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CONJUGATE GRADIENT TYPE METHODS
FOR LINEAR SYSTEMS
WITH COMPLEX SYMMETRIC COEFFICIENT MATRICES*

ROLAND FREUND¢

Abstract. We consider conjugate gradient type methods for the solution of large sparse linear
system Ar = b with complex symmetric coefficient matrices A = AT. Such linear systems arise
in important applications, such as the numerical solution of the complex Helmholtz equation. Fur-
thermore, most complex non-Hermitian linear systems which occur in practice are actually complex
symmetric. We investigate conjugate gradient type iterations which are based on a variant of the
nonsymmetric Lanczos algorithm for complex symmetric matrices. In particular, we propose a new
approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents
several advantages over the standard biconjugate gradient method. We also include some remarks
on the 6bvious approach to general complex linear systems by solving equivalent real linear systems
for the real and imaginary parts of z. Finally, numerical experiments for linear systems arising from
the complex Helmholtz equation are reported.

Key words. complex symmetric matrices, nonsymmetric Lanczos algorithm, biconjugate gra-
dients, minimal residual property

AMS(MOS) subject classifications. 65F10, 65N20

1. Introduction. Conjugate gradient type methods — used in combination
with preconditioning — are among the most effective iterative procedures for solving
large sparse nonsingular systems of linear equations

(1.1) Az = b.

The archetype of these schemes is the classical conjugate gradient algorithm (CG
hereafter) of Hestenes and Stiefel [20] for Hermitian positive definite matrices A.

While most linear systems which arise in practice have real coefficient matrices
A and real right-hand sides b, there are some important applications (see [14] and the
references therein) which lead to complex linear systems. Partial differential equations
which model dissipative processes usually involve complex coefficient functions and/or
complex boundary conditions (see e.g. [23]), and discretizing them yields linear sys-
tems with complex matrices A. A typical example for this category is the complex
Helmbholtz equation

(1.2) —Au—ou+iou=f,

where o}, 05 are real coefficient functions, which describes the propagation of damped
time-harmonic waves as e.g. electromagnetic waves in conducting media. Further
applications, which give rise to complex linear systems, include discretizations of
the time-dependent Schrodinger equation using implicit difference schemes, inverse
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scattering problems, underwater acoustics, eddy current computations [2], numerical
computations in quantum chromodynamics, and numerical conformal mapping.

In all these examples, the resulting coefficient matrices A are non-Hermitian.
However, they still exhibit special structures. Often, A differs from a Hermitian
matrix only by a shift and a rotation:

(1.3) A=e*(T+iol), T=T" Hermitian, 0 €C, § €R, i:=+—1.

In almost all other cases, which lead to complex systems, the coefficient matrix is
symmetric:

(1.4) A= AT is complex symmetric.

Note that the two families (1.3) and (1.4) overlap. The matrix (1.3) is complex
symmetric iff T is real.

Surprisingly, when complex linear systems (1.1) are solved in practice, usually no
attempt is made to exploit the special structures (1.3) or (1.4). Indeed, there are two
popular approaches. The first one (see e.g. [1]) is to apply preconditioned CG to the
Hermitian positive definite normal equations

(1.5) A Az = AH),

Of course, complex numbers can always be avoided by rewriting (1.1) as a real linear
system for the real and imaginary parts of z. The second popular approach is to solve
this real and, in general, nonsymmetric linear system by one of the generalized CG
methods such as GMRES [32]. It turns out that in both cases the resulting iterative
schemes tend to converge slowly. As a consequence, complex linear systems have the
bad reputation of being difficult to solve by CG type methods. On the other hand, for
the class of shifted Hermitian matrices (1.3), there are efficient CG type algorithms {9,
10, 14] for complex linear systems in their original form (1.1). We refer the reader to
[14] for a detailed study and practical aspects of these schemes. In [14] it is also shown
how the special structure (1.3) can be preserved by using polynomial preconditioning.

In this paper, we are mainly concerned with CG type methods for linear systems
(1.1) with coefficient matrices of the second class (1.4). In particular, we consider
approaches based on a variant of the nonsymmetric Lanczos algorithm which was
successfully used for computing eigenvalues of complex symmetric matrices (see [28)
and [5, Chapter 6]). This Lanczos recursion generates basis vectors for the Krylov
subspace induced by A which are orthogonal with respect to a certain indefinite inner
product. The standard way to obtain from this basis iterates, which approximate the
exact solution of (1.1), is to enforce a biconjugate gradient (BCG hereafter) condition.
Here, we propose a new approach which generates iterates via a quasi-minimal residual
property. On typical examples, the resulting algorithm displays better convergence
properties than the BCG approach. In particular, it produces residuals whose norms
are almost monotonically decreasing, in contrast to the erratic convergence behavior
which is typical for BCG. Moreover, the new technique eliminates one of the two
sources of possible breakdown in the BCG approach.

