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Floods belong to the most hazardous natural disasters and their disaster management heavily relies on precise forecasts. These
forecasts are provided by physical models based on differential equations. However, these models do depend on unreliable inputs
such as measurements or parameter estimations which causes undesirable inaccuracies. Thus, an appropriate data-mining analysis
of the physical model and its precision based on features that determine distinct situations seems to be helpful in adjusting the
physical model. An application of fuzzy GUHAmethod in flood peak prediction is presented. Measured water flow rate data from
a system for flood predictions were used in order to mine fuzzy association rules expressed in natural language. The provided data
was firstly extended by a generation of artificial variables (features).The resulting variables were later on translated into fuzzyGUHA
tables with help of Evaluative Linguistic Expressions in order tomine associations.The found associations were interpreted as fuzzy
IF-THEN rules and used jointly with the Perception-based Logical Deduction inference method to predict expected time shift of
flow rate peaks forecasted by the given physical model. Results obtained from this adjusted model were statistically evaluated and
the improvement in the forecasting accuracy was confirmed.

1. Introduction

Disaster management is generally becoming more and more
important task. Among many natural disasters, floods are
the one of the most hazardous, and moreover, one of the
most frequently occurring in the region of the central Europe.
Researchers invest enormous efforts into investigation of
distinct flood models that would help to forecast floods
and thus provide the disaster management with a reliable
decision support that could be used in order to prevent
further deceases and material costs.

One of such long-term researches focusing on the disaster
management and especially on modeling and forecasting
floods gave rise to the creation of the FLOREON, a system for
emergent flood prediction [1]. No matter how sophisticated
the system is, due to the natural imprecision in data sources
(e.g., measuring stations) and due to the natural imprecision
in parameter setting (crisp values determined by an expert
decision), and having in mind how complicated the whole
problem is, it necessarily provides forecasts that are not
always precise.

Therefore, it seems to be appropriate to focus on some
analysis of the performance of the system that could give
at least a vague idea under which conditions the system
works, under which conditions it provides us with a certain
imprecision, and under which conditions we are able to
correct the forecast. Based on the sources of the imprecision,
it seems that an appropriate data-mining technique that
would involve fuzziness might provide us with promising
results and is worth of being attempted. In this investigation,
we face the above foreshadowed problem with the help of the
fuzzyGUHAmethod, that is, a specific variant of associations
mining technique that allows using the concepts of fuzzy logic
in a broad sense [2].

1.1. Brief Problem Description. The data being analyzed come
from the measures of water flow rate of the Odra River in
Ostrava, Czech Republic. Measuring stations provide us with
a flow rate [m3/s] on hourly basis. The goal is to forecast a
future flow rate.This is done by the so-calledMath-1Dmodel
[3] developed for the FLOREON disaster management IT
system [1].
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TheMath-1Dmodel is a differential equation basedmodel
of the flow rate. In order to provide us with flow rate forecasts,
it uses information about precipitations (past and forecasted),
soil type, river bank shape, and other parameters. Although
it is a well-established physical model that is empirically
examined, it is not sufficiently reliable. The reason does not
lie in the model but in the fact that most of the parameters
and input data are highly imprecise. For example, the soil type
is provided by a hydrologist expert but, due to natural limita-
tions, without a deeper geological analysis and, moreover, the
provided soil type is the same for the whole river flow.

Having in mind these limitations, the Math-1D model
forecasts depend mainly on the measured past precipitations
and flow rates and on the forecasted precipitations. Thus,
provided forecast, though often reliable, may be even highly
imprecise. The imprecision may be viewed in two perspec-
tives: in the vertical one and the horizontal one. The vertical
imprecision actually means either the overestimation or even
worse the underestimation of the flow rate in the culminating
peak. For our investigation, the second, that is, the horizontal
imprecision, is crucial. That is, we focus on the precision in
terms of time; that is, we focus on the question whether and
under which conditions the model forecasts the peak dis-
charge earlier or later and how big is the time shift of the peak.

The vertical as well as horizontal imprecision may be
significant. As one can see from an exemplary forecast in
Figure 1, the real culminating peak can appear a few hours
sooner than forecasted. Let us note that the Math-1D model
does not use the knowledge of the water flow rate in the past
and depends mainly on the precipitations. This explains why
it may happen that the model does not fit well the past data
(from −119th hour to 0th; see Figure 1). On the other hand,
precipitations are rather precise compared to the data from
the measuring stations that may not be well calibrated or,
even worse, the measuring station may be partially damaged
or even fully destroyed (occasionally, it happens that even
during a massive flood, measuring stations provide a zero
flow rate measurements).

Our task is to analyze and forecast the peak shift on the
horizontal (time) axis. In other words, the task is to build
a model that would (based on the flow rate measurements
and the Model-1D performance in the past) provide disaster
management with a valuable information about possible
horizontal imprecision of theMath-1Dmodel and, moreover,
that would additionally provide the disaster management
with an estimation about the peak shift. This peak shift
estimation could be used in the corrections of the forecasts.

2. Theoretical Background

In this Section, we introduce fundamental theoretical back-
ground that is used in our investigation. As there is no space
to introduce all the theoretical concepts in detail, we will
provide readers only with a brief introduction and refer to
further valuable sources [4–7].

2.1. Evaluative Linguistic Expressions. One of the main
constituents of systems of fuzzy/linguistic IF-THEN rules
is evaluative linguistic expressions [4], in short evaluative
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Figure 1: Particular example of real measured values (in black) and
the Math-1D model simulation (in gray). Flow rate values [m3/s]
on the vertical axis are measured on a particular measuring station
placed on the Odra River starting from time −119 up to 0 (horizontal
axis, time [ℎ]). Starting from the time point “0” to the right, the gray
curve denotes the forecast of future flow rate values.

