
•,_b

Research Institute for Advanced Computer Science
NASA Ames Research Center

. _, AI )
/"

Conjugate Gradient Type Methods

for Linear Systems S 2 '_]
_rith Complex Symmetric Coefficient Matrices

Roland Freund

December 1989

Research Institute for Advanced Computer Science

NASA Ames Research Center

RIACS Technical Report 89.54

NASA Cooperative Agreement NCC 2-387

https://ntrs.nasa.gov/search.jsp?R=19920004458 2020-03-17T13:47:03+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42815043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Conjugate Gradient Type Methods

for Linear Systems

With Complex Symmetric Coefficient Matrices

Roland .Freund

December 1989

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.54

NASA Cooperative Agreement NCC 2-387





CONJUGATE GRADIENT TYPE METHODS

FOR LINEAR SYSTEMS

WITH COMPLEX SYMMETRIC COEFFICIENT MATRICES*

ROLAND FREUND#

Abstract. We consider conjugate gradient type methods for the solution of large sparse linear

system Az = b with complex symmetric coefficient matrices A = A T. Such linear systems arise

in important applications, such as the numerical solutlon of the complex Helmholtz equation. Fur-

thermore, most complex non*Hermitian linear systems which occur in practice axe actually complex

symmetric. We investigate conjugate gradient type iteration_ which are based on a variant of the

nov-symmetric Lanczos algorithm for complex symmetric matrices. In particular, we propose a new

approach with iterates defined by a qussi-n_vdmal residual property. The resulting algorithm presents

several advantages over the standard biconjugate gradient method. We also include some remarks

on the 6bvious approach to genera] complex linear systems by solving equivalent real linear systems

for the real and imaginary parts of z. Finally, numerical experiments for linear systems arising from

the complex Helmholtz equation are reported.

Key words, complex symmetric matrices, nonsymmetric I._nc_os algorithm, biconjugate gra-

clients, minimal r_idual property

AMS(MOS) subject classifications. 65F10, 65N20

I. Introduction. Conjugate gradient type methods -- used in combination

with preconditioning -- are among the most effective iterative procedures for solving

large sparse nonsingular systems of linear equations

(1.1) Az = b.

The archetype of these schemes is the classical conjugate gradient algorithm (CG

hereafter) of Hestenes and Stiefel [20] for Hermitian positive definite matrices A.

While most linear systems which arise in practice have real coefficient matrices

A and real right-hand sides b, there are some important applications (see [14] and the

references therein) which lead to complex linear systems. Partial differential equations
which model dissipative processes usually involve complex coefficient functions and/or

complex boundary conditions (see e.g. [23]), sad discretizing them yields linear sys-
tems with complex matrices A. A typical example for this category is the complex

Helmholtz equation

(L2) -Au - v,u + iv_u = .f,

where _r,,v_ are real coefficient functions, which describes the propagation of damped

time-harmonic waves as e.g. electromagnetic waves in conducting media. Further
applications, which give rise to complex linear systems, include discretizations of

the time-dependent Schr&iinger equation using implicit difference schemes, inverse
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scatteringproblems, underwater acoustics,eddy currentcomputations [2],numerical

computations in quantum chromodynamics, and numerical conforrnalmapping.

In all these examples, the resultingcoefficientmatrices A are non-Hermitian.

However, they stillexhibitspecialstructures. Often, A differsfrom a Hermitian

matrix only by a shiftand a rotation:

(1.3) A=eiS(T+iaI), T=T u Hermitian, aEC, 0ER, i:=x/Z'i ".

In almost allother cases,which lead to complex systems, the coefficientmatrix is

symmetric:

(1.4) A = A T iscomplex symmetric.

Note that the two families(1.3)and (1.4)overlap. The matrix (1.3) is complex

symmetric iffT isreal.

Surprisingly,when complex linearsystems (1.1)are solvedin practice,usuallyno

attempt ismade to exploitthe specialstructures(1.3)or (1.4).Indeed, there are two

popular approaches. The firstone (seee.g.[I])isto apply preconditioned CG to the

Hermitian positive definite normal equations

(1.5) AH Az -" Altb.

Of course,complex numbers can always be avoided by rewriting(1.1)as a reallinear

system forthe realand imaginary partsofz. The second popular approach isto solve

this realand, in general,nonsymmetric linearsystem by one of the generalizedCG

methods such as GMRES [32].Itturns out that inboth cases the resultingiterative

schemes tend to converge slowly.As a consequence, complex linearsystems have the

bad reputationofbeing difficultto solveby CG type methods. On the other hand, for

the classofshiftedHermitian matrices(1.3),thereare efficientCG type algorithms [9,

10, 14]for complex linearsystems in theiroriginalform (1.1).We referthe reader to

[14]fora detailedstudy and practicalaspectsof theseschemes. In [14]itisalsoshown

how the specialstructure(1.3)can be preserved by using polynomial preconditioning.

In thispaper, we are mainly concerned with CG type methods for linearsystems

(1.1)with coefficientmatrices of the second class(1.4).In particular,we consider

approaches based on a variantof the nonsymmetric Lanczos algorithm which was

successfullyused for computing eigenvaluesof complex symmetric matrices (see [28]

and [5,Chapter 6]). This Lanczos recursiongenerates basis vectorsfor the Krylov

subspace induced by A which are orthogonal with respectto a certainindefiniteinner

product. The standard way to obtain from thisbasisiterates,which approximate the

exact solutionof(1.1),isto enforcea biconjugategradient(BCG hereafter)condition.

Here,we propose a new approach which generatesiteratesvia a quasi-minimal residual

property. On typicalexamples, the resultingalgorithm displaysbetter convergence

propertiesthan the BCG approach. In particular,itproduces residualswhose norms

are almost monotonically decreasing,in contrastto the erraticconvergence behavior

which is typicalfor BCG. Moreover, the new technique eliminates one of the two

sourcesofpossiblebreakdown in the BCG approach.

The outlineof the paper isas follows.In Section 2, we discussthe Lanczos re-

cursionfor complex symmetric matrices and statesome of itstheoreticalproperties.

Section 3 dealswith a variantof the BCG algorithm for the specialmatrices (1.4).



In Section4, we propose the quasi-minimal residualapproach for complex symmet-

ric matrices. Section 5 containssome remarks on the problem of breakdown of the

complex symmetric Lanczos recursion.In Section 6,we are concerned with the issue

"complex versus equivalentreallinearsystems". In particular,some resultsare pre-

sented which indicatethat forKrylov subspace methods, such as CG type algorithms,

itisalways preferabletosolvethe originalcomplex system ratherthan equivalentreal

ones. In Section 7,some typicalresultsof numerical experiments for linearsystems

arisingfrom finitedifferenceapproximations to the complex Helmholtz equation (1.2)

are given. Finally,in Section8,we make some concluding remarks.

