1,526 research outputs found

    A biconjugate gradient type algorithm on massively parallel architectures

    Get PDF
    The biconjugate gradient (BCG) method is the natural generalization of the classical conjugate gradient algorithm for Hermitian positive definite matrices to general non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible to possible breakdowns and numerical instabilities. Recently, Freund and Nachtigal have proposed a novel BCG type approach, the quasi-minimal residual method (QMR), which overcomes the problems of BCG. Here, an implementation is presented of QMR based on an s-step version of the nonsymmetric look-ahead Lanczos algorithm. The main feature of the s-step Lanczos algorithm is that, in general, all inner products, except for one, can be computed in parallel at the end of each block; this is unlike the other standard Lanczos process where inner products are generated sequentially. The resulting implementation of QMR is particularly attractive on massively parallel SIMD architectures, such as the Connection Machine

    Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices

    Get PDF
    We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported

    QMR: A Quasi-Minimal Residual method for non-Hermitian linear systems

    Get PDF
    The biconjugate gradient (BCG) method is the natural generalization of the classical conjugate gradient algorithm for Hermitian positive definite matrices to general non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible to possible breakdowns and numerical instabilities. A novel BCG like approach is presented called the quasi-minimal residual (QMR) method, which overcomes the problems of BCG. An implementation of QMR based on a look-ahead version of the nonsymmetric Lanczos algorithm is proposed. It is shown how BCG iterates can be recovered stably from the QMR process. Some further properties of the QMR approach are given and an error bound is presented. Finally, numerical experiments are reported

    Approximation of the scattering amplitude

    Get PDF
    The simultaneous solution of Ax=b and ATy=g is required in a number of situations. Darmofal and Lu have proposed a method based on the Quasi-Minimal residual algorithm (QMR). We will introduce a technique for the same purpose based on the LSQR method and show how its performance can be improved when using the Generalized LSQR method. We further show how preconditioners can be introduced to enhance the speed of convergence and discuss different preconditioners that can be used. The scattering amplitude gTx, a widely used quantity in signal processing for example, has a close connection to the above problem since x represents the solution of the forward problem and g is the right hand side of the adjoint system. We show how this quantity can be efficiently approximated using Gauss quadrature and introduce a Block-Lanczos process that approximates the scattering amplitude and which can also be used with preconditioners

    Restarted Hessenberg method for solving shifted nonsymmetric linear systems

    Get PDF
    It is known that the restarted full orthogonalization method (FOM) outperforms the restarted generalized minimum residual (GMRES) method in several circumstances for solving shifted linear systems when the shifts are handled simultaneously. Many variants of them have been proposed to enhance their performance. We show that another restarted method, the restarted Hessenberg method [M. Heyouni, M\'ethode de Hessenberg G\'en\'eralis\'ee et Applications, Ph.D. Thesis, Universit\'e des Sciences et Technologies de Lille, France, 1996] based on Hessenberg procedure, can effectively be employed, which can provide accelerating convergence rate with respect to the number of restarts. Theoretical analysis shows that the new residual of shifted restarted Hessenberg method is still collinear with each other. In these cases where the proposed algorithm needs less enough CPU time elapsed to converge than the earlier established restarted shifted FOM, weighted restarted shifted FOM, and some other popular shifted iterative solvers based on the short-term vector recurrence, as shown via extensive numerical experiments involving the recent popular applications of handling the time fractional differential equations.Comment: 19 pages, 7 tables. Some corrections for updating the reference

    Evaluating the Impact of SDC on the GMRES Iterative Solver

    Full text link
    Increasing parallelism and transistor density, along with increasingly tighter energy and peak power constraints, may force exposure of occasionally incorrect computation or storage to application codes. Silent data corruption (SDC) will likely be infrequent, yet one SDC suffices to make numerical algorithms like iterative linear solvers cease progress towards the correct answer. Thus, we focus on resilience of the iterative linear solver GMRES to a single transient SDC. We derive inexpensive checks to detect the effects of an SDC in GMRES that work for a more general SDC model than presuming a bit flip. Our experiments show that when GMRES is used as the inner solver of an inner-outer iteration, it can "run through" SDC of almost any magnitude in the computationally intensive orthogonalization phase. That is, it gets the right answer using faulty data without any required roll back. Those SDCs which it cannot run through, get caught by our detection scheme

    Many Masses on One Stroke: Economic Computation of Quark Propagators

    Get PDF
    The computational effort in the calculation of Wilson fermion quark propagators in Lattice Quantum Chromodynamics can be considerably reduced by exploiting the Wilson fermion matrix structure in inversion algorithms based on the non-symmetric Lanczos process. We consider two such methods: QMR (quasi minimal residual) and BCG (biconjugate gradients). Based on the decomposition M/κ=1/κ−DM/\kappa={\bf 1}/\kappa-D of the Wilson mass matrix, using QMR, one can carry out inversions on a {\em whole} trajectory of masses simultaneously, merely at the computational expense of a single propagator computation. In other words, one has to compute the propagator corresponding to the lightest mass only, while all the heavier masses are given for free, at the price of extra storage. Moreover, the symmetry γ5 M=M† γ5\gamma_5\, M= M^{\dagger}\,\gamma_5 can be used to cut the computational effort in QMR and BCG by a factor of two. We show that both methods then become---in the critical regime of small quark masses---competitive to BiCGStab and significantly better than the standard MR method, with optimal relaxation factor, and CG as applied to the normal equations.Comment: 17 pages, uuencoded compressed postscrip
    • …
    corecore