Table 1: Linguistic hedges and their abbreviations.

Narrowing effect Widening effect
Very (Ve) More or less (ML)
Significantly (Si) Roughly (Ro)
Extremely (Ex) Quite roughly (QR)
— Very roughly (VR)

expressions, for example, very large, more or less hot, and so
forth.They are special expressions of natural language that are
usedwhenever it is important to evaluate a decision situation,
to specify the course of development of some process, and
in many other situations. Note that their importance and the
potential to model their meaning mathematically have been
pointed out by Zadeh (e.g., in [8, 9]).

A simple form of evaluative expressions keeps the follow-
ing structure:

⟨ling ⋅ hedge⟩ ⟨atomic evaluative expression⟩ . (1)

Atomic evaluative expressions comprise any of the canonical
adjectives small, medium, and big, abbreviated in the follow-
ing as Sm, Me, and Bi, respectively.

Linguistic hedges are specific adverbs that make the
meaning of the atomic expression more or less precise. We
may distinguish hedges with narrowing effect, for example,
very, extremely, and so forth and with widening effect, for
example, roughly, more or less and so forth. In the following
text, we, without loss of generality, use the hedges introduced
in Table 1 that were successfully used in real applications [10]
and that are implemented in the LFLC software package [11].
As a special case, the ⟨linguistic hedge⟩ can be empty. Note
that our hedges are of so-called inclusive type [12], which
means that extensions of more specific evaluative expressions
are included in less specific ones; see Figure 2.

Evaluative expressions of the form (1) will generally be
denoted by script lettersA,B, and so forth.They are used to
evaluate values of some variable𝑋. The resulting expressions
are called evaluative linguistic predications and have the form

𝑋 is A. (2)
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Figure 2: Shapes of extensions (fuzzy sets) of evaluative linguistic
expressions. DEE denotes the defuzzified values obtained using the
Defuzzification of Evaluative Expressions.

Examples of evaluative predications are “temperature is
very high,” “price is low,” and so forth. The model of the
meaning of evaluative expressions and predications makes
distinction between intensions and extensions in various
contexts. The context characterizes a range of possible values.
This range can be characterized by a triple of numbers
⟨V
𝐿
, V
𝑀
, V
𝑅
⟩, where V

𝐿
, V
𝑀
, V
𝑅
∈ R and V

𝐿
< V
𝑀
< V
𝑅
. These

numbers characterize the minimal, middle, and maximal
values, respectively, of the evaluated characteristics in the
specified context of use.Therefore, we will identify the notion
of context with the triple𝑤 = ⟨V

𝐿
, V
𝑀
, V
𝑅
⟩. By V ∈ 𝑤wemean

V ∈ [V
𝐿
, V
𝑅
]. In the sequel, we will work with a set of contexts

𝑊 ⊂ {⟨V
𝐿
, V
𝑀
, V
𝑅
⟩ | V
𝐿
, V
𝑀
, V
𝑅
∈ R, V

𝐿
< V
𝑀
< V
𝑅
} that are

given in advance.
The intension of an evaluative predication “𝑋 is A” is a

certain formula whose interpretation is a function:

Int (𝑋 is A) : 𝑊 → F (R) ; (3)

that is, it is a function that assigns a fuzzy set to any context
from the set𝑊.

Given an intension (3) and a context 𝑤 ∈ 𝑊, we can
define the extension of “𝑋 is A” in the context 𝑤 as a fuzzy
set:

Int (𝑋 is A) (𝑤) ⊂

̃

[V
𝐿
, V
𝑅
] , (4)

where ⊂
̃

denotes the relation of fuzzy subsethood.

Convention 1. For the sake of brevity and simplicity and hav-
ing inmind that an extension is a fuzzy set on a given context,
we will omit the notion of extension from our consideration
when appropriate and write only the abbreviated forms:

𝐴 := (Int (𝑋 is A) (𝑤)) , 𝑤 ∈ 𝑊,

𝐴 (V
0
) := (Int (𝑋 is A) (𝑤)) (V

0
) , V

0
∈ 𝑤,

(5)

if there is no danger of any confusion caused by the fact
that the left-hand side does not explicitly mention the chosen
context 𝑤 and variable𝑋.

2.2. Linguistic Descriptions. Evaluative predications occur in
conditional clauses of natural language of the form

R := IF 𝑋 is A THEN 𝑌 is B, (6)

whereA,B are evaluative expressions. The linguistic predi-
cation “𝑋 isA” is called the antecedent and “𝑌 isB” is called
the consequent of rule (6). Of course, the antecedent may
consist of more evaluative predications, joined by the con-
nective “AND.” The clauses (6) will be called fuzzy/linguistic
IF-THEN rules in the sequel.

Fuzzy/linguistic IF-THEN rules are gathered in a linguis-
tic description, which is a set LD = {R

1
, . . . ,R

𝑚
}, where

R
1
:= IF 𝑋 is A

1
THEN 𝑌 is B

1
,

...

R
𝑚
:= IF 𝑋 is A

𝑚
THEN 𝑌 is B

𝑚
.

(7)

Because each rule in (7) is taken as a specific conditional
sentence of natural language, a linguistic description can be
understood as a specific kind of a (structured) text. This text
can be viewed as amodel of specific behavior of the system in
concern.

The intension of a fuzzy/linguistic IF-THEN ruleR in (6)
is a function:

Int (R) : 𝑊 ×𝑊 → F (R ×R) . (8)

This function assigns to each context𝑤 ∈ 𝑊 and each context
𝑤


∈ 𝑊 a fuzzy relation in 𝑤 × 𝑤

. The latter is an extension
of (8).