Throughout the paper, allvectors and matrices, unless stated otherwise, are

assumed to be complex. As usual, M = [_--_j_], M T = [mkj], and M/; = _T denote

the complex conjugate, transpose, and Hermitian matrix, respectively, corresponding

to the matrix M = [rnjk]. Moreover, we set ReM - (M+M)/2 and ImM =

(M - "_)/(2i) for its rear and imaginary part, respectively. The notation

K_(c, B) :-- span{c, Bc,... , Bt-lc)

is used for the kth Krylov subspace of C" generated by c _ C '_ and the n x n matrix

B. Furthermore, a(B) denotes the spectrum of B. The vector norm Ilzll - _ is

always the Euclidean norm. The set of all complex polynomials of degree at most k

is denoted by

]'[k :'- {p(A) _ 70 J_l _ Jr'''Jt''_k_ k [ '_0,71 .... ,Tk e C}.

Moreover, the coefficient matrix A of (1.1) is always n x n and, unless stated otherwise,
assumed to be complex symmetric. Generally, zk fi C", k - O, 1,..., denote iterates

for (1.1) with corresponding residual vectors r_ :- b - Ark. If necessary, quantities

of different algorithms will be distinguished by superscripts, e.g. zk_:_ and zkOM'¢

Finally, an iterative scheme for solving (1.1) is called a Krylov subspace method if its
iterates are of the form

(1.6) z_ _. zo + Kk(ro,A) or, equivalently, z, = zo + P(A)ro, P _. IIk-1.

Note that, in particular, CG type algorithms for (1.1) fall into this category.

2. The Lanczos algorithm for complex symmetric matrices. In this sec-
tion, we are concerned with a complex symmetric variant of the Lanczos algorithm

and its theoretical properties.

The Lanczos method [24] for general complex n x n matrices M is as follows (see

e.g. [35, pp. 388-394]):
ALGORITHM 2.1 (NONSYMMETRIC LA_CZOS METHOD).

(I) Start:
• Choose r0,s0 E C", r0,so _ 0;

• Set v-ro, tO-so, andvo-wo-O.

(2) For t = 1,2,... do:

• Compete _ = wTv;

• U w7= O: Stop;
• Otheru_ise, choose _k,Tt E C with OJ,Tt = 17;

• Set vk = vlTt and w_ = to/_t;

• Compute ak = w_Mvk;

• Set v - Mvt -- otvt -- _kV_-l;
• Set w = MTwt -- c_kwk -- 3'kwk-1.



As Lanczos pointed out [26, p. 176], work and storage of Algorithm 2.1 can
be halved if M is Hermitian resp. complex symmetric, by choosing starting vectors

so = _0 reap. so - r0. The resulting Hermitian Lanczos method has been studied

extensively (see [18, Chapter 9] and the references therein). In contrast, the literature

on the complex symmetric variant is scarce and restricted to the application of the

algorithm to computing eigenvalues of complex symmetric matrices (see Moro and

Freed [28] and Cullum and Willoughby [5, Chapter 8]). Here, we hope to convince the
reader that the complex symmetric Lanczos algorithm is also very useful for solving

linear systems.
The basic method is as follows:

ALGORITHM 2.2 (LANCZOS METHOD FOR Z-" AT).

(1) Start:

. • Choose r0 E C", r0 _ 0;
• Setvl =to andvo=O.

(2) For
Q

k = 1,2,... do:

If/3k = O: Set m0 = k- 1, and stop;

Otherwise, set vt = v_/_k;

Compute (_t = v_Avk ;

Set Vt+l : Art - _tvt - _tvt-l.

In the next proposition,some elementary propertiesof Algorithm 2.2. are listed;

proofscan be found in [5,Chapter 6].We set

". ".. ".. _k

... 0 #t at

Moreover, m. = m.(r0,A) := dimKn(ro,A) denotes the grade of r0 with respect to
A (cf. [35, p. 3"/]). We remark that m. >_.1 is the smallest integer such that Kin. is
an A-invariant subspace of C n. Equivalently, if A is nonsingular wad re = b - Azo,

m. > 1 is the smallest integer such that

(2.2) A-Xb E zo -t- Km.(ro,A).

PROPOSITION 2.3.

(a) In ezact arithmetic, Algorithm _._ stops after a finite number of steps k =
mo + 1 and 0 < mo <_ m.. Furthermore, V,no+l = 0 if mo = m. ('regular termina-

Zion'), and _m,+l _ 0 if mo < m. ('breakdown').

(b) Fort= 1,2,... ,too:

(2.3) vTv.i= { O, ifk_j j--1,2,...,mo,I, ifk=j'

(2.4) K,.(ro, A) = span{,,x,,,2,.. •, vk},

(2.5) AVk=VkTk+[O 0 ... 0 _+I].



Notice that, by (2.3-4), the Lanczos vectors vl,... , vk form an orthonormal basis

for Kk(ro, A) with respect to the (non-Hermitian) inner product

(2.6) (x, 9) := e c".

In particular, if Algorithm 2.2 terminates regularly, it generates a basis of the ai_ine

space z0 -t- Km,(ro, A) which, in view of (2.2), contains the exact solution of Az = b.

Next, we remark that (2.6) is the proper (cf. Craven [4]) inner product for

complex symmetric matrices. Unfortunately, it has the defect that there exist vectors

v E C n which are quasi-null [4], i.e. (v, v) - 0, but v _ 0. Consequently, it can not

be excluded that Algorithm 2.2 actually breaks down. Indeed, in view of part (a) of

Proposition 2.3, a breakdown occurs if one encounters a quasi-null vector vk. The
phenomenon ofbreakdown willbe discussedfurtherin Section5.

W.e conclude thissectionwith a resulton the connectionofthe complex symmet-

ricvariant2.2 with the generalLanczos Algorithm 2.1. Unlike Hermitisn matrices,

complex symmetric matrices do not have any specialspectralproperties.Indeed (see

e.g. [21,Theorem 4.4.9]),any complex n x n matrix issimilarto a complex sym-

metric matrix. This resultentailsthat the generalnonsyrnmetric Lanczos Algorithm

2.1 differsfrom the complex symmetric version2.2 only in the additionalstarting

vector so which can be chosen independently of ro in 2.1. A strictstatement of this

correspondence isgiven inthe following

THEOREM 2.4. Let M be a complex n x n matriz and roE C n, r0 _ 0.

(a) There ezists a complex symmetric n x n matriz A which is similar to M:

(2.7) M = XAX-X where X is nonsingular.

(b) Set ÷o -- X-Xro and so = X-T_o. Let vt, wt,vtt,[3t,Vt resp. vt,&t,_t be

the quantities generated by Algorithm f.1 (starting with to,so) reap. Algorithm _.2

(starting with to). Let mo denote the termination indez for Algorithm 2._. Then, for
k = 1,2,...,too:

k k

j----1 _J j_-I

Proof. Only part (b) remains to be proved. First, by means of (2.7), we rewrite
Algorithm 2.1 in terms of A, X-Ivy, x_rwk. By comparing the resulting iteration with

Algorithm 2.2 and using induction on k, one readily verifies (2.8). D

After these preliminaries, we finally turn to linear systems (1.1) now. In the

sequel, it is always assumed that A is nonsingular.

3. The biconjugate gradient algorithm for complex symmetric matri-

ces. In his celebrated papers [24, 25], Lanczos also proposed a scheme, closely related

to Algorithm 2.1, for solving general non-Hermitian linear systems, namely the bicon-

jugste gradient algorithm (BCG). We refer the reader to [11, 31, 22] for a detailed
discussion of the BCG approach.

