283 research outputs found

    Mining Linguistic Associations for Emergent Flood Prediction Adjustment

    Get PDF
    Floods belong to the most hazardous natural disasters and their disaster management heavily relies on precise forecasts. These forecasts are provided by physical models based on differential equations. However, these models do depend on unreliable inputs such as measurements or parameter estimations which causes undesirable inaccuracies. Thus, an appropriate data-mining analysis of the physical model and its precision based on features that determine distinct situations seems to be helpful in adjusting the physical model. An application of fuzzy GUHA method in flood peak prediction is presented. Measured water flow rate data from a system for flood predictions were used in order to mine fuzzy association rules expressed in natural language. The provided data was firstly extended by a generation of artificial variables (features). The resulting variables were later on translated into fuzzy GUHA tables with help of Evaluative Linguistic Expressions in order to mine associations. The found associations were interpreted as fuzzy IF-THEN rules and used jointly with the Perception-based Logical Deduction inference method to predict expected time shift of flow rate peaks forecasted by the given physical model. Results obtained from this adjusted model were statistically evaluated and the improvement in the forecasting accuracy was confirmed

    Reasoning with uncertainty using Nilsson's probabilistic logic and the maximum entropy formalism

    Get PDF
    An expert system must reason with certain and uncertain information. This thesis is concerned with the process of Reasoning with Uncertainty. Nilsson's elegant model of "Probabilistic Logic" has been chosen as the framework for this investigation, and the information theoretical aspect of the maximum entropy formalism as the inference engine. These two formalisms, although semantically compelling, offer major complexity problems to the implementor. Probabilistic Logic models the complete uncertainty space, and the maximum entropy formalism finds the least commitment probability distribution within the uncertainty space. The main finding in this thesis is that Nilsson's Probabilistic Logic can be successfully developed beyond the structure proposed by Nilsson. Some deficiencies in Nilsson's model have been uncovered in the area of probabilistic representation, making Probabilistic Logic less powerful than Bayesian Inference techniques. These deficiencies are examined and a new model of entailment is presented which overcomes these problems, allowing Probabilistic Logic the full representational power of Bayesian Inferencing. The new model also preserves an important extension which Nilsson's Probabilistic Logic has over Bayesian Inference: the ability to use uncertain evidence. Traditionally, the probabilistic, solution proposed by the maximum entropy formalism is arrived at by solving non-linear simultaneous equations for the aggregate factors of the non- linear terms. In the new model the maximum entropy algorithms are shown to have the highly desirable property of tractability. Although these problems have been solved for probabilistic entailment the problems of complexity are still prevalent in large databases of expert rules. This thesis also considers the use of heuristics and meta level reasoning in a complex knowledge base. Finally, a description of an expert system using these techniques is given

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Configurational Explanations

    Get PDF

    Knowledge based approach to process engineering design

    Get PDF

    Energy efficient in cluster head and relay node selection for wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) are defined as networks of nodes that work in a cooperative way to sense and control the surrounding environment. However, nodes contain limited energy which is the key limiting factor of the sensor network operation. In WSN architecture, the nodes are typically grouped into clusters where one node from each cluster is selected as the Cluster Head (CH) and relays utilisation to minimise energy consumption. Currently, the selection of CH based on a different combination of input variables. Example of these variables includes residual energy, communication cost, node density, mobility, cluster size and many others. Improper selection of sensor node (i.e. weak signal strength) as CH can cause an increase in energy consumption. Additionally, a direct transmission in dual-hop communication between sensor nodes (e.g. CH) with the base station (BS) uses high energy consumption. A proper selection of the relay node can assist in communication while minimising energy consumption. Therefore, the research aim is to prolong the network lifetime (i.e. reduce energy consumption) by improving the selection of CHs and relay nodes through a new combination of input variables and distance threshold approach. In CH selection, the Received Signal Strength Indicator (RSSI) scheme, residual energy, and centrality variable were proposed. Fuzzy logic was utilized in selecting the appropriate CHs based on these variables in the MATLAB. In relay node selection, the selection is based on the distance threshold according to the nearest distance with the BS. The selection of the optimal number of relay nodes is performed using K-Optimal and K-Means techniques. This ensures that all CHs are connected to at least one corresponding relay node (i.e. a 2-tier network) to execute the routing process and send the data to BS. To evaluate the proposal, the performance of Multi-Tier Protocol (MAP) and Stable Election Protocol (SEP) was compared based on 100, 200, and 800 nodes with 1 J and random energy. The simulation results showed that our proposed approach, refer to as Energy Efficient Cluster Heads and Relay Nodes (EECR) selection approach, extended the network lifetime of the wireless sensor network by 43% and 33% longer than SEP and MAP, respectively. This thesis concluded that with effective combinations of variables for CHs and relay nodes selection in static environment for data routing, EECR can effectively improve the energy efficiency of WSNs

    A framework for managing global risk factors affecting construction cost performance

    Get PDF
    Poor cost performance of construction projects has been a major concern for both contractors and clients. The effective management of risk is thus critical to the success of any construction project and the importance of risk management has grown as projects have become more complex and competition has increased. Contractors have traditionally used financial mark-ups to cover the risk associated with construction projects but as competition increases and margins have become tighter they can no longer rely on this strategy and must improve their ability to manage risk. Furthermore, the construction industry has witnessed significant changes particularly in procurement methods with clients allocating greater risks to contractors. Evidence shows that there is a gap between existing risk management techniques and tools, mainly built on normative statistical decision theory, and their practical application by construction contractors. The main reason behind the lack of use is that risk decision making within construction organisations is heavily based upon experience, intuition and judgement and not on mathematical models. This thesis presents a model for managing global risk factors affecting construction cost performance of construction projects. The model has been developed using behavioural decision approach, fuzzy logic technology, and Artificial Intelligence technology. The methodology adopted to conduct the research involved a thorough literature survey on risk management, informal and formal discussions with construction practitioners to assess the extent of the problem, a questionnaire survey to evaluate the importance of global risk factors and, finally, repertory grid interviews aimed at eliciting relevant knowledge. There are several approaches to categorising risks permeating construction projects. This research groups risks into three main categories, namely organisation-specific, global and Acts of God. It focuses on global risk factors because they are ill-defined, less understood by contractors and difficult to model, assess and manage although they have huge impact on cost performance. Generally, contractors, especially in developing countries, have insufficient experience and knowledge to manage them effectively. The research identified the following groups of global risk factors as having significant impact on cost performance: estimator related, project related, fraudulent practices related, competition related, construction related, economy related and political related factors. The model was tested for validity through a panel of validators (experts) and crosssectional cases studies, and the general conclusion was that it could provide valuable assistance in the management of global risk factors since it is effective, efficient, flexible and user-friendly. The findings stress the need to depart from traditional approaches and to explore new directions in order to equip contractors with effective risk management tools

    Semantic networks

    Get PDF
    AbstractA semantic network is a graph of the structure of meaning. This article introduces semantic network systems and their importance in Artificial Intelligence, followed by I. the early background; II. a summary of the basic ideas and issues including link types, frame systems, case relations, link valence, abstraction, inheritance hierarchies and logic extensions; and III. a survey of ‘world-structuring’ systems including ontologies, causal link models, continuous models, relevance, formal dictionaries, semantic primitives and intersecting inference hierarchies. Speed and practical implementation are briefly discussed. The conclusion argues for a synthesis of relational graph theory, graph-grammar theory and order theory based on semantic primitives and multiple intersecting inference hierarchies
    corecore