We also need to consider a linguistic phenomenon of
topic-focus articulation (cf. [13]), which in the case of
linguistic descriptions requires us to distinguish the following
two sets:

TopicLD = {Int (𝑋 is A
𝑗
) | 𝑗 = 1, . . . , 𝑚} ,

FocusLD = {Int (𝑌 is B
𝑗
) | 𝑗 = 1, . . . , 𝑚} .

(9)

The phenomenon of topic-focus articulation plays an impor-
tant role in the inference method called perception-based
logical deduction described below.

Convention 2. Besides the above introduced notions of topic
and focus, it is sometimes advantageous to introduce the
following notation:

Topic𝑤LD = {Int (𝑋 is A
𝑗
) (𝑤) | 𝑗 = 1, . . . , 𝑚} , (10)

which will denote the set of extensions of evaluative predi-
cations that are contained in TopicLD knowing the particular
context 𝑤. This notation will be used later on when defining
the function of local perception. In the view of Convention 1
one can also easily introduce the Topic𝑤LD as follows:

Topic𝑤LD = {𝐴

𝑗
| 𝑗 = 1, . . . , 𝑚} . (11)

2.3. Ordering of Linguistic Predications. To be able to state
relationships among evaluative expressions, for example,
when one expression “covers” another, we need an ordering
relation defined on the set of them. Let us start with the
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ordering on the set of linguistic hedges. We may define the
ordering ≤H of examples of hedges as follows:

Ex ≤H Si ≤H Ve ≤H ⟨empty⟩ ≤H ML ≤H Ro ≤H QR ≤H VR.
(12)

We extend the theory of evaluative linguistic expressions
by the following inclusion axiom. Let Ker(𝐴) denote the
kernel of a fuzzy set 𝐴. For any 𝑤,

Int (𝑋 is ⟨hedge⟩
𝑖
A) (𝑤) ⊆ Int (𝑋 is ⟨hedge⟩

𝑗
A) (𝑤)

Ker (Int (𝑋 is ⟨hedge⟩
𝑖
A) (𝑤))

⊂ Ker (Int (𝑋 is ⟨hedge⟩
𝑗
A) (𝑤))

(13)

hold for any atomic expression A under the assumptions
⟨hedge⟩

𝑖
≤H⟨hedge⟩𝑗, 𝑖 ̸= 𝑗.

Based on ≤H we may define an ordering ≤LE of evaluative
expressions. Let A

𝑖
, A
𝑗
be two evaluative expressions such

thatA
𝑖
:= ⟨hedge⟩

𝑖
A andA

𝑗
:= ⟨hedge⟩

𝑗
A. Then we write

A
𝑖
≤LE A

𝑗 (14)

ifA ∈ {Sm,Me,Bi} and ⟨hedge⟩
𝑖
≤H⟨hedge⟩𝑗.

In other words, evaluative expressions of the same type
are ordered according to their specificity which is given by
the hedges appearing in the expressions. If we are given
two evaluative predications with an atomic expression of a
different type, we cannot order them by ≤LE.

Finally, we define the ordering ≤
(V0 ,𝑤) of evaluative pred-

ications wrt. a given observation. Let us be given a context
𝑤 ∈ 𝑊, an observation V

0
∈ 𝑤, and two extensions 𝐴

𝑖
and

𝐴

𝑗
from the Topic𝑤LD.We write𝐴

𝑖
≤

(V0 ,𝑤)𝐴𝑗 either if𝐴 𝑖(V0) >
𝐴

𝑗
(V
0
) or if 𝐴

𝑖
(V
0
) = 𝐴

𝑗
(V
0
) andA

𝑖
≤LE A𝑗.

It should be noted that usually the TopicLD contains
intensions of evaluative predications which are compound
by a conjunction of more than one evaluative predication. In
other words, we usually meet the following situation:

(𝑋 is A
𝑖
) := (𝑋

1
is A
𝑖1
)AND ⋅ ⋅ ⋅AND (𝑋

𝐾
is A
𝑖𝐾
) ,

(𝑋 is A
𝑗
) := (𝑋

1
is A
𝑗1
)AND ⋅ ⋅ ⋅AND (𝑋

𝐾
is A
𝑗𝐾
) .

(15)

In this case, the ordering ≤LE is preserved with respect to
the components:

A
𝑖
≤LE A𝑗 if A𝑖𝑘≤LE A𝑗𝑘 ∀ 𝑘 = 1, . . . , 𝐾 (16)

and the extension of the compound linguistic predication is
given as follows:

𝐴

𝑖
(𝑢

1
, . . . , 𝑢

𝐾
) =

𝐾

⋀

𝑘=1

𝐴

𝑖𝑘
(𝑢

𝑘
) . (17)

Then, the final ordering ≤

(V0 ,𝑤) is analogous to the one-
dimensional one.

2.4. Perception-Based Logical Deduction. Perception-based
Logical Deduction (abb. PbLD) is a special inference method
aimed at the derivation of results based on fuzzy/linguistic
IF-THEN rules. A perception is understood as an evaluative
expression assigned to the given input value in the given
context.The choice of perception depends on the topic of the
specified linguistic description. In other words, perception is
always chosen among evaluative expressions which occur in
antecedents of IF-THEN rules; see [5, 10, 14].