Like Algorithm 2.1, BCG for general linear systems is started with two vectors:

the residual r0 = b - Azo of the initial guess z0 and a second vector s0 _ 0. We

remark that s0 is still unspecified. Due to the lack of a criterion for the choice of s0,

one usually sets s0 = r0 in practice. For the case of complex symmetric matrices A,

it is straightforward to show that, in analogy to the complex symmetric variant 2.2



of thegeneralLanczosAlgorithm2.1,thechoiceso - r0 results in a scheme which

requires only half the work and storage of general BCG. The resulting procedure is as
follows:

ALGORITHM 3.1. (BCG for A = A T)

(1) Start:
• Choose z0 E C";

• Set p0 - r0 - b- At0 and compute rToro.

(2) For k = 1,2,... do:

• Compute Apk-1 and pT_lApk_l;

• lfp__lApk_l = 0 or rT_lrk_l = O: Set ml - k- 1, and stop;
T T

• Otherwise, set 5k -- rt_irk-i/pk_iApt-1;
• Compute x_ = z_-I + 5kpt-1 and rt = rt-i -- _kApt-l;

. • Compute setp, = r r, lrL,r _,;
• Compute pt = rk + ptp_-l.

In the sequel, BCG always refers to the complex symmetric Algorithm 3.1. Next,
we list some basic properties of BCG which follow readily from results (e.g. Jacobs

[22]) for the general biconjugate gradient method.
PROPOSITION 3.2.

(a) In exact arithmetic, Algorithm 5.1 stops after a finite number of steps k =

ml + i and 0 <_ m] _< m,. Furthermore, Xm_ = A-lb if ml = m, (_regular termina-

tion'), and zm, # A-lb if rex < m, ("breakdown").

(b) Fork= 1,2 ..... ml:

(3.1) r__xry__ = O,k # j, j = 1,2,...,ml,

(3.2) Kk(ro, A) -- span{ro, rl, ..., re-l}.

(c) Let k E {1,2,... ,ml}. Then, zk is uniquelg determined bit the Galerkin
condition

(3.3) (b-A  )Tv=0 /oral: VeKk(ro, A), =k= o+Kk(ro,A),

with respect to the inner product (_. 6).

By comparing (3.1-2) with (2.3-4), we conclude that rt-1 is parallel to the Lanc-

zos vector eL generated by Algorithm 2.2. More precisely, one easily verifies that

(3.4) rt-t = (-1)t-161 -" "6t-tSx " ._t-t/3kvk, k = 1,2,... ,ml.

Notice that there are two different causes for breakdown of Algorithm 3.1. The first

one, namely the occurrence of a quasi-null residual vector rk-l, is, in view of (3.4),

equivalent to the breakdown of the complex symmetric Lanczos Algorithm 2.2. In

addition, Algorithm 3.1 breaks down if one encounters a waLrch direction pt-1 # 0

with pT_lApt_ 1 = 0. This second cause of breakdown is more severe than the first

one. As we will see in Section 4, it occurs if no Galerkin iterate (3.3) exists.
Closely related to the biconjugate gradient method for general linear systems

(1.1) is the conjugate gradients squared algorithm (CGS hereafter) which was recently

proposed by Sonneveld [33].
ALGORITHM 3.3. (CGS for general A)

(I) Start:
• Choose =o E C" and so E C", s0 _ 0;

• Set po = uo = ro = b - Azo and compute sToro.



(2) For k = 1,2,... do:
• Compute Apk-l and soTApk_l;

• lfsoTApt_l -- 0 orsoTrk_l -- O: Stop;

• Otherwise, set c_t -" sTort-1/sToApk-1;

• Compute qt = ut-1 - c_tApk-1;

• Compute zt -- zt-1 -{- _t(ut-1 + *t) and rk - rt-1 - otA(ut-1 -F qt);

• Computesro,t ..d set _k= sro,t/sro,t-1;
• Compute ul -- rt + _tqt;

• Compute Pt = uk +/3t(qt + _tPt-1)-
/

Notice that, like general BCG, CGS has a second unspecified starting vector so.

However, unlike BCG, even with the special choice so = r0, CGS can not exploit

the co_nplex symmetry of A. In particular, for A = A T, Algorithm 3.3 requires per

iteration about twice as much work as the BCG Algorithm 3.1.

Finally, as a special case of the general connection [33] between the CGS and

BCG approaches, we have the following

PROPOSITION 3.4. Let A = A T, ro -- roBCU -- royes, and, in Algorithm 3.3,
so -- to. Then, for k = O, 1,... , ml,

r_ = pt(A)r0 .nd r_ = (p_(A))%

.for some Pt E fit with pt(O) = 1.

4. A quasi-minimal residual algorithm for complex symmetric matri-

ces. In this section, we propose a new approach for solving complex symmetric linear

systems. The method is based on the complex symmetric Lanczos Algorithm 2.2. For

simplicity, we assume throughout this section that, in exact arithmetic, Algorithm 2.2

terminates regularly, i.e.

(4.1) f_k _ 0 for k = 1,2,... ,m,, _m°+l = 0.

Moreover, let always be k E {1, 2 .... , rn,} in the following.

4.1 Basic approach. Let zt be the kth iterate of any Krylov subspace method

(1.6). Then, by (2.4) and with Vt as defined in (2.1), we have

(4.2) zt=zo+Vtzt where zt EC t.

Using (2.5) and re = f_l vl, it follows from (4.2) that

(4.3) rt = b- A=_= ro-AVe,= _,_,- Vt+_k,t= V_+,(_,_,-_izt).

Here, el := [I 0 .-- 0] 2` denotes the first unit vector,

[ n with :=[o ... o(4.4) :rt := Lt_k,,etj

and, if k = rn_, un_.+a := 0. Recall that Tt was defined in (2.1).

Clearly, the aim is to choose zt in (4.2-3) such that rk _ 0 as good as possible.

In the BCG approach, this isattempted by enforcingthe Gaierkin condition (3.3).



Using (2.3-4)and (4.3),one easilyverifiesthat (3.3)holds iffrk and vk+1 are parallel

or,equivalently,zk isa solutionof the linearsystem

(4.5) T_z = _lel.

Note that, by (4.1), (4.5) is inconsistent if Tt is singular. Thus, we have the following
PROPOSITION 4.1. A BCG iterate xt_:U satisfying the Galerkin condition (3.3)

exists if, and only if, Tt is nonsingular. Moreover, if it exists, it is unique and given

by

(4.6) x_sOG = zo + Vkzk and rt = -_t+l(zt)tv_,+l

where zk is the solution of (4.5) and (zk)t denotes its kth component.

Proposition 4.1 demonstrates the defects of the BCG approach. Simple examples

show that singular Tt may indeed occur, and then, in view of Proposition 3.2, the BCG

Algorithm 3.1 would break down in exact arithmetic. In floating-point arithmetic, such
a breakdown is unlikely to happen. However, Tt may still be close to singular and

then the Galerkin condition (3.3) defines a poor approximation to the true solution

of (1.1). This is the reason for the typical erratic convergence behavior with wildly
oscillating residual norms.

Obviously, the question arises whether there is a better strategy than (3.3) for

choosing zt in (4.2-3). Ideally, one would like to have the minimal residual (MR)

property

(4.7) IIb- Az_ll = .e.o_ro,A) lib-- Aztl = _ec_minIIVt+a (Hie1 - Ttzt)ll.

