this interval

a = 3 = 0 by virtue of conditions (4.4). Below S, extractions cannot vanish along

the S = 0 curve (in the S,p phase plane), hence 7 must also vanish along this

curve. With LM(S M ) = 0, (4.6) implies that the p = 0 and S = 0 curves must

intersect at S = §M. Thus, each of these roots corresponds to an equilibrium
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state. Conversely, we see in (4.4) and (4.9) that any equilibrium state in (S,K)

must be a root of LM. We have thus established

Proposition 4.1: The equilibrium states in (S,K) corresponding to the auxiliary

problem (4.1) coincide with the roots of LM(S) in this interval.

This result is similar to Proposition 3.1 of the certainty case with LM(S)

replacing L(S). The difference between these two functions, namely M(S), measures

the expected loss due to the event occurrence, as discussed in detail in the next

section. Thus, the shift of the equilibrium states is a direct manifestation of

this expected loss.

In fact, when S < S < S and A(S) > 0, Proposition 4.1 can be extended to the

closed interval [S,S], noting that

lemma 4.1: If S < S < S and A(S) > 0, then LM(S) > 0 and LM(S) < 0.

Proof: We note first that M(S) = 0, hence (4.7) implies that L(S) = LM(S). Thus,

if LM(S) - 0, then S = S, contradicting our assumption. Next, observe that

M(S) > 0 for all S : S < S for which A(S) > 0. To see this, recall that

L(S) = [p-R'(S)][Y'(R(S))-C(S)-J(S)] - 0 above S and J(S) 2 0, hence

Y'(R(S))-C(S) - L(S)/[p-R'(S)] 2 0. Using the concavity of Y,

R(S)

Y(R(S))-C(S)R(S) = f [Y'(g)-C(S)]dg > 0, verifying that M(S) > 0 and

o

LM(S) < L(S). If S > S, then LM(S) < L(S) = 0.

Setting K = S, we can now establish

lemma 4.2: If S < § < S and A(S) > 0, then S and S are not equilibrium points.

Proof: Consider the slackness conditions (4.4). At S = S, LM(S), 1 and X are
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positive and a vanishes. Thus, the left hand side of (4.9) does not vanish, and S

cannot be an equilibrium state. At S = S, LM(S) is negative, 3 and ' vanish and a

is positive. Thus, the left hand side of (4.9) does not vanish, ruling out the

possibility that S is an equilibrium state.u

Two cases are of interest: (i) K = S, § E(S,S) and MA() > 0, in which case

LM(S) must have a root in (§,S); (ii) LM(K) s 0 and LM(S) has no root in [S,K).

We discuss each of these cases separately.

For case (i), let SL and §u denote, respectively, the smallest and the largest

roots in (§,S). We can now prove

Proposition 4.2: Starting at some initial level So, the optimal state trajectory

St corresponding to Va(So;S,S) decreases if Su < So s S and increases if S - SO <

SL'

Proof: According to Proposition 4.1 and Lemma 4.2, SO is not an equilibrium

state. If S o > Su and St increases, the trajectory must reach a steady state

above Su, violating proposition 4.1 or Lemma 4.2. If So < SL and S t decreases,

the trajectory must reach a steady state below §L, violating proposition 4.1 or

Lemma 4.2 again. I

The situation is particularly simple when LM(S) has a single root in [S,S],

denoted §M. In this case, any process initiated within [S,S] must converge to the

unique equilibrium state SM. An example of such a situation, which is similar to

the certainty problem with SM replacing S, is studied in Section 6. When several

equilibrium states exist, the particular value to which the optimal stock process

converges depends on the initial state. However, not all the roots of LM(S)

should be considered as possible equilibrium states. Depending on the local

behavior of LM(S) near its roots, the following lemma rules out some of them:
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Lemma 4.3: If, for some S e (S,S), Lu(S) = 0 and LM decreases in some neighborhood

of S, then, starting at any S * S, the optimal state process corresponding to

Va(So;S,S) will never converge to S.