Based on the ordering ≤
(V0 ,𝑤) of linguistic predications, a

special function of local perception

LPercLD : 𝑤 ×𝑊

𝐾
→ P (TopicLD) (18)

assigns to each value V
0
= [V
1
, . . . , V

𝐾
] ∈ 𝑤 for 𝑤 = [𝑤

1
, . . . ,

𝑤

𝐾
] ∈ 𝑊

𝐾 a subset of intensions minimal wrt. the ordering
≤

(V0 ,𝑤)

LPercLD (V
0
, 𝑤)

= {𝐴

𝑖
| 𝐴

𝑖
(V
0
) > 0 , ∀𝐴

𝑗
∈ Topic𝑤LD : (𝐴

𝑗
≤

(V0 ,𝑤)𝐴 𝑖)

⇒ (A
𝑗
= A
𝑖
)} .

(19)

Let LD be a linguistic description (7). Let us consider a
context 𝑤 ∈ 𝑊 for the variable 𝑋 and a context 𝑤 ∈ 𝑊

for 𝑌. Let an observation 𝑋 = V
0
in the context 𝑤 be given,

where V
0
∈ 𝑤. Then, the following rule of perception-based

logical deduction (𝑟PbLD) can be introduced:

𝑟PbLD :

LPercLD (V
0
, 𝑤) , LD

𝐶

,

(20)

where 𝐶 is the conclusion which corresponds to the observa-
tion in a way described below. Inputs to this inference rule are
linguistic description LD and local perception LPercLD(V

0
, 𝑤)

from (19). This local perception is formed by a set of
evaluative expressions from antecedents of IF-THEN rules
(i.e., from the topic) of the given linguistic description.
Formula (19) chooses these antecedents which best fit the
given numerical input V

0
; in other words, they are the most

specific according to the ordering ≤
(V0 ,𝑤).

Once one or more antecedents 𝐴
𝑖ℓ
∈ Topic𝑤LD, 𝑖ℓ = 1, . . . ,

𝐿 are chosen according to (19), we compute for any of them
conclusions 𝐶

𝑖ℓ
:

𝐶

𝑖ℓ
(V) = 𝐴

𝑖ℓ
(V
0
) → 𝐵

𝑖ℓ
(V) , V ∈ 𝑤, (21)

where → is the Łukasiewicz implication [2] given by 𝑎 →

𝑏 = 1 ∧ (1 − 𝑎 + 𝑏).
Suppose that LPercLD(V

0
, 𝑤) is nonempty; that is, 𝐿 > 0.

Then the final conclusion𝐶 is given as the Gödel intersection
of the set of all 𝐿 conclusions 𝐶

𝑖ℓ
that correspond to 𝐿

members in LPercLD(V
0
, 𝑤); that is,

𝐶 (V) =
𝐿

⋀

ℓ=1

𝐶

𝑖ℓ
(V) =

𝐿

⋀

ℓ=1

(𝐴

𝑖ℓ
(V
0
) → 𝐵

𝑖ℓ
(V)) . (22)
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Inmany application, the inferred output fuzzy set𝐶needs
to be defuzzified to a crisp value in𝑤. For this task, a special
defuzzification technique called Defuzzification of Evaluative
Expressions (abb. DEE) has been proposed. In principle, this
defuzzification is a combination of First-Of-Maxima (FOM),
Mean-Of-Maxima (MOM), and Last-Of-Maxima (LOM) that
are applied based on the classification of the output fuzzy
sets. Particularly, if the inferred fuzzy set is of the type Small
(nonincreasing), the LOM is applied; if the inferred output
is of the type Big (nondecreasing), the FOM is applied; and
finally, if the inferred output is of the type Medium, the MOM
is applied; see Figure 2.

3. Fuzzy GUHA: Linguistic
Associations Mining

In this paper, we employ the so-called linguistic associations
mining [15] for the fuzzy rule base identification. This
approach,mostly known asmining association rules [16], was
firstly introduced as GUHA method [17, 18]. It finds distinct
statistically approved associations between attributes of given
objects. Particularly, the GUHA method deals with Table 2
where 𝑜

1
, . . . , 𝑜

𝑛
denote objects, 𝑋

1
, . . . , 𝑋

𝑞
denote indepen-

dent boolean attributes,𝑍 denotes the dependent (explained)
boolean attribute, and finally, symbols 𝑎

𝑖𝑗
(or 𝑎
𝑖
) ∈ {0, 1}

denote whether an object 𝑜
𝑖
carries an attribute 𝑋

𝑗
(or 𝑍) or

not.
The original GUHA allowed only boolean attributes to be

involved; see [19]. Since most of the features of objects are
measured on the real interval, standard approach assumed
categorization of quantitative variables and subsequently
definition of boolean variables for every category.

The goal of the GUHA method is to search for linguistic
associations of the form

𝐶 (𝑋

1
, . . . , 𝑋

𝑝
) ≃ 𝐷 (𝑍) , (23)

where 𝐶, 𝐷 are (compound) evaluative predications [20]
containing only the connective AND and 𝑋

1
, . . . , 𝑋

𝑝
for 𝑝 ≤

𝑞 are all variables occurring in 𝐶. The 𝐶, 𝐷 are called the
antecedent and consequent, respectively. Generally, for the
GUHAmethod, thewell-known fourfold table is constructed;
see Table 3.

Symbol 𝑎, in Table 3, denotes the number of positive
occurrences of 𝐶 as well as 𝐷; 𝑏 is the number of positive
occurrences of 𝐶 and of negated 𝐷, that is, of “not 𝐷.”
Analogous meaning has the numbers 𝑐 and 𝑑. For our
purposes, only numbers 𝑎 and 𝑏 are important.