However, by (2.3), in general (see Theorem 4.4 for an exception) the columns of Vt+l
are orthonormal only with respect to (2.6) rather than the Euclidean inner product

(z, y) = ysz. Consequently, solving the least-squares problem on the right-hand side

of (4.7) results in an algorithm for which work and storage per iteration step k grows
linearly with k. Hence, if one insists on a "true" iterative scheme with constant work

and storage per iteration, this excludes the MR method.
Here, we propose the quasi-minimal residual (QMR) approach as a substitute for

(4.7). Let

flt+1= diag(wl,w2,....wt+1) with _j > 0 for all j

be a given positivediagonal weight matrix and rewrite(4.3)in the form

(4.s) rk= -
Instead of [[rk[] as in (4.7), one may at least minimize the vector of components in the

representation (4.8) of rk:

(4.9) min II_xa_ea - t_+a_tzll.
_EC"

Hence, we definethe iteratesof the QMR method as follows:

(4.10) zt = x_ R = zo + Vtzt where zt E C k is the solution of (4.9).

Notice that, ftt+12_t is a (k + 1) x k matrix which, by (4.4) and (4.1), has full rank.

Thus, the least squares problem (4.9) always has a unique solution zt.

Clearly, the QMR approach still depends on the weights wj. A natural choice is

(4.11) _j = Ilvjll, J = 1,2,... ,t+ 1,

so that all basis vectors vj/tvj in the representation (4.8) of rt have Euclidean length 1.

Our numerical tests (cf. Section 7) also confirmed (4.11) as the best strategy.



4.2 Practical implementation. Next,wepresentanalgorithmfor the actual

computation of the QMR iterates (4.10). The derivation is similar to that of Paige

and Sannders' SYMMLQ and MINRES algorithms [20]forrealsymmetric matrices.

By (4.4),(2.1),and (4.1),flk+_:_4isa tridiagonal(k+ i) x k matrix with full

column rank. Hence, itadmits a QR factorizationof the type

(4.12) Qk+1_k+iT4= [Rko]
where Qk+l is a unitary (k + 1) x (k + 1) matrix and Rt a nonsingular matrix of the
form

Rk :--(4.13)

rG 72 03 0 ... 0

0 I2 _ "'. "'. "

o . is . ". o

". ". "- Ot

". ". _4

0 ......... 0 G

The decomposition (4.12)can be generated by means of a seriesofk complex Givens

rotations(e.g.[18,p. 47])

Q(ci,_y) . [ c_ _i ]-sy ci ' cieR'sieC' c_+lsY[2=l' j=l .... ,k.

In particular, (4.12) is easily updated from the factorization Q41"_4_54_1 = Rt-1 of the

previous step by setting

and computing ct, s4 and the new elements 04, Wt, I4 of R4 as follows:
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Notice that,in view of (4.14),tk differsfrom the previous vectortk-] only by itskth

component rk :- (tk)k--ck_. Next, we definevectorspj via

(4.18) [PI P2 "'" Pk] := VkRk "i.

Finally,using(4.17-18)and (4.13),one obtainsthe recursion

zt=zt-1+rtpk, where pt-'_(vk--r}tpt-1--Otpt-2),

for the QMR iterates.In combination with Algorithm 2.2,the followingimplementa-

tionresults:

ALGORITHM 4.2 (QMR METHOD).

(1) Start:
• Choose zo E C";

• Setvl =b-Azo,vo=po=tT-l=O;

• setZl= (_T_,)I/2,_i= _,, c0= c__= i,onas0= ,_i= 0.

(2) For t = 1,2,... do:

• If_k = O, stop: zt_ I solves Az = b.
• Otherwise, compute vt - _t//3t and _k -- vTAvk;

• Se__+_ = Av_- _ - _v,__, _+, = (_T+:_+d_/_;
• Compute Ok, l?t, (t, ck, and st, using formulas (_.15);

• Set pt = (vk - _kP_,-I -- OJ,pt-2)/(_;
• Set rt = c_,_'k, _'J.+l = -sk_'t;

• Compute zk = zk-1 + rkp_,.

The assumption (4.1)guaranteesthat,in exact arithmetic,Algorithm 4.2 stops

for k = rn, + I and, by (2.2),zt-1 isindeed the solutionof (1.1)then. However,

in floating-pointarithmetic,thisfiniteterminationproperty of the Lanczos recursion

isno longervalid,and the stopping criterionstated inAlgorithm 4.2 isnot usefulin

practice.Instead,one should terminate the iterationas soon as l[rtl[issufficiently

reduced. We remark that rt isnot directlyavailablein Algorithm 4.2. However, in

view of (4.19),ifone updates one additionalauxiliaryvector,namely

ck_t+l ho := ro,
hk "* hk-1 "!- ]$IS2." .$k]2_Tk+l Vk+I,

then l[rkl[_n be computed via

II_kll= Isls2-'-skff" Ilhkll•

Finally, notice that, for the weighting strategy (4.11),

IIv_ll-
.JsT s + tTt

s := Re_t, t :=Im_k,

can be obtainedwithout extracostduring the computation of_T_t = srs--tTt+2isT_.
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4.3 Properties. In this subsection, we list some further properties of the QMR
approach.

PROPOSITION 4.3. For k - 1, 2,... , rn,:

(a:

(4.19)

(6) The BeG ite_te zkBc_ aefined bU(S.S) ezists if, anct onty if, ek # o. Mo_over,
if ct ¢ O, then

(4.20) _ = x_ + (_,/ck)p,,
(4.21) .. ll"_ll= ]wl/_xsls_"""sk-ls_]"ll_*+,ll/(_'*+_Ic*))-

Proof. (a) By (4.17), (4.12), and (4.8), we have

(4.22) rk_tR = _k+at_k+a where _k+_ := Vk+lf2_+10_+l •

With (4.14), it follows that successive vectors w_+l and wk are connected by

(4.23) if:k+1 -- --a"_t + (cl,/wk+a)v_+x.

Finally, by combining (4.23) and (4.22) and using rk+1 = -sk_, one obtains (4.19).

(b) First, we note that (4.12), (4.4), and (4.14) imply

(4.24) Q'a'T'=[IkO-_ c.°] R'"

Thus, by Proposition 4.1, z_B°_ exists iff ck _ 0. Now assume c_ ¢ 0. Using (4.5-6),
(4.24), and (4.17), we get

(4.25) z_ - xo + V, kz_ where zk_x; - R_" ['_,/ck "

By comparing (4.25) with (4.17), (4.20) follows. For the proof of (4.21), notice that,

by (4.25), (4.13) , and the formula for at in (4.15),

(4.26) /_k+l(z_)t = _k+l_/(_ct) = _sk/(wt+lct).

Furthermore, Algorithm 4.2 shows that

(4.27) Jr_J = J_aJ_ss_ s_.. "s_-a J.