The proof is presented in Appendix B, which also extends Lemma 4.3 to situations

where both LM(S) and its derivative vanish:

Remark: (i) If a root S is a local maximum of LM(S), the same argument shows that

it cannot be optimal to approach S from above and stop there. (ii) If a root S

is a local minimum of LM(S), the same argument shows that it cannot be optimal to

approach S from below and stop there.

We turn now to case (ii), in which LM(K) s 0 and LM(S) has no root in [S,K).

For this case, which occurs when K 5s L, the following result holds:

Lemma 4.4: If LM(S) < 0 for every S in [S,K), then K is the unique equilibrium

state associated with V'(So;§,K).

Proof: LM(S) has no roots, hence Proposition 4.1 implies that the process has no

equilibrium states in (§,K). LM(S) < 0, hence Lemma 4.2 implies that S is not an

equilibrium state. Since the process is monotonic and bounded in [S,K], it must

increase to K."

The results obtained for the auxiliary problem can be used to analyze the

aquifer problem. This is done in the next section.

5. Uncertain irreversible events

Under certainty, the optimal state process possesses the appealing property

that it converges to a unique steady state S regardless of the initial state

level. The situation is quite different under uncertainty. Here, we identify
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equilibrium intervals such that optimal state processes initiated within these

intervals remain constant. If the initial state lies outside these intervals, the

particular choice of the equilibrium state depends on the initial state.

We consider first the case S < S < S. Let S t indicate optimal trajectories

corresponding to the aquifer problem (2.2), and recall that the optimal processes

corresponding to the certainty and auxiliary problems are denoted St and St,

respectively. At low low stock levels, when S increases, the trajectories S and S

coincide. This result is formulated as

Lemma 5.1: Starting at some initial S satisfying L(S) < 0, i.e., S < §, S tS = St.

Proof: Consider some initial stock S < S and suppose that the optimal trajectory

St does not increase. Let V(S) be the value of the optimal plan under uncertainty

and U(S) = {[Y(gt)-C(St)g]e-Ptdt represent the benefit derived from S t in the

0

favorable situation where the plan is never interrupted by the event. As shown in

Appendix A, occurrence of the event cannot be desirable and V(S) s U(S). For

S < S, the optimal S-trajectory under certainty, St, increases (Proposition 3.1),

hence U(S) < Vc(S;X). But St is feasible under uncertainty as well, yielding the

same value VC(S;X) > V(S). Hence, the non-increasing S-trajectory cannot be

optimal under uncertainty. Thus, for states S < ,S the optimal trajectories for

certainty and uncertainty coincide, and are increasing. I

We study now the properties of St in the complimentary interval [S,SI:

Lemma 5.2: Starting at some initial level S satisfying L(S) 2 0, i.e., S 2 S, the

optimal trajectory St cannot increase.



Proof: Consider the benefit U(S) = f[Y(gt)-C(St)gtlePtdt associated with any

o

increasing trajectory. When S 2 S, i.e., when L(S) 2 O,

U(S) < W(S) - [Y(R(S))-C(S)R(S)]/p, where W(S) is the benefit obtained from the

steady state policy gt E R(S). To see this, consider the certainty problem for

which the event level X is taken to be equal to the initial level S. For this

problem, every increasing trajectory is feasible, yet Proposition (3.1) implies

that, with L(X) = L(S) > 0, the plan S t a X is optimal, and the inequality

follows. Now, uncertainty does not affect the benefit associated with non-

decreasing trajectories, hence the steady state policy outperforms all increasing

plans under uncertainty as well, and St cannot increase.s

The results above stress the common features of the optimal trajectories

corresponding to the certainty and the aquifer problems. For certain states above

S we can strengthen the similarity by ruling out the possibility that they are

steady states. This is done by partitioning the interval [S,S] according to the

roots of LM(S), in similarity with case (i) of the previous section.

Lemma 5.3: Any S satisfying L(S) > 0 and LM(S) > 0 does not qualify as a steady

state of St .