The relationship between the antecedent and the conse-
quent is described by so-called quantifier ≃. There are many
quantifiers that characterize validity of association (23) in the
data [18]. For our task, we use the so-called binary multitudi-
nal quantifier ≃:= ⊏

𝛾

𝑟
. This quantifier is taken as true if

𝑎

𝑎 + 𝑏

> 𝛾,

𝑎

𝑛

> 𝑟,

(24)

Table 2: Standard GUHA table.

𝑋

1
. . . 𝑋

𝑞
𝑍

𝑜

1
𝑎

11
. . . 𝑎

1𝑞
𝑎

1

...
... d

...
...

𝑜

𝑛
𝑎

𝑛1
. . . 𝑎

𝑛𝑞
𝑎

𝑛

Table 3: Classical GUHA fourfold table.

𝐷 Not𝐷
𝐶 𝑎 𝑏

Not 𝐶 𝑐 𝑑

where 𝛾 ∈ [0, 1] is a confidence degree and 𝑟 ∈ [0, 1] is a
support degree.

Example 1. For example, let us consider Table 4.
Depending on the chosen confidence and support degree,

theGUHAmethod could generate, for example, the following
linguistic association:

𝐶 (BMI
>25

,Ch
>6.2

) ≃ D (BP
>130/90

) . (25)

According to [21], there are two approaches in treating
quantitative variables in association rules mining. The first
one is to categorize the variables using the predefined concept
hierarchies (e.g., BMI

≤25
). And the second one is to search

for clusters in a variable and discretize it according to the
found clusters (distribution of the data). Nevertheless both
approaches divide numerical variables into crisp intervals.

In many situations, including our situation, it is better
to define fuzzy sets on the numerical variables and use the
fuzzy variant of the GUHA method [15, 22]. In this case we
have also two possibilities how to treat quantitative variables.
Either we will apply fuzzy clustering or we will use some
predefined concepts. Because of the well-developed theory of
Evaluative Linguistic Expressions (Section 2.1) we chose the
latter approach.

In the fuzzy variant of the method, the attributes are not
boolean but rather vague. The minimum (resp., maximum)
of a particular attribute becomes V

𝐿
(resp., V

𝑅
) and thus we

obtain the context ⟨V
𝐿
, V
𝑀
, V
𝑅
⟩ for the given attribute (V

𝑀

might be median, mean, or other value between V
𝐿
and

V
𝑅
). With canonical adjectives Sm, Me, and Bi and seven

different linguistic hedges we may define more than 20 fuzzy
sets for every quantitative variable (attribute). The values
𝑎

𝑖𝑗
(or 𝑎
𝑖
) are now elements of the interval [0, 1] that express

membership degrees.
For example, instead of defining a boolean variable

BMI
≤25

(see Table 4), we take the quantitative variable BMI
and generate all the possible evaluative linguistic predi-
cations and define fuzzy sets BMIExSm,BMISiSm,BMIVeSm,
BMISm, . . . ,BMIVRSm, so that the first column in Table 4 is
replaced with Table 5. In this way we are able to separate
a group of malnourished people (BMIExSm). Analogically
to capture such cases of people, who have almost ideal
BMI index, we define BMIMe, BMIRoMe. Finally, instead of
BMI
>25

we define BMIExBi, BMISiBi, and so forth. Thus, we
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Table 4: Example of GUHA table. BMI
≤25

denotes Body-Mass-Index lower or equal to 25, BMI
>25

denotes the same index above 25, Chol
≤6.2

denotes cholesterol lower or equal to 6.2, Chol
>6.2

denotes cholesterol higher than 6.2, BP
≤130/90

denotes blood pressure lower or equal to
130/90, and BP

>130/90
denotes blood pressure higher than 130/90. Objects 𝑜

𝑖
are particular patients.

BMI
≤25

BMI
>25

Chol
≤6.2

Chol
>6.2

BP
≤130/90

BP
>130/90

𝑜

1
1 0 1 0 1 0

𝑜

2
0 1 0 1 0 1

𝑜

3
0 1 1 0 0 1

𝑜

4
1 0 1 0 1 0

𝑜

5
0 1 0 1 0 1

...
...

...
...

...
...

...
𝑜

𝑛
0 0 0 1 0 1

Table 5: Example of a part of a fuzzyGUHA tablewith variable BMI and one canonical adjective Sm. BMIExSm denotes the fuzzy set “Extremely
Small Body-Mass-Index”, BMISiSm denotes the fuzzy set “Significantly Small Body-Mass-Index,” and so forth. Objects 𝑜

𝑖
are particular patients

and numbers in the table are their membership degrees in particular fuzzy set.

BMIExSm BMISiSm BMIVeSm BMISm . . . BMIQRSm BMIVRSm
𝑜

1
0.5 0.6 0.7 0.8 . . . 1 1

𝑜

2
0.8 0.9 1 1 . . . 1 1

𝑜

3
0 0 0 0.1 . . . 0.3 0.4

𝑜

4
0 0 0 0 . . . 0 0

𝑜

5
0.6 0.9 1 1 . . . 1 1

...
...

...
...

...
...

...
...

𝑜

𝑛
0 0.5 0.8 0.9 . . . 1 1

add information that was lost by the transition from the
quantitative variable BMI into two boolean variables BMI

≤25

and BMI
>25

. More importantly, we also capture gradual
transitions between different groups of people. An object 𝑜

𝑖

(in our example a patient) might have membership degree
to the fuzzy set BMISm equal to 0.4(BMISm(𝑜𝑖) = 0.4)

and simultaneously 𝑜
𝑖
belongs to the fuzzy set BMIMe with

the degree 0.3(BMIMe(𝑜𝑖) = 0.3). This way we capture the
information about the patient that is on the transition from
being underweight to having ideal BMI index. This kind of
information cannot be captured by crisp intervals.