Finally, by inserting (4.26-27) into the formula (4.6) for r_sex;, we arrive at (4.21). 17

In view of part (b) of Proposition 4.3, the QMR method has the additional feature

that it also yields a/l existing BCG iterates. This is in contrast to the BCG Algorithm

3.1 which breaks down as soon as the first nonexisting BCG iterate is encountered. We
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remark that, by (4.21), [[r_H can be computed without extra cost from quantities

which are generated in Algorithm 4.2 anyway. In particular, one may monitor IIr_X_ll

during the course of the QMR algorithm, and, whenever the actual BCG iterate is

desired, compute zkBey via (4.20).
There is an important special case for which the QMR method (with weighting

strategy (4.11)) is even equivalent to the MR approach (4.7). Consider the subclass
of (1.3) of complex symmetric matrices of the form

(4.28) A-T+icrI, T=T r real symmetric, _>0.

Assume that r0 G Rn (this can always be achieved by a proper choice of z0). Then, it is
easily verified that the Lanczos vectors vt generated by Algorithm 2.2 are all real and

therefore, by (2.3), orthonormal with respect to the usual Euclidean inner product.

In particular, by (4.11), wj __ 1, and the least squares problem (4.9) is equivalent to

the °he on the right-hand side of (4.7). Hence we have the following

THEOREM 4.4. Let A be of the form (4._8) and ro E R". Then, the iterates zk

generated by Algorithm ,[.2 (with wj - 1) satisfy the minimal residual property (4.7).

5. On the breakdown of the complex symmetric Lanczos algorithm. Re-

call that, throughout Section 4, possible breakdowns of the complex symmetric Lanc-

zos recursion were explicitly excluded by assuming (4.I). In this section, we make

some remarks about the general case and derive a theoretical result concerning so-
called incurable breakdowns.

First, let us return to the nonsymmetric Lanczos Algorithm 2.1. It stops as soon
as wTv = 0 occurs. If this is caused by v = 0 or w = 0, then one has found an invariant

subspace. Unfortunately, Algorithm 2.1 may also break down, i.e. stop with wTv = 0

and v, w _ 0 (see e.g. [35, p. 389]). Although this happens very rarely in practice, the

possibility of such breakdowns has brought the nonsymmetric Lanczos method into

discredit and, certainly, kept many people from actually using the algorithm. However,

especially due to the efforts of Taylor [34], Dranx [6], Parlett, Taylor, and Liu [30], and,

most recently, Gutknecht [19], the phenomenon of breakdown is now well understood.

Moreover, there are look-ahead [34, 30, 19] variants of the Lances algorithm which

allow to leap -- except in the very special case of an incurable breakdown [34] -- over
those iterations in which the standard algorithm would break down.

Here, we only sketch the basic idea of the look-ahead procedure for the special

case of the complex symmetric Lanc_os method. For a more detailed description of

the look-ahead approach (for the general case) the reader is referred to [19]. Assume
that breakdown occurs in Algorithm 2.2. In view of Proposition 2.3 this happens iff

there is no complete set of re, Lancz.os vectors vt E Kt(r0,A), k = 1,... ,m,, which

are orthonormal (of. (2.3)) with respect to the indefinite inner product (2.6). Clearly,
there exists a maximal subset

(5.1) {tl,t_,... ,t:} c= {1,2,... ,m.}, 1 < tl < ks <-.. < tj < ,n.,

such that for each j = 1, 2,..., J there exists a vector vtj E Kti(r0, A) satisfying the
orthonormality relations

(5.2) v_#v= 0 forallv f.Kt#-1(ro, A) and v_vk# = I.

By the definitionof Krylov subspaces,Kk(ro, A) = {P(A)ro [ P E Ilk-l},and espe-

cially
@

(5.3) ut# = Pt#-,(A)ro with Ptj-I e Ht#-l.
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Therefore, we can rewrite (5.2) in terms of polynomials:

(5.4) (Pk,_I,P)=O forallPEHk_-2, (P_i-1,Pk,-1)#O,

with the indefinite inner product

(5.5) (P, Q):= rToP(A)Q(A)ro.

A polynomial P_i_1 E Ilk#-1which fulfills(5.4)iscalleda regularorthogonal (with

respect to (5.5))polynomial of degree kj - I. It iswell known [6, 19] that three

successiveregularorthogonal polynomials are connected via a three-term recurrence.

By (5.3),itfollowsthat there isa corresponding three-term recurrencerelatingthe

vectorsvk#-l,vti,and vtj+1.The look-ahead Lanczos procedure isa modificationof

Algorithm 2.2 which -- based on thisthree-term relation-- generatesthe vectorsvk#,

j - 1,2,...,J. These vectorscan then be completed to a basisof Ktj by setting,e.g.

vk=Ak-k'Vk# for k=kj+l, kj+2,...,kj+l-l,j--O, 1 .... ,J-1.

(cf. [17]). Here, for j = 0, we set k0 := 1. We remark that the resulting look-ahead

Lanczos algorithm produces block tridiagonal matrices Tkj, j -- 1,..., J, of the type

(2.1) with (kj - kj-1) x (kj - kj-l) matrices at i on the block diagonal.
In exact arithmetic, the outlined algorithm terminates with the block tridiagonal

Tkj. Suppose that kj = m_ in (5.1). Then Ttj represents the restriction of the matrix

A to the A-invariant subspace Km.(r0, A). Obviously, in view of (2.2), the solution of

(1.1) can then be computed from the quantities generated by the look-ahead Lanczos
procedure. On the other hand, if kj < m, in (5.1), it is not possible to obtain the

solution of (1.1) by means of the Lanczos process. For this reason, the case k# < m,
is called incurable breakdown.

Next, we derive a criterion for the occurrence of incurable breakdown in the

complex symmetric Lanczos algorithm. In the following, it is assumed that A is

diagonalizable. Then (e.g. [21, Theorem 4.4.13]), ,4 has a complete set of orthonormal
(with respect to (2.6)) eigenvectors. In particular, r0 can be expanded into eigenvectors

of A. More precisely, by collecting components corresponding to identical eigenvalues,

we get

(5.s)

m.

ro --_ E glut

I=1

where p: _ 0, Au! --Alul,and, ifI# j, A: # Aj, u_uj = O.

Notice that, unless all eigenvalues of A are distinct, quasi-null vectors ul may occur

in (5.7). In view of the following theorem, this is equivalent to incurable breakdown.
THEOREM 5.1. Let A = A T be a diagonalizable n x n matriz and ro E C". Then,

in (5.1), kj = rn. if, and only if, the eigenvectors in the ezpansion (5.6) of ro satisfy

(5.7) u_ut # O for all I--1,... ,m,.

Proof. We need to show that (5.7) isequivalentto the existenceof a regular

orthogonal polynomial ofdegree rn_- 1 with respectto the innerproduct (5.5).From

the general theory of orthogonal polynomials, itiswell known (e.g.[3,pp. 11-12])
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that regular orthogonal polynomials of degree k exist iff the corresponding moment

matrix Mk := (Pj+l)jJ=0 ..... k is nonsingular. For the case of (5.5), by (5.6), we have

frt.