Proof: The idea is to construct a decreasing extraction plan which yields an

expected benefit higher than the value W(S) = [Y(R(S))-C(S)R(S)]/p, obtained under

the steady state plan. For some arbitrary small constants h>0 and 6>0, define the

extraction plan, starting at the state S

R(S) + 6, 0 s t < h
t = S (5.1)

t R(Sh) , t ? h
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With this plan, for all t < h, ASt= St-S = f[R(St.)-R(S)-8]dt' = -St+o(6t). The

0

expected benefit associated with gt is

h

h(S) = [Y(R(S)+6)-C(St)(R(S)+^)]eA(St)e-Ptdt + eA(Sh)e-PhWSh) +o(6h) (5.2)

0

The first term on the right-hand side of (5.2) is expanded as

h

[Y(R(S)+6)-C(St)(R(S)+6)]eA(St)e-Ptdt = W(S)[1-eh]+[Y' (R(S))-C(S)]5h+o(5h),

0

where use has been made of ASt = -6t+o(6t), knowing that C' and A are uniformly

bounded in [S,St]. The second term on the right-hand side of (5.2) is expanded as

W(Sh)eA(St)e- p h = W(S)ePh - W(S)X(S)3h - W' (S)6h + o(6h).

Combining terms, using pW'(S) = [Y'(R(S))-C(S)]R'(S) - C'(S)R(S), we obtain

v h(S) - W(S) = LM(S)5h/p + o(6h). (5.3)

Observing (5.3), we see that when LM(S) > 0, there exist h > 0 and 8 > 0 such

that Vh () - W(S) > 0. Thus, the steady state plan that yields the value W(S) is

not optimal, ruling out the possibility that S is a steady state.,

Together, Lemma 5.2 and Lemma 5.3 imply that when LM(S) > 0, St and St evolve

in the same direction:

Lemma 5.4: Starting at some initial level S satisfying L(S) 2 0 and LM(S) > 0,

the optimal trajectory S* must decrease.

Denoting, as in Section 4, the smallest root of LM(S) in [§,S] by SL, we

consider the interval in which the effect of uncertainty is most pronounced:

Lemma 5.5: Any state S in [§,SL] must be a steady state.
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Remark: Recall that the interval [S,SL] does not reduce to a single point unless

A(S) = 0.

Proof: Let So e [§S,L] be the initial state. According to Lemma 5.2, St cannot

increase. To show that it cannot decrease, consider the auxiliary problem

associated with Va(So;S,So), for which the process cannot increase above the

initial value. For this problem, LM(S) < 0 for all S E [S,SO). According to

Lemma 4.4, only the end point So can be an equilibrium state for this auxiliary

problem, hence the optimal process associated with it must remain at the initial

value So . It follows that the steady state benefit W(S o) exceeds the benefit

obtained from any feasible decreasing trajectory. For non-increasing

trajectories, the benefits associated with the auxiliary and the aquifer problems

are the same, hence the steady state policy outperforms any decreasing plan for

the aquifer problem as well. Thus, St cannot decrease..

To gain insight, consider the case in which LM(S) = 0 has a unique solution in

[S,S], denoted SM. For this case, the dynamics and equilibrium structure of S t

can be characterized in a simple manner:

Proposition 5.1: If LM(S) has a unique root §M in [S,S], then:

(i) St increases while passing through S levels below S, where L(S) < 0; (ii) St

decreases while passing through S levels above SM, satisfying L(S) > 0 and

LM(S) > O; (iii) state levels S in [§,SM], for which L(S) 2 0 and LM(S) < 0, are

equilibrium states of St.

This situation is illustrated in Figure 2.

Figure 2J

Proposition 5.1 implies that the optimal stock process converges to the

boundaries of [S,SM] from any initial state outside this interval, and remains
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constant when initiated at any state inside this interval.

In fact, the continuity of St implies that the interior (S,SM) is forbidden

for all optimal trajectories initiated outside this interval. It is in this open

interval (which is not empty unless AX() vanishes) that the effect of uncertainty

is most vividly seen. Here, the expected loss due to event occurrence is so high

that entering the interval cannot be optimal, even if under certainty doing so

would yield a higher benefit.