In this way we treat every quantitative variable so that the
final fuzzy GUHA table will look similarly to Table 6.

The fourfold table analogous to Table 3 is constructed also
for the fuzzy variant of the method. The difference is that
the numbers 𝑎, 𝑏, 𝑐, and 𝑑 are not summations of 1 s and 0 s
but summations of membership degrees of data into fuzzy
sets representing the antecedent𝐶 and consequent𝐷 or their
complements, respectively. Naturally, the fact that antecedent
𝐶 as well as consequent 𝐷 holds simultaneously leads to the
natural use of a t-norm [23]. In our case, we use the Gödel
t-norm that is the minimum operation. For example, if an
object 𝑜

𝑖
belongs to a given antecedent in a degree 0.7 and

to a given consequent in a degree 0.6, the value that enters
the summation equals to min{0.7, 0.6} = 0.6. Summation of
such values over all the objects equals the value 𝑎 in Table 3;
the other values from the table are determined analogously.
The rest of the ideas of the method remain the same.

By using fuzzy sets, we generally get more precise results,
and,more importantly, we avoid undesirable threshold effects

[24]. The further advantage is that the method searches for
implicative associations that may be directly interpreted as
fuzzy rules for the PbLD inference system.

Example 2. A confirmed association as

𝐶 (BMIExBi,CholVeBi) ⊏
𝛾

𝑟
𝐷(BPMLBi) (26)

may be directly interpreted as the following fuzzy rule:
“IF Body-Mass-Index is Extremely Big AND Cholesterol

level is Very Big THEN Blood Pressure is More or Less Big.”

This approach has been found very efficient and rea-
sonable, for example, for the identification of the so-called
Fuzzy Rule Base Ensemble [25] which is a special ensemble
technique for time series forecasting [26] that uses fuzzy
rules to determine weights of individual forecastingmethods.
Naturally, the overlapping of extensions of linguistic expres-
sions causes a massive generation of redundant associations.
However, there exist efficientmethods that detect and remove
these redundancies automatically; see [6, 7].

In Section 4.3, we apply this method to artificial variables
computed from the measures of water flow in order to obtain
interesting descriptions of water flow rate peak time shift.

4. Data Analysis

4.1. Data Description. As mentioned in the introduction, we
are provided only with the data from the measuring stations
and from theMath-1Dmodel implemented in the FLOREON
system. Unlike the Math-1D model, we are neither provided
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Table 6: Example of fuzzy GUHA table (compared with Table 4).

BMIExSm . . . CholExSm . . . CholExBi BPExSm . . . BPExBi

𝑜

1
0.5 . . . 0.7 . . . 0 1 . . . 0

𝑜

2
0.8 . . . 1 . . . 0 0.4 . . . 0

𝑜

3
0 . . . 0 . . . 0.1 0 . . . 0.4

𝑜

4
0 . . . 0 . . . 0.4 0 . . . 0.3

𝑜

5
0.6 . . . 1 . . . 0 1 . . . 0

...
...

...
...

...
...

...
...

...
𝑜

𝑛
0 . . . 0.8 . . . 0 0.5 . . . 0

with the measured precipitations nor with their forecasts nor
with other physical attributes or their estimations.The reason
is that this is the domain for the physical model Math-1D
and our task is not to build another competitive physical
model but to concentrate on the analysis of the existing one.
However, in order to deal with the (fuzzy) GUHA method,
we need to generate several features (artificial variables) and
investigate the question, which of those variables have some
influence on the performance of the model.

For the purpose of this investigation, we were provided
with the data set collected from different events (floods)
on the measuring station Svinov placed on the Odra River
(Svinov is a part of the Ostrava city through which the Odra
River flows. Naturally, the measuring station carries the same
name). The whole data set is divided into 57 simulations.
Each simulation captures a state of the system (provided real
values and model values) at some time point 𝑡 that is for
each simulation denoted by zero (𝑡 = 0). Each simulation
can be further divided into past and future data measured or
simulated on the hourly basis.

So, we can introduce the following two sets:
Past = {𝑡 | −119, −118, . . . , 0} ,

Future = {𝑡 | 1, 2, . . . , 48} ,

(27)

and the two time dependent variables, namely, the real water
flow rate at time 𝑡 and the originally modelled flow rate at
time 𝑡, denoted by 𝑟

𝑡
and 𝑚

𝑡
, respectively. Thus, we can also

introduce the following sets:
𝑟Past = {𝑟

𝑡
| 𝑡 ∈ Past} , 𝑟Future = {𝑟

𝑡
| 𝑡 ∈ Future} , (28)

and analogously
𝑚Past = {𝑚

𝑡
| 𝑡 ∈ Past} , 𝑚Future = {𝑚

𝑡
| 𝑡 ∈ Future} .

(29)
Indeed, the values 𝑟Future had been unknown at the time

point 𝑡 = 0 and they were added to the data later on only
for the comparison and efficiency evaluation purposes. The
values 𝑚Future are forecasts made by the original Math-1D
model that were at disposal at the time point 𝑡 = 0.

The aim is to analyze associations between input variables
that were at disposal at the time 𝑡 = 0 (𝑟Past, 𝑚Past, and
𝑚Future) and the dependent variable which was (for this stage
of investigation) chosen to be the peak-time 𝑟Peak, that is, the
time of maximum water flow rate:

𝑟Peak = arg max
𝑡∈Future

𝑟

𝑡
. (30)

For the sake of result quality evaluation, the data was split
into a training set and a testing set in the ratio of 2 : 1, that is, 38
simulations for the training and 19 simulations for the testing.