(5.8) pj := rToAJro 2 j 7"=_paAtulua, j = 0,I,....
I----1

Note that moment matrices are in particularHankel matrices. By applying Kro-

necker'sTheorem on the rank ofinfiniteHankel matrices [16,pp. 204-207] to M_ :=

(pj+a)jJ=0,1,...,itfollowsthat

(5.9) rank Moo=rankMt =rankMm-1 =m for all k>m-1,

where m isthe number of polesofthe rationalfunction

Oo

S(z):=
Pj

;TTr"
j=o

Using (5.8) and X"°° AJ/z j+l 1/(z At), onez..,j=0 1 / -- - obtains the following expansion of f:

(5.10) f(z) = z--"_l for all [z[ > ,=l,...max,,_.la_l.
1=I

In particular, by (5.10), m < m, with equality holding iff (5.7) holds true. Hence, in

view of (5.9), M,n.-I is nonsingular iff (5.7) is fulfilled. This concludes the proof. [7
As mentioned, (5.7) is guaranteed if A has only simple eigenvaiues. Thus we have

the following
COROLLARY 5.2. If A = A T is an n X n matrix with n distinct eigenvalues, then

incurable breakdowns can not occur in the complex symmetric Lanczos Algorithm _._.

6. Complex versus equivalent real linear systems. In this section, we study

connections between (1.1) and its equivalent real versions. Unless stated otherwise, A

is now assumed to be a general complex n x n matrix.

6.1. Equivalent real linear systems. By taking real and imaginary parts in

(1.1), we can rewrite (1.1) as the real linear system

(6.1) A. ImzJ = Im , A.:= ImA PLeA J"

A second realversionof (I.I) is

(6.2) A** [-ImzJ = lmb ' A** := ImA

Obviously, (6.1) and (6.2) are the only essentially different possibilities of rewriting

(1.1) as a real 2n x 2n system. Furthermore, note that A, is nonsymmetric iff A _ A//
is non-Hermitian, whereas A** is symmetric iffA = A T. Hence, for complex symmetric

linear systems the approach (6.2) appears to be especially attractive since it permits

the use of simple CG type methods such as SYMMLQ and MINRES [29] for real

symmetric matrices.
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In the followingproposition,we collectsome simplespectralpropertiesof A, and

A**.
PROPOSITION 6.1.

(a) Let J = X-lAX be the Jordan normal form of A. Then .4. has the Jordan

normal form

(6.3)

In particular,

[0 = X,'.4,X, where X, := _ -iX

(6.4) ,_(A,) = ,_(A)U,_(a).

(.b) The matrices A** and -A** are similar. In particular,

(6.5) -A,A,-A G a(A_) for all A E a(A_).

Moreover,

_(a**)= {_e c I_2 _ _(XA)}.

(c) Let A = A T be complex symmetric. Then, there exists a singular value de-

composition (the so-called Takagi SVD) of A of the form

(6.6) A = U_U T, U unitary, E = diag(tra,_2,... , _,) > 0.

Moreover, A_ is a real symmetric matrix with spectral decomposition

Z where Y=ReU, Z=ImU.

Proof. (a) First, note that

(6.a)
X. = S where S := _ -iln I. J is unitary.

In particular, (6.8) shows that with X also X. is nonsingular. One readily verifies
that

and, in view of (6.8),thisimplies(6.3).(6.4)isan obvious consequence of (6.3).

(b) Since

[0 [0 0-1-1_ .4_ -I. -- -A_,

the real matrices A** and -.4** are similar. Hence, (6.5) holds true. The relation

between a(A**) and a(AA) is known (see [21, p. 214] for a proof).

(c) (6.6) is the well-known Takagi singular value decomposition for symmetric

matrices (e.g. [21, Corollary 4.4.4]). By rewriting (6.6) in terms of the real and

imaginary parts of A and U, one obtains (6.7) (cf. [21, pp. 212-213]). 13

Roughly speaking, Krylov subspace methods are most effective for coefficient

matrices A whose spectrum, except for possibly a few isolated eigenvalues, is contained
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in a half-plane which excludes the origin of the complex plane. On the other hand,

if this half-plane condition is not satisfied and if a large number of eigenvalues of A

straddle the origin, usually the convergence of CG type algorithms is prohibitively

slow. Typically, in these situations (see [7, 12, 13] for examples), iterations based on

Krylov subspaces generated by A offer no advantage over solving the normal equations

(1.5) by standard CG. See Theorem 6.4 for a theoretical result along these lines.
For complex linear systems which arise in practice the half-plane condition is

usually satisfied. Indeed, mostly

(6.9) a(A) C {AECIImA>0}.

However, by rewriting (1.1) as real linear systems (6.1) resp. (6.2), one deliberately
creates coefficient matrices whose spectra are most unfavorable for Krylov subspace

methods. The case (6.2) is especially bad since, in view of (6.5), a(A**) is symmetric

with respect to real and imaginary axis and hence the eigenvalues always embrace the

origin. Similarly, by (6.4), the coefficient matrix A_ of (6.1) in general has eigenvalues
in the upper as well as in the lower half-plane. In particular, if (6.9) holds and, as

in most applications, the Hermitian part (A + A_)/2 of A is indefinite, the spectrum

of A, straddles the origin and the half-plane condition is not satisfied for .4,. The

following example illustrates this behavior.
Ezample 6.2. Consider the class (4.28) of complex symmetric matrices A = T +

iaI where T = T "r is real and o" > 0. Obviously,

a(A) = {_ = U + ia ] # E a(T)}
(6.10)

C S := [Urn + in, UM + in].

Here p,,_ and UM denote the smallest and largest eigenvalue of T, respectively. Note
that the complex line segment S is parallel to the real axis and always contained in

the upper half of the complex plane. In view of (6.4), (6.10) implies

a(A,) = {A = p 4" ia [ P • a(T)} C S U _.

We remark that SU_ is a tandem slit consisting of the two complex intervals S and

which are parallel and symmetric to each other with respect to the real axis. Moreover,

the eigenvalues of A, straddle the origin, if the Hermitian part T of A is indefinite.

Finally, using (4.28) and part (b) of Proposition 6.1, we obtain

a(A_,) = {_ = * U_7-_ I U • a(T)}

[- ÷ o +
Note that the class (4.28) is closely related to shifted skewsymmetric matrices. Indeed,

if, instead of Az - b, we rewrite -iAz - -ib as a real system (6.1), one obtains

(6.11) (-iA), = [:I_ T :]
Then, the eigenvalues are contained in a line segment which is parallel to the imaginary

axis and symmetric with respect to the real axis:

o'((-ia).) - (._ - a .4- ip ] P • a(T)} C [a - ip, a + ip], p - max{lU.d, {UMI}.
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6.2. Correspondence of Krylov subspace methods. In analogy to (1.6)

for complex linear systems (1.1), a Krylov subspace method for the solution of the

equivalent real systems (6.1) resp. (6.2) generates iterates

(6.12) [ .°][l_zkl Re + P(_) Lim,,.oJ Pe 1,LimzkJ Imzo

resp.

(6.13) [-Imx}J = -ImzoJ +P(A**) Imr0 ' x"

Here a.nd in the sequel,H_)I denotes the subset of IIk_1 of polynomials with real

coefficients. Furthermore, the notation

:= n('), (cK_')(_,B) (V(S)_ [ v e __,,

will be used.

At first glance, it might appear that Krylov subspace iterations (1.6) resp. (6.12-

13) for the original complex systems resp. its equivalent real versions correspond to

each other. However, as the following proposition shows this is not the case in genera].
PROPOSITION 6.3. Lef k E N.