This observation is borne out by (4.7)-(4.8), which show that the steady state

interval is due to the difference between L(S) and LM(S), namely M(S). Indeed,

M(S) = A(S)[Y(R(S))-C(S)R(S)], the former term of which measures the risk that the

event will follow immediately a decision to extract above recharge, while the

latter term is the permanent benefit stream which could have been enjoyed had a

steady state policy been adopted and which is lost due to the event occurrence.

Within (S,SM), the expected loss more than outweighs the positive value of L(S),

and extraction above recharge is too risky to be optimal. The exact relation

between LM(S) and the steady state value W(S) is elucidated by (5.3).

We close the discussion by considering the extreme cases S = S and S = S. If

S = S and L(S) > 0 it can happen that LM(S) possesses no root in [S,S], in which

case, according to Lemma 5.4, the aquifer will be depleted under all

circumstances. If § = S, then Lemma 5.1 applies to the entire interval [S,S], and

the aquifer does not admit profitable exploitation under all circumstances. In

fact, this case occurs only if Y' (O)-C(S) s 0 which implies, in turn, that the

instantaneous benefit Y(g)-C(S)g is negative for all states S and all non-

vanishing extraction rates.
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6. Example

We present an example for which analytic expressions for the optimal state

processes are derived. Our aim is to illuminate the effects of uncertainty on

optimal exploitation processes. In particular, we wish to examine the complete

time dependence of the processes and not limit attention to the steady states. To

that end, we consider the simple case of constant cost, C(S) = c, constant hazard

function A(S) = A, and linear recharge rate, R(S) = r(S-S). With C(S) constant,

J(S) = 0 for all S. We assume that Y'(O) > c, so that LM(S) = L(S) = (p+r)[Y'(O)-

c] > 0 and the aquifer admits profitable exploitation. We further assume that

S > S. Finally, we consider an initial state So > S, so that the optimal stock

process decreases (cf. Proposition 5.1).

The state process evolves according to

St = r(S-St)-g t. (6.1)

The condition of maximal Hamiltonian (cf. (4.2)) gives

pte-A(St) = Y'(gt) - c. (6.2)

Taking the time derivative of (6.2), we find

-A(S t) = Y"(g)gt + AS[ Y ' (gt) - c]. (6.3)

From pt- PPt = -a9/as, we obtain,

[pt-Pt(p+r)]e A( St ) = -A[Y(gt) - cgt]. (6.4)

Using (6.2) and (6.3) to eliminate Pt and pt, (6.4) becomes

Y"(gt)gt - (p+r)[Y'(gt) - c] + A{Y(gt)-cgt+[Y'(gt)-c]St } = 0. (6.5)

Under certainty, A(S t) and X vanish, and (6.4) reduces to pt = pt(p+r). At

the steady state ,S po = 0, implying that Pt must vanish at all times. From (6.2)

we see that the extraction rate gt is also independent of time, its constant value

given by the solution of Y'(g)-c = 0. The steady state S is determined in the

same manner: Y'(r(S-S))-c = 0.
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For arbitrary times, we use (6.1) to eliminate gt from (6.2) and obtain

Y'(r(S-Sc)-S t ) = Y'(r(S-S)), or, in view of the strict concavity of Y,

S t + rSc = rS. Thus,

St = S + (So-S)e rt
(6.6)

In order to derive the time evolution under uncertainty, we restrict attention

to the parabolic approximation Y(g) = bg - ag2 (it is assumed that g is never

large enough to enter the decreasing branch of this function.) Using (6.1) to

eliminate gt, we find

Y"(gt)gt - (p+r)[Y'(gt)-c] = 2aSt-2apSt+2a(p+r)r(S-St)-(b-c)(p+r), (6.7)

and

Y(gt) - cgt + [Y'(gt) - c]St = aS ar2 (-S;) 2 + (b-c)r(S-S). (6.8)