4.2. Features Generation and Reduction. For each simulation
𝑠, a set of features was extracted by applying several statistical
characteristics on different vectors of data that were derived
from 𝑟Past and 𝑚Past. Namely, the following statistics were
utilized: mean 𝑢, standard deviation 𝜎

𝑢
, median �̃�, mini-

mum min(𝑢), maximum max(𝑢), range (max(𝑢) − min(𝑢)),
interquartile range (𝑞

0.75
(𝑢) − 𝑞

0.25
(𝑢)), difference of the last

value and the mean (𝑢

0
− 𝑢), coefficient of variation CV

𝑢
,

difference of the mean and the median (𝑢 − �̃�), absolute
difference of the mean and the median |𝑢 − �̃�|, skewness
Skew(𝑢) and its absolute value |Skew(𝑢)|, kurtosis Kurt(𝑢)
and its absolute value |Kurt(𝑢)|, slope 𝛽

𝑢
computed from

linear regression of 𝑢
𝑡
= 𝜄

𝑢
+𝛽

𝑢
𝑡+ 𝜀

𝑢
(where 𝜄

𝑢
is the intercept

and 𝜀

𝑢
is the residual error), and trend strength Trend(𝑢)

computed as a 𝑃 value of the hypothesis 𝛽
𝑢
= 0.

All the statistics listed above were computed for each of
the following data 𝑢 ∈ {𝑟Past, 𝑚Past}. Additionally, the same
statistics were determined for the following further newly
created data vectors:

log (𝑢) = {log 




𝑢

𝑡









| 𝑡 ∈ {−119, −118, . . . , 0}} ,

diff = {𝑢

𝑡+1
− 𝑢

𝑡
| 𝑡 ∈ {−119, −118, . . . , −1}} ,

log (diff) = {log 




𝑢

𝑡+1
− 𝑢

𝑡









| 𝑡 ∈ {−119, −118, . . . , −1}} ,

(31)

where again 𝑢 ∈ {𝑟Past, 𝑚Past}.
Analogously, the same statistics have been utilized also

for 𝑢 = 𝑚Future with the only difference stemming from the
different time values; that is, they were applied to

log (𝑚) = {log 




𝑚

𝑡









| 𝑡 ∈ {1, 2, . . . , 48}} ,

diff
𝑚
= {𝑚

𝑡+1
− 𝑚

𝑡
| 𝑡 ∈ {2, 3, . . . , 48}} ,

log (diff
𝑚
) = {log 





𝑚

𝑡+1
− 𝑚

𝑡









| 𝑡 ∈ {2, 3, . . . , 48}} .

(32)

Finally, the time point of the forecasted peak,

𝑚Peak = arg max
𝑡∈Future

𝑚

𝑡
, (33)

was also added as an additional feature. It means that a total
amount of 205 new features were generated.
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Table 7: Example of a part of the fuzzy GUHA table for peak shift of PS of the peak forecasted by theMath-1Dmodel. Objects 𝑠
𝑖
are particular

simulations.

𝜎log(𝑟Past)ExSm . . . 𝑚Peak ExBi PSExSm . . . PSExBi
𝑠

1
0.97 . . . 0.62 0.45 . . . 0

𝑠

2
0 . . . 0.2 0 . . . 0.58

𝑠

3
0.75 . . . 0.97 0.66 . . . 0

...
...

...
...

...
...

𝑠

38
0.66 . . . 0.74 0.69 . . . 0

Table 8: Examples of fuzzy rules found by the fuzzy GUHAmethod.

Rule IF part THEN part
𝜎log(𝑟Past) CVlog(𝑟Past) 𝑚Peak PS

R
1

Sm VR Sm Ve Bi QR Sm
R
2

VR Sm Ve Sm Ve Bi Ro Sm
R
3

Ve Sm — Ex Bi ML Sm
. . . . . . . . . . . . . . .

R
69

VRMe QR Sm VR Bi Ro Me

From the pool of features, a regression method [27] was
utilized to select those, which had the highest significance for
a regression model. Particularly, the dependent variable

PS = (𝑟Peak − 𝑚Peak) , (34)

denoting the peak shift, was modelled with the linear
regression of all the generated features. After that, statistical
significance of all the regression coefficients was tested and
only features with 𝑃-value below 0.05 were selected.

In thisway,we ended the feature selectionwith the follow-
ing three features: 𝜎log(𝑟Past): standard deviation of log(𝑟Past);
𝐶𝑉log(𝑟Past): coefficient of variation of log(𝑟Past); and finally,
𝑚Peak: time point of the forecasted peak given by (33).

4.3. Fuzzy GUHAApplication. All computed features, which
were found statistically significant, as described in the previ-
ous subsection, are viewed as quantitative variables. In order
to use them in mining linguistic associations, we had to
convert them into fuzzy attributes. More specifically, we gen-
erated all the possible linguistic expressions (see Section 2)
and determined appropriate contexts for each of the variables,
and finally, for each simulation, we determined the degrees of
membership of the given simulation into the extensions of the
linguistic expressions for each variable. Such process turned
the three antecedent variables into 63 fuzzy attributes—each
related certain evaluative linguistic expression (21 expressions
for each variable; see Section 2.1).

The above introduced variable PS = (𝑟Peak − 𝑚Peak) is
the dependent variable whose dependence on the generated
attributes appearing in antecedents is being “explained” with
the help of the fuzzy GUHA method and the generated
linguistic associations; see Section 3.

Part of the resulting fuzzy GUHA table that contained 84
columns, 63 for antecedent attributes, and 21 for consequent
attributes is shown in Table 7.