(a) Let P E Hk-1. Then, zk = z0 + P(A)ro is equivalent to

[ P,,ez_, ] r P_ezo 1 [Rerol [Imr0 ](6.14)
Imz_ = [Imz0J+ P_(A.)Limro]+ P2(A_)[-_roJ

where P Pl + iP2, Pl, 1'2 • H (r)"- k-l"

(b) Let p • n_2,. _he., (6.2S) _, eeui_a_e.t_o

(6.15) :r} = Rez} +/Imzk = zo + R(_MI)?-_ + S(_A)_ro

n(') aadS • n(') _eFaedb_P(_)- R(_2)+ _S(_).where R • "_LO-1)/2J "-'L(_-2)/2J are

Proof. First,we note that,forj = 0,I,...,

[KeAJ -ImAJ and (A_) '_ L-Im(_A)i I_(_A)_(6.16) (..'L.)_ = LIMA., ReAi = '

as iseasilyverifiedby inductionon j.

(a) Let 7j _nd 6j be the coefficientsof the realpolynomials Px and P2, respectively.

Then,

k-!

ReP(A) = E(Tj PLeAi --6jImA j)

(6.17) .f=o
k-1

ImP(A) = E(Tj ImA i +5 i It,eA_).
jfto
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By reformulating zk = z0 +P(A)ro, by means of (6.17) and the first relation in (6.16),

in terms of real and imaginary parts, one immediately obtains (6.14).

(b) A routine calculation, using the second identity in (6.16), shows that (6.13) can
be rewritten as

- Im zk J - [- Im zoJ + [- Im{R(_A)Fo + S(_A)_ro} J "

Hence (6.13) and (6.15) are equivalent. []

In view of part (a) of Proposition 6.3, the corresponding real equivalent of com-

plex Krylov schemes (1.6) are iterations of the type (6.14) and not the obvious real

Krylov subspace methods (6.12). Clearly, the actual choice of the polynomials in (1.6)
resp. (6.12-13) is aimed at obtaining iterates which are m in a certain sense -- best

possib_ approximations to the exact solution of the corresponding linear system. By
using schemes of the type (6.12), from the first, one gives up k of the 2k real pa-

rameters which are available for optimizing complex Krylov subspace methods (1.6.).

Consequently, it is Mways preferable to solve the complex system (1.1) rather than the

real version (6.1) by Krylov subspace methods. Furthermore, numerical tests reveal

that the convergence behavior of the two approaches can be drastically different (see

Section 7).

6.3. A connection between MR and CGNP,. for complex symmetric

matrices. Now assume that A is a complex symmetric n x n matrix. Then, in view

of part (c) of Proposition 6.1, .4** is a real symmetric indefinite matrix whose spectrum
is given by

(6.18) .(A**) -- {4-crj ]j -- 1 ..... n}.

Here crj : _'j(A) _> 0, j : 1,... ,n, denote the singular values of A.

Since there are simple extensions [29] of classical CG to reM symmetric indefinite
matrices, it is especially tempting to solve (6.2) by one of these methods. The iterates

of these algorithms are defined either via a Galerkin condition or a minimal residual

(MR) property. Here, we consider the MR approach. Applied to (6.2) it generates a

sequence of iterates zk, k- 1,2,..., which are characterized by

(6.19) lib.. - A '*II = min lib., - A zll, zh • ,0 + A.).
• Oo+g_(')(r_ ",x.)

Here, we have set

(6.20) b**:= Imb ' zk:= -Imz_

Roughly speaking, CG type algorithms for real symmetric indefinite systems converge

slowly if the coefficient matrix is strongly indefinite, in the sense that it has many pos-

itive as well as many negative eigenvalues. Unfortunately, since, by (6.18), cr(A_) is

even symmetric to the origin, A** exhibits this undesirable property. Indeed, numer-
ical tests show that the convergence behavior of the MB. method (6.19) is practically

identical to that of the tabooed approach to (1.1) via solving the normal equations

(1.5) by standard CG [20]. In the sequel, we refer to this latter method as CGNR.
Notice that the iterates z_ of CGNR are defined by the minimization property

(6.21) lib- Az, II= min lib- AzlI, z: • zo + K,(AUro, AriA).
•:Gzo+KI (AUro,AUA)
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Next, we prove that ME and CGNR are even equivalent, if the starting residual

r_ satisfies a certain symmetry condition. Note that, corresponding to the spectral

decomposition (6.7), r_* can be expanded into eigenvectors of A_ as follows:

(6.22) [c!]
Cn

THEOREM 6.4. Let z_ R rasp. ztccnvR denote the iterates generated by (6.$.19-

P,O) reap. (6.21) starting with the same initial guess to E C n. Assume that c in the

ezpansion(a.ee) oyr_ satisfies

(6.23)- Ic.#l= Ic,,+jI, £ = 1,2,..., n.

T/len_

MR 1= O, 1,.(6.24) =,:r._ = =_R= =2,+,, .. •

Proof. First, note that, in view of (0.7) and (0.22), cj and e_+j are components

corresponding to a pair of symmetric eigenvalues 4-¢j of A_. However, for any real

symmetric linear system A_z = b** with "symmetric" eigenvalues and "symmetric"

starting residual r_* in the sense of (6.18) and (6.23), respectively, the MR method
_(") t_-**

generates iterates with zk E z0 + ,,t_/2j_**,0 ,A_) (see e.g. [13]). Consequently,

the iterates defined by (6.19) satisfy

(6.25) =2,= _2,+,_ z0+ K)')(._,,-;*, AL).

In particular, by (6.20), (6.25) shows that z_ -- Z2Z+I.AIR
It remains to prove the first relation in (6.24). To this end, we remark that

(6.26) IIb**-A**zll=llb-A=ll forall z=t_imzj,zEC".

Moreover, by using (6.20) and part (b) of Proposition 6.3 (applied to polynomials

P(A) -- AS(A2)), we deduce

(6.2z) [ P""]•o+ = l" ,o+

(noticethat _ = A H in (6.15)!).In view of (6.25-27),(6.19)(fork = 21) can be

rewrittenin the form

(6.28) IIb-A=,_MRII= rain IIb-A=ll, z_ R e zo+K_')(AHro,AttA).
• Ezo+K_ )(AHro,A'A)

Finally, note that the iterates of CGNR always correspond to real polynomials, i.e.

zlcr'_m E z0+K_r)(A_/r0, AXA). Hence, by comparing (6.21) with (6.28), we conclude

that zlcrd_z = z2t_7z. U
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Clearly, the special symmetry condition (6.23) will not be satisfied in general.

Nevertheless, all our numerical experiments showed (cf. Section 7) that (6.24) is still
fulfilled approximately, i.e.

(6.29) _CICGIVR _.MR...,MR I O, 1,'_21 _'21+1 ' -" ....

7. Numerical Examples. We have performed numerical experiments with all

algorithms considered in this paper in numerous cases. In this section, we present a

few typical results of these experiments.

Consider (1.2) on the unit square G := (0, 1) x (0, 1) with crt E R a constant
and or2 a real coefficient function. First, assume that u satisfies Dirichlet boundary

conditions. Then, approximating (1.2) by finite differences on a uniform rn x ra grid
with mesh size h := 1/(m+ I) yields a linear system (1.1) with A an n x n, n := m 2,
matrix of the form

(7.1) A = T + ihD, T := Ao - 01h2I, D = diag(dl, d2,... ,dn).