Setting qt = S-St and q = (b-c)/(2ar), we can use (6.7)-(6.8) and reduce (6.5) to
· 2 2 22 2,

qt - -qt / 2 -qt - (p+r)rqt + Ar qt/2 - Ar qqt = -(p+r)rq. (6.9)

The effect of uncertainty is manifest through the terms involving A, which

introduce nonlinearities and shift the steady state. The steady state qM

corresponds to the root of LM(S) = O, or

ArqM/2 - (p+r + Arq)qM + (p+r)q = 0, (6.10)

yielding

qM = q + +r)/(r] + [(p+r)/(r) r)] 2 . (6.11)

For small A, (6.11) can be approximated by qM q - Aq2r/[2(p+r)].

Setting Qt = A(qt-qM) = -A(St-§M) and using (6.9) and (6.10), we obtain

Qt - Qt2/2 + r Qt/2 - PQt - [(p+r)r+e]Qt = 0, (6.12)

where e = Ar 2 (q-qM) > 0.

Let < be the negative root of the characteristic equation

x 2 -px-[(p+r)r+E] = 0 of the linear part of (6.12). It is easily verified that

( < -r. The non-diverging solution of (6.12) is expanded as
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Qt = N akek , (6.13)

k=l

where a, = 1 and for k>l ak are constructed recursively:

. [nm-(r/<) 2 ]anam

n+m=kn+m=k (m>O). (6.14)ak = 2(k-l)(k+l-p/C) (n,m>O). (6.14)

The constant N is determined by the normalization condition

0o

Nak = Qo = -A(SO-SM). (6.15)

k=l

The uncertainty formulation (6.12) is valid only if So > SM hence Qo and N must

be negative and the series in (6.13) and (6.15) consist of terms with alternating

signs. Therefore, (6.15) can be solved for N only if -Q0 is not too large, and

(6.13) is a valid convergent representation of the solution to (6.12) only when So

is close enough to the asymptotic value SM. For higher values of -Qo, the nature

of the solution is similar, but a simple analytic expression, analogous to (6.13),

is not available. Standard techniques to reduce to order of the equation can be

used in this case.

Within its domain of validity, the solution (6.13) displays several

modifications to the simple exponential solution (6.5) corresponding to certainty:

First, uncertainty changes the asymptotic steady state from S to SM. Secondly, it

increases the basic decay constant from r to -<. Finally, the extraction rate gt

is no longer independent of time, and the steady state resource price p does not

vanish:

p = M(SM)e M/(p+r). (6.16)

Examples of solutions obtained in this way are displayed in Figure 3 for

S o = S, S-S = 1, p/r = 1 and A = 2. It is seen that uncertainty implies a more
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conservative extraction policy. Most notable is the increase of the steady state

level SM relative to S. In the particular example at hand, the steady state

interval corresponding to uncertainty covers over 407 of the interval [I,S], for

which certainty conditions imply decreasing optimal trajectories.

7. Closing comments

The effects of irreversible uncertain events on the exploitation of

groundwater resources are studied. We characterize the dynamic behavior and the

equilibrium states of the optimal policy in terms of the evolution functions L and

LM. These functions, it is found, are useful in studying optimal exploitation

processes when the presence of recharge, uncertainty and state dependent cost

terms complicates the analysis based on phase plane configurations.

Irreversible events, after which the resource can no longer be used, pose a

severe problem to the resource manager in that mistakes are too costly to fix;

hence this case is of interest. The analysis, however, can be extended to

situations in which the event is partly reversible, i.e., the resource can be used

during the post-event period at the expense of some curing activities.

One can also consider resources other than groundwater and situations in which

the probability of the event occurrence is wholly or partly exogenous. This is

the case, for example, when the event corresponds to the extinction of a

threatened animal population. The probability of an extinction event depends,

inter alia, on exogenous factors such as inter-species dependencies and natural

disasters (forest fires, diseases). A complete study of such situations, as well

as of the partly reversible case mentioned above, is left for future research.

Acknowledgements: We are greatly indebted to Boris Zaltzman for his kind help and

advice.