Upon the choice of the multitudinal implicational quan-
tifier and the degree of confidence 𝛾 = 0.7 and the degree
of support 𝑟 = 0.1, the fuzzy GUHA generated considerably
many linguistic associations. After the application of the
redundancy detection and removal algorithm [7], we have
obtained 69 fuzzy rules Table 8 that have a twofold impor-
tance:

(i) they describe the situations, under which the disaster
management may expect some time shift of the water
flow rate peak, which is essential for precise warning
and evacuation of people or other preparations works
that may save material costs of the approaching
disaster;

(ii) connected to the PbLD inference mechanism, they
may be directly used to forecast the time shift of the
peak originally forecasted by theMath-1Dmodel and,
thus, to directly correct and precisiate the forecast by
the physical model.

5. Prediction, Results, and Evaluation

5.1. Results and Evaluation. The prediction model was eval-
uated on a testing dataset, that is, on data previously hidden
during the whole data-mining procedure. The testing dataset
consists of 19 simulations, each simulation containing hourly
flow rates for five days in the past and two days of predictions
for the future.

On the testing simulations, the prediction accuracy of the
time of culminating-peakwas compared between the original
Math-1Dmodel and the Math-1Dmodel newly adjusted with
GUHA association rules.

For each testing simulation 𝑠 and model—either original
(by Math-1D) or adjusted (with the help of fuzzy rules)—a
prediction error 𝑒(𝑠) was evaluated as follows:

𝑒 (𝑠) = 𝑚Peak (𝑠) − 𝑟Peak (𝑠) , (35)
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Table 9: A comparison of peak forecast errors 𝑒
𝑚,𝑠

among the original and the adjusted model. The table presents basic statistics computed
from 𝑒

𝑚,𝑠
evaluated on testing data.

Model Min 1st quart. Mean Stdev Median 3rd quart. Max
Original −0.33 0.31 0.603 0.52 0.46 0.88 1.92
Adjusted −1.33 −0.69 −0.205 0.65 −0.12 0.07 1.02

Table 10: Statistical tests of hypotheses of 𝑒
𝑚
= 0: Both Wilcoxon signed rank sum test and one sample 𝑡-test indicate the error 𝑒original to be

very likely nonzero. For adjusted model, the variability of 𝑒adjusted can be explained by randomness.

Model Wilcoxon test One sample 𝑡-test
𝑉 𝑃 value 𝑡 df 𝑃 value

Original 166 0.0004871 5.042 18 0.00008486
Adjusted 61 0.1776 −1.373 18 0.1866

where𝑚Peak(𝑠) is the peak time forecasted for simulation 𝑠 by
a givenmodel and 𝑟Peak(𝑠) is the time of real occurrence of the
peak in simulation 𝑠; see also formulas (30)–(33). Summary
of the comparison can be found in Table 9.

Briefly, it can be stated that the original model expects
the flood peaks approximately a half an hour later than in
reality, on the testing dataset. After adjustments made by our
GUHA model, the estimates become more accurate. More
precisely, the original (Math-1D) model error is on average
0.603 days (with standard deviation 0.521). The error of the
adjustedmodel is −0.205 days (with standard deviation 0.65).

A bias towards positive values of the original model was
also justified by the one sample Wilcoxon rank sum test [28]:
a null hypothesis of zero shift was rejected with 𝑃 value =
0.000487, on the original model. On the other hand, the same
hypothesis cannot be rejected for the adjusted model (with 𝑃
value = 0.1776). Similar results were also obtained with the
one sample 𝑡-test (see Table 10).

6. Conclusion

In this paper, we attempted to deal with an adjustment of
a physical model of water flow rate during floods with the
help of linguistic associations mining. As any physical model
based on differential equations (the Math-1D model, in our
case) is highly dependent on many unreliable parameters,
it seems reasonable to perform some real data analysis that
would inform us, when and under which conditions the
model is (in terms of the culminating water flow rate peak)
time lagged or vice-versa too much ahead.

We approached the task with the help of the fuzzy GUHA
method that automatically generates linguistic associations.
The provided data was firstly extended by a creation of
artificial variables describing various features of the data.The
resulting variables were later on translated into fuzzy GUHA
table using the so-called Evaluative Linguistic Expressions.
This table was used to mine the associations that may be
directly interpreted as fuzzy IF-THEN rules. Such interpre-
tation is beneficial not only because of its interpretability
but it can also be used jointly with the Perception-based
Logical Deduction inference method in order to predict
expected time shift of the flood peaks originally forecasted
by the physical model. Results obtained from this adjusted

model were statistically evaluated in order to confirm the
improvement in the forecasting accuracy.

Let us note that the data-mining analysis as well as
experimental evaluation was performed only on a single
measuring station Svinov placed on Odra River. Indeed,
as the physical model depends on many imprecise and
estimated parameters that may differ over the river flow,
each station would require its own analysis. However, as
the number of stations in the whole region is rather low
(9 stations placed on four main rivers), such approach is
obviously feasible.Thus the promising results give chance for
further and deeper analysis that could enhance the disaster
management bymore accurate physicalmodels with forecasts
adjusted by fuzzy IF-THEN rules. On the other hand, there
is a serious complication in the lack of the past data that
could be analyzed. The high number of previous floods is
unfortunately not accompanied by a sufficiently high number
of precise data. Aswe havementioned, therewas, for example,
a problem of measured zero water flow rates even during
massive floods due to uncalibrated measuring stations or due
to other unspecified reasons. This lack of reliable data may
significantly complicate the situation.

As the first step for future research, we plan to extend
our investigation by using measured past precipitations and
possibly also the forecasted future precipitations that are
already at disposal to the Math-1D model but that were not
at disposal to our data analysis presented in this paper.
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