Here A0 is the symmetric positive definite matrix arising from the usual five-point

discretization of -A and the diagonal elements of D are just the values of tr2 at the

grid points.

Similarly, if we consider the real Helmholtz equation (1.2), i.e. _2 = 0, but now
with a typical complex boundary condition such as

O--n=i°tu on {(1,y) l-1<I/< 1)

and Dirichlet boundary conditions on the other three sides of the boundary of G, one

again arrives at (7.1) where

I ct, ifj=lm, i=l,...,m,(7.2) dj = 0, otherwise.

The test problems presented in this section are all linear systems Az = b with

complex symmetric coefficient matrices of the type (7.1). For Example 7.1, the mesh

size h = 1/64 was chosen resulting in a 3969 x 3969 matrix A. In Examples 7.2-4,

h = 1/32 and thus A is a 961 x 961 matrix. The fight-hand side b was chosen to be a

vector with random components in [-1,1] + i[-1, 1], with the exception of Example
7.2 where b had constant components 1 + i. As starting vector z0 = 0 was chosen.

As stopping criterion, we used

(7.3) Rk := lib- A:cklllib- Azoll 10-s"

In Figures 7.1-4, the relative residual norm (7.3), Rk, is plotted versus the iteration
number k, at least for those methods for which work and storage per iteration is

roughly the same. In the case of CGS resp. CGNR which both require about twice

the work of the other algorithms and especially two matrix-vector products A- v resp.
A • v, _. v per iteration, we have plotted R_ versus 2k.

In a first series of experiments, QMR (with different weighting strategies) and

BCG were compared. The natural choice (4.11) turned out to be the best strategy in all
cases. In the following, QMIq. always refers to Algorithm 4.2 with weights (4.11). Then
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QMR produces residual vectors whose norms are almost monotonically decreasing and

generally smaller than those of the BCG residuals. However, convergence of QMR
and BCG typically occurred after a comparable number of iterations. The following

example is typical.

Ezample 7.1. Here, (7.1) is a 3969 x 3969 matrix with _1 - 200, and the diagonal

elements of D are given by (7.2) with a -- 10. In Figure 7.1, the convergence behavior

of BCG, QMR, and of the unweighted version (wj -= 1) of the QMR Algorithm 4.2 is
displayed.

Figure 7.1

Next, we compared the CGS Algorithm 3.3with QMR and BCG. Typically,CGS

needed slightlyfewer iterationsthan QMR and BCG to reach (7.3).However, per

iteration,QMR and BCG requireonly about halfas much work and storage,CGS is

not competitivefor complex symmetric matrices.

Ezample 7._. In (7.1), we set n -- 961, al = 100 and dj, j - I .... , n, are chosen

as random numbers in [0, 10]. Figure 7.2 shows the convergence behavior of QMR,
BCG, and two runs of CGS with different starting vectors so, namely so = re resp.

so with random components in [-1, 1] + i[-1, 1].

Figure 7.2

Notice the extremely large residual norms in the early stage of the CGS iteration.

In the following two examples, we compared CG type methods for Az - b with

real schemes for the equivalent real systems (6.1) resp. (6.2). For GMRES [32], work

and storage per iteration step k grows linearly with k and in practice it is necessary

to use restarts. In the sequel, GMILES(/:0) refers to GMRES applied to (6.1) and

restarted after every t0 iterations. Finally, MR(A**) denotes the minimal residual
method (6.19) applied to the real symmetric system (6.2).

Ezample 7.3. Here, in (7.1), n "- 961, #1 = 100, and d/ are given by (7.2) with

a -- 100. In Figure 7.3, for QMR, MR(A**), GMRES(5) resp. CGNR, the relative

residual norm (7.3) is plotted versus iteration number k resp. 2k.

Figure 7.3

Notice that, although the symmetry condition (6.23) is not fulfilled, the curves for

CGNR and MR(A**) are almost identical. This confirms (6.29). Finally, we tried

GMRES(_0) also with other restart parameters ho. For this example, the method did

never converge.
Ezample 7._. Let .4 be the 961 x 961 matrix (7.1) with _'1 - 1000, D -- #aI,

¢2 "- 100 and set _ :- #_h 2. Note that A is a shifted Hermitian matrix of the form

(4.28) (cf. Example 6.2). In particular, A belongs to the class of matrices (1.3) for
which efficient true minimal residual algorithms for solving Az - b exist. Here we used

the particular implementation, MR(A), derived in [14, Algorithm 2]. Recall that, by

rewriting -iAz - -ib as a real system (6.1), one obtains a shifted skewsymmetric

matrix (6.11), (-iA),. Again, for such matrices an efficient true minimal residual
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algorithm, denoted by MR((-iA),), exists [8, 12]. Figure 7.4 shows the convergence
behavior of MR(A), MR(A**), MR((-iA),),CGNR, and GMRES(20).

Figure 7.4

Notice that MR((-iA).) and CGNR are nearly identical. This is typical for the case
that ¢r is small compared to the spectral radius of T. Furthermore, if v = 0, i.e.
(-iA), in (6.11) is skewsymmetric, CGNR and MR((-iA),) are even equivalent [12].

8. Concluding remarks. Complex linear systems Ax = b which arise in prac-
tice often have complex symmetric coefficient matrices A. In this paper, we have
explored the use of a variant of the nonsymmetric Lanczos process for complex sym-
metric'matrices for the solution of such linear systems. In particular, we have proposed

a new method of defining approximate solutions of Ax - b via a quasi-minimal resid-
ual (QMR) property. In contrast to the biconjugate gradient (BCG) approach, the
QMR iterates are well-defined as long as the basic Lanczos recursion does not break
down. Moreover, unlike the wildly oscillating BCG residuals, the QMK residuals con-

verge almost monotonically. Also, existing BCG iterates can be easily computed from
the quantities generated during the QMR iteration. Finally, possible breakdowns --
except incurable ones -- of the complex symmetric Lanczos recursion can be overcome
by using a look-ahead version of the Lanczos process. Incurable breakdowns only oc-
cur in very special situations. For example, they can not occur if all eigenvalues of A
are distinct.

It is very tempting (and often done in practice!) to avoid complex linear system
by solving equivalent real systems instead. We have presented some theoretical and
numerical results which show that this -- at least for Krylov subspace methods -- is

a fatal approach. Typically, the resulting real systems are unequally harder to solve
by conjugate gradient type algorithms than the original complex ones.

In this paper, we have not addressed the question of how to choose precondition-
ers M for complex symmetric linear systems. This will be the subject of a forthcoming
report. Here, we only remark that complex symmetry is preserved under precondi-
tioning as long as M is complex symmetric. In particular, all algorithms for A ---A T
which we have considered can be used in conjunction with a complex symmetric pre-
conditioner M. Note that the standard techniques, such as incomplete factorization

[27], applied to A = A T generate complex symmetric preconditioners M.
Finally, we would like to mention that the quasi-minimal residual approach can

also be used to stabilize the general nonsymmetric biconjugate gradient algorithm [15].
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