23

References

1. K. J. Arrow and M. Kurz, Public investment, the rate of return and optimal

fiscal policy, Baltimore: Johns Hopkins University Press, (1970).

2. 0. R. Burt, Optimal resource use over time with an application to groundwater,

Management Science, 11, 80-93 (1964).

3. C .W. Clark, Profit maximization and the extinction of animal species, Journal

of Political Economy, LXXXI, 950-961 (July/August, 1973).

4. M. L. Cropper, A note on the extinction of renewable resources, Journal of

Environmental Economics and Management 15, 64-70 (1988).

5. M. L. Cropper, Regulating activities with catastrophic environmental effects,

Journal of Environmental Economics and Management 3, 1-15 (1976).

6. S. D. Deshmukh and S.R. Pliska, Optimal consumption and exploration of

nonrenewable resources under uncertainty, Econometrica 48, 177-200 (1980).

7. S. D. Deshmukh and S. R. Pliska, A martingale characterization of the price of

a nonrenewable resource with decision involving uncertainty, Journal of

Economic Theory 35, 322-342 (1985).

8. E. Feinerman, Groundwater management: efficiency and equity considerations,

Agricultural Economics, 2, 1-18 (1988).

9. R. J. Gilbert, Optimal depletion of an uncertain stock, Review of Economic

Studies 46, 45-57 (1978).

10. M. I. Kamien and N. L. Schwartz, Optimal exhaustible resource depletion with

endogenous technical change, Review of Economic Studies, 45, 179-196 (1978).

11. M. C. Kemp, How to eat a cake of unknown size, in "Three topics in the theory

of international trade" (M.C. Kemp, Ed.) North-Holland, New York (1976).

12. M. C. Kemp, Further generalizations of the cake-eating problem under

uncertainty, Theory and Decision 8, 363-367 (1977).



24

13. T. R. Lewis and R. Schmalensee, Nonconvexity and optimal exhaustion of

renewable resources, International Economic Review, 18, 535-552 (1977).

14. N. V. Long, Resource extraction under the uncertainty about possible

nationalization, Journal of Economic Theory 10, 42-53 (1975).

15. G. C. Loury, The optimum exploitation of an unknown reserve, Review of

Economic Studies 45, 621-635 (1978).

16. Y. Tsur and T. Graham-Tomasi, The buffer value of groundwater with stochastic

surface water supplies, Journal of Environmental Economics and Management 21,

201-224 (1991).



25

Appendix A: Monotonicity of the state processes

Proposition 2.1 (Monotonicity): At least one of the optimal state trajectories

corresponding to problem (2.2) evolves monotonically in time.

We begin with the simpler problems:

Remark 2.1: Proposition 2.1 holds for the optimal state trajectories corresponding

to the certainty and auxiliary problems.

Proof: Consider first the case in which the optimal trajectory is unique.

Suppose that St is not monotonic. For concreteness, consider three distinct time

values, t i < m < t2 , such that Stl < Sm and St2 < Sm. Since St is time-

continuous, there must exist some t 3 E (tlm), at which S t increases, and some t 4

E (m,t 2 ), at which St decreases, such that St3 = St4. However, Y, C, R, F and p

do not depend on t explicitly, hence the same decision problem is encountered at

t 3 and at t 4 . Thus, one cannot arrive at conflicting decisions concerning the

sign of gt-R(St) at these times, since the optimality of both decisions violates

the uniqueness of the optimal plan. This argument applies also when Sm

corresponds to a minimum rather than to a maximum.

For problems with multiple optimal solutions, it is not possible to show that

every optimal S trajectory is monotonic. We shall show, however, that at least

one optimal path is monotonic. Observe, first, that the optimality of the

decisions at t 3 and t 4 implies that one can choose either gt 3 or gt4 at t 3 and t 4

and obtain the same value. Furthermore, this freedom of choice prevails at any

state level between St3 and Sm. Thus, the existence of a local extremum of S

implies the existence of a continuum of feasible plans, all yielding the optimal

value. To construct a monotonic plan, one needs to specify, for any state S

permitting several optimal extraction rates, a particular selection rule ensuring
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that whenever S is encountered, the same extraction rate is adopted. For example,

one can demand that among the optimal extraction rates, the minimal optimal

extraction rate is selected. The ensuing plan is optimal and monotonic, because

non-monotonic plans involve conflicting choices of extraction rates at the same

state levels.i

The above discussion shows that non-monotonic optimal plans are associated

with problems that are somewhat degenerate, in that they permit a continuum of

optimal solutions, hence are unlikely to be encountered in realistic applications.

