1,909 research outputs found

    New coins from old, smoothly

    Get PDF
    Given a (known) function f:[0,1](0,1)f:[0,1] \to (0,1), we consider the problem of simulating a coin with probability of heads f(p)f(p) by tossing a coin with unknown heads probability pp, as well as a fair coin, NN times each, where NN may be random. The work of Keane and O'Brien (1994) implies that such a simulation scheme with the probability p(N<)\P_p(N<\infty) equal to 1 exists iff ff is continuous. Nacu and Peres (2005) proved that ff is real analytic in an open set S(0,1)S \subset (0,1) iff such a simulation scheme exists with the probability p(N>n)\P_p(N>n) decaying exponentially in nn for every pSp \in S. We prove that for α>0\alpha>0 non-integer, ff is in the space Cα[0,1]C^\alpha [0,1] if and only if a simulation scheme as above exists with p(N>n)C(Δn(p))α\P_p(N>n) \le C (\Delta_n(p))^\alpha, where \Delta_n(x)\eqbd \max \{\sqrt{x(1-x)/n},1/n \}. The key to the proof is a new result in approximation theory: Let \B_n be the cone of univariate polynomials with nonnegative Bernstein coefficients of degree nn. We show that a function f:[0,1](0,1)f:[0,1] \to (0,1) is in Cα[0,1]C^\alpha [0,1] if and only if ff has a series representation n=1Fn\sum_{n=1}^\infty F_n with F_n \in \B_n and k>nFk(x)C(Δn(x))α\sum_{k>n} F_k(x) \le C(\Delta_n(x))^\alpha for all x[0,1] x \in [0,1] and n1n \ge 1. We also provide a counterexample to a theorem stated without proof by Lorentz (1963), who claimed that if some \phi_n \in \B_n satisfy f(x)ϕn(x)C(Δn(x))α|f(x)-\phi_n(x)| \le C (\Delta_n(x))^\alpha for all x[0,1] x \in [0,1] and n1n \ge 1, then fCα[0,1]f \in C^\alpha [0,1].Comment: 29 pages; final version; to appear in Constructive Approximatio

    Fast simulation of new coins from old

    Full text link
    Let S\subset (0,1). Given a known function f:S\to (0,1), we consider the problem of using independent tosses of a coin with probability of heads p (where p\in S is unknown) to simulate a coin with probability of heads f(p). We prove that if S is a closed interval and f is real analytic on S, then f has a fast simulation on S (the number of p-coin tosses needed has exponential tails). Conversely, if a function f has a fast simulation on an open set, then it is real analytic on that set.Comment: Published at http://dx.doi.org/10.1214/105051604000000549 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Copulas in finance and insurance

    Get PDF
    Copulas provide a potential useful modeling tool to represent the dependence structure among variables and to generate joint distributions by combining given marginal distributions. Simulations play a relevant role in finance and insurance. They are used to replicate efficient frontiers or extremal values, to price options, to estimate joint risks, and so on. Using copulas, it is easy to construct and simulate from multivariate distributions based on almost any choice of marginals and any type of dependence structure. In this paper we outline recent contributions of statistical modeling using copulas in finance and insurance. We review issues related to the notion of copulas, copula families, copula-based dynamic and static dependence structure, copulas and latent factor models and simulation of copulas. Finally, we outline hot topics in copulas with a special focus on model selection and goodness-of-fit testing

    A cyclic time-dependent Markov process to model daily patterns in wind turbine power production

    Get PDF
    Wind energy is becoming a top contributor to the renewable energy mix, which raises potential reliability issues for the grid due to the fluctuating nature of its source. To achieve adequate reserve commitment and to promote market participation, it is necessary to provide models that can capture daily patterns in wind power production. This paper presents a cyclic inhomogeneous Markov process, which is based on a three-dimensional state-space (wind power, speed and direction). Each time-dependent transition probability is expressed as a Bernstein polynomial. The model parameters are estimated by solving a constrained optimization problem: The objective function combines two maximum likelihood estimators, one to ensure that the Markov process long-term behavior reproduces the data accurately and another to capture daily fluctuations. A convex formulation for the overall optimization problem is presented and its applicability demonstrated through the analysis of a case-study. The proposed model is capable of reproducing the diurnal patterns of a three-year dataset collected from a wind turbine located in a mountainous region in Portugal. In addition, it is shown how to compute persistence statistics directly from the Markov process transition matrices. Based on the case-study, the power production persistence through the daily cycle is analysed and discussed

    Quantum Branching Programs and Space-Bounded Nonuniform Quantum Complexity

    Get PDF
    In this paper, the space complexity of nonuniform quantum computations is investigated. The model chosen for this are quantum branching programs, which provide a graphic description of sequential quantum algorithms. In the first part of the paper, simulations between quantum branching programs and nonuniform quantum Turing machines are presented which allow to transfer lower and upper bound results between the two models. In the second part of the paper, different variants of quantum OBDDs are compared with their deterministic and randomized counterparts. In the third part, quantum branching programs are considered where the performed unitary operation may depend on the result of a previous measurement. For this model a simulation of randomized OBDDs and exponential lower bounds are presented.Comment: 45 pages, 3 Postscript figures. Proofs rearranged, typos correcte

    Bayesian multivariate Bernstein polynomial density estimation

    Get PDF
    This paper introduces a new approach to Bayesian nonparametric inference for densities on the hypercube, based on the use of a multivariate Bernstein polynomial prior. Posterior convergence rates under the proposed prior are obtained. Furthermore, a novel sampling scheme, based on the use of slice sampling techniques, is proposed for estimation of the posterior predictive density. The approach is illustrated with both simulated and real data example
    corecore