Proof of Proposition 2.1: The aquifer allocation problem (2.2) differs from the

certainty and auxiliary problems in that decisions may depend on history. This

means that passing through the same state at different times may lead to

conflicting decisions. Nevertheless, we show that the monotonicity property of

some optimal trajectory is preserved.

Consider first problems admitting a unique solution. As in the certainty and

auxiliary problems, if the optimal state process passes through a maximum, the

continuity of St implies that it obtains the same value at some t < m, when
3

extraction is below recharge, and at some t > m, when extraction exceeds

recharge, so that St3 = St 4 < Sm. Indeed, t 3 and t4 can be chosen so that St

obtains its minimum value at the end points of [t 3 ,t4], ensuring that

St = Min (S.) is constant in that interval. The decision problems at t and t
TE[o,tl

are the same, contradicting the different decisions taken at these two times.

Thus, the possibility of a local maximum conflicts with the assumption of a unique

solution, and once S t starts increasing, it cannot decrease at later times.

The analysis of a possible local minimum is more involved. Suppose that

extraction exceeds recharge at t 3 < m but falls short of recharge at t4 > m, and
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Sm is the minimum value obtained during [t3,t 4 ]. Although St3 = St4, the decision

problems at t 3 and t 4 may not be the same, since it is possible that St4 = Sm <

St3 . To see that such "learning effects" cannot take place, consider any time t

and the corresponding state S t along the optimal path, and let

0U(St) = JY(gtt,)-C(St+t)gt+t,]ePt'dt' .

o

be the benefit from the uninterrupted plan starting at St. For non-monotonic

state process, (2.4) changes to

l-FT(t) = Pr(T>tlT>O} = Pr{X<StIX<S o} = F(St)/F(So),

and the expected benefit at time t generated by the optimal plan starting with the

state St is given by

0C

V(St) = f[Y(gt+t,)-C(St+t.)gt+t t e - tdt'.

o F(St)

Strictly speaking, both U and V do not depend on St alone, but rather have an

explicit time dependence. (For V, the time dependence enters through the St term

in the probability factor.) For notational convenience, the time dependence is

suppressed; once monotonicity is established, the explicit notation is no longer

required.

Observe that for every t' > 0, St 2 St+t, hence U(S t ) a V(St) for all St along

an optimal path. This result, which reduces to a trivial equality for t2m,

corresponds, for t<m, to the intuitive notion that the interruption of the optimal

path by an event cannot increase the benefit. It can be used to eliminate the

possibility of a local minimum by comparing the values of four feasible paths

(Figure 4):

a) S3 3 , starting at t and following the path S ; (optimal).t 3 t+t3
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b) S34, starting at t and following the path S ; (suboptimal).
c) S start ; ( ptimal).

d) S43 , starting at t and following the path St ; (suboptimal).
t 4

d) S4 4, starting at t and following the path St; (optimal).
t 4 t+t 4

Figure 4

Note that the time index t of SIJ measures the time elapsed from the

corresponding start time t . In fact, S3 3 = S 4 3 for all t, and the two pathsI t t

differ only with respect to the prior information involved: S43 = Sm and S4 3 is
t t

carried out knowing that the event will never occur, whereas S33 > S and S3 3 is
0 t

planned under the risk that it will be interrupted by an event before the minimum

level Sm is arrived at.

Let V(S'J) denote the value associated with each path, evaluated at its start

time ti. Judging by the decisions taken, V(S 3 3 ) > V(S 3 4 ) and V(S 4 4 ) > V(S4 3 ). We

also know that S3 4 = S4 4 and these paths are increasing, hence V(S 3 4 ) = V(S 4 4 ).t t

(For increasing paths the term representing the probability of non-occurrence

reduces to unity and does not affect the value.) It follows that V(S3 3 ) > V(S 4 3 ).

However, V(S 33 ) = V(St3) while V(S 4 3) = U(St3), hence the latter inequality

contradicts our finding that U(S t ) a V(St).

For problems admitting multiple optima, the strong inequalities of the

previous paragraph may be replaced by equalities, and non-monotonic plans cannot

be ruled out. Yet, the construction of a monotonic optimal path from a non-

monotonic plan follows the discussion of the certainty and the auxiliary problems:

One chooses a selection rule according to which, for each state level, a

particular extraction rate is chosen among all optimal rates. The resulting

optimal plan is monotonic, because conflicting decisions at the. same state level

are not allowed. 
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Appendix B: stability of the equilibrium states

Lemma 4.3: If, for some S e (S,S), LM(S) = 0 and LM decreases in some neighborhood

of S, then, starting at any S * S, the optimal state process corresponding to

V (So;S,S) will never converge to S.

Proof: We show that starting from any state other than S, it cannot be optimal to

arrive at S and stop there. Consider some state S = S + A, through which the

process has passed before arriving at S. We show that when A is small enough, it

is more advantageous to stop at S than to proceed to S and stop there. Let 6t =

t

gt-R(St) and At = Jst.dt.. Setting the origin of time at the passage time through

o

S, we find St = S - At and A = An. It is convenient to introduce a = JftePtdt =

co

0(A). Note that J\AtePtdt = A/p. The value associated with the trajectory

0

leading from S to S is

0V(S,S) = .Y(R(St)+6t)-C(St)[R(St) +6t])eA(St)e P t dt =

o

C 0

Y'(R(S))[R(St)-R(S)]ePt dt -+ [C(St)R )C(S)R(S)RePSt)-dt +

0 0

CO 0C

o o

[Y(R(S))-C(S)]jteP t dt + 2 JY"(g)[R(St)-R(S)+5t]2e-Ptdt + O(A2),

o o

where g is some intermediate value between R(S) and R(St)+6t. The Y" term is

negative, hence
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V(S,S) - W(S) < -W(S)A(S)A - {Y'(R(S))R'(S)-C(S)R(S)-C(S)R'(S)}A/p +

[Y(R(S))-C(S)]A + 0(A 2 )

so that

V(S,S) - W(S) < ALM(S)/p + 0(A2 ). (B.1)

Since LM(S) = 0 and is decreasing, it follows that ALm(S) < 0, hence

V(S,S) - W(S) < 0 when A is small enough. Thus, stopping at S yields a benefit

larger than that obtained by going to S and stopping there.m

Remark: (i) If a root S is a local maximum of LM(S), the same argument shows that

it cannot be optimal to approach S from above and stop there. (ii) If a root S

is a local minimum of LM(S), the same argument shows that it cannot be optimal to

approach S from below and stop there.
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Figure Captions

Fig. 1: The relation between the function L(S) and the time evolution of the

optimal state process of the certainty problem. The single root S of L(S) is the

unique steady state. The arrows indicate the direction in which the process

evolves.

Fig. 2: The relation between the functions L(S) and LM(S) when the latter

function has a single root. The arrows indicate the direction in which the

optimal state process St evolves. The interval (S,SM), in which L(S) is positive

and LM(S) is negative, is an equilibrium interval.

Fig. 3: Optimal state processes for the certainty and the aquifer (uncertainty)

problems vs. the dimensionless time rt. The values So = S = 1.5, S-S = 1, p/r = 1

and A = 2 are used.

Fig. 4: Four hypothetical feasible paths that could be constructed if the optimal

process St had a minimum at t = m. S3 3 and S44 are parts of the original process,

initiated at t 3 and t 4 , respectively. S4 3 and S3 4 are suboptimal copies of these

paths, shifted by the time increments +(t 4 -t 3 ), respectively.
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