The outline of the paper is as follows. In Section 2, we discuss the Lanczos re-
cursion for complex symmetric matrices and state some of its theoretical properties.
Section 3 deals with a variant of the BCG algorithm for the special matrices (1.4).
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In Section 4, we propose the quasi-minimal residual approach for complex symmet-
ric matrices. Section 5 contains some remarks on the problem of breakdown of the
complex symmetric Lanczos recursion. In Section 6, we are concerned with the issue
“complex versus equivalent real linear systems”. In particular, some results are pre-
sented which indicate that for Krylov subspace methods, such as CG type algorithms,
it is always preferable to solve the original complex system rather than equivalent real
ones. In Section 7, some typical results of numerical experiments for linear systems
arising from finite difference approximations to the complex Helmholtz equation (1.2)
are given. Finally, in Section 8, we make some concluding remarks.

Throughout the paper, all vectors and matrices, unless stated otherwise, are
assumed to be complex. As usual, M = [z}, M T = [m;], and M H = M denote
the complex conjugate, transpose, and Hermitian matrix, respectively, corresponding
{o the matrix M = [mj;]. Moreover, we set ReM = (M + M)/2 and ImM =
(M —"M)/(2i) for its real and imaginary part, respectively. The notation

Ky (c, B) := span{c, Be, ... ,B¥1c}

is used for the kth Krylov subspace of C" generated by ¢ € C" and the n x n matrix
B. Furthermore, o(B) denotes the spectrum of B. The vector norm Iz|| = VzHz is
always the Euclidean norm. The set of all complex polynomials of degree at most k
is denoted by

O = {p(’\)E'70‘i"‘h)\‘f""'f")’k/\‘= |7o,71,... ,7¢ € C}.

Moreover, the coefficient matrix 4 of (1.1) is always n x n and, unless stated otherwise,
assumed to be complex symmetric. Generally, z: € C, k=0,1,..., denote iterates
for (1.1) with corresponding residual vectors ry := b — Az;. If necessary, quantities
of different algorithms will be distinguished by superscripts, e.g. zP% and z?MR
Finally, an iterative scheme for solving (1.1) is called a Krylov subspace method if its

iterates are of the form
(1.6) zi € zo + Ki(ro, A) or, equivalently, zi =zo-+ P(A)ro, P € i1
Note that, in particular, CG type algorithms for (1.1) fall into this category.

2. The Lanczos algorithm for complex symmetric matrices. In this sec-
tion, we are concerned with a complex symmetric variant of the Lanczos algorithm
and its theoretical properties.

The Lanczos method [24] for general complex n x n matrices M is as follows (see
e.g. [35, pp. 388-394]):

ALGORITHM 2.1 (NONSYMMETRIC LANCZOS METHOD).

(1) Start:

e Choose ro,50 € C*, ro,80 # 0;
e Setv=rp, w=5g, and vo =wp =10.

(2) Fork=12,... do:
e Compute n=wTv;
If n=0: Stop;
Otherwise, choose Bi,ve € C with B = n;
Set vi = v/m and wi = w/Bx;
Compute ap = w'vak;
Set v = Muvy — arve — Beve-1;
Setw=MTw, — apwi — YeWe-1.



As Lanczos pointed out [26, p. 176), work and storage of Algorithm 2.1 can
be halved if M is Hermitian resp. complex symmetric, by choosing starting vectors
so = ¥o resp. s¢ = ro. The resulting Hermitian Lanczos method has been studied
extensively (see [18, Chapter 9] and the references therein). In contrast, the literature
on the complex symmetric variant is scarce and restricted to the application of the
algorithm to computing eigenvalues of complex symmetric matrices (see Moro and
Freed [28] and Cullum and Willoughby [5, Chapter 6]). Here, we hope to convince the
reader that the complex symmetric Lanczos algorithm is also very useful for solving
linear systems.

The basic method is as follows:

ALGORITHM 2.2 (LANCZ0S METHOD FOR A = AT).

(1) Start:

= e Choose rg € C", rg #0;
e Set vy =1y and vp = 0.

(2) Fork=1,2,... do:
Compute B = (7 :)""*;
e IfBr =0: Set mg=k—1, and stop;
e Otherwise, set vi = ;. /By;
e Compule ap = UZ‘AW:;
e Sel ﬁg+1 = Avp — arvg — Brve-).

In the next proposition, some elementary properties of Algorithm 2.2. are listed;
proofs can be found in [5, Chapter 6]. We set

a B 0 ... O
B2 a2 Ps :
(2.1) Vii=[v; v ... v} and Ti:={ g Bs . .0
E .'- ". .'. ﬂk
0 ... 0 B o

Moreover, m, = m,(ro, A) := dim K,(ro, A) denotes the grade of ro with respect to
A (cf. [35, p. 37]). We remark that m, > 1 is the smallest integer such that Kp,, is
an A—invariant subspace of C®. Equivalently, if A is nonsingular and ro = b — Az,
m, > 1 is the smallest integer such that

(2.2) A”1b € 2o + K. (r0, A).

ProprosITION 2.3.

(o) In exact arithmetic, Algorithm 2.2 stops after a finite number of steps k =
mo+ 1 and 0 < mp < m,. Furthermore, tmyo41 = 0 if mg = m,, (“regular termina-
tion”), and ¥mo41 # 0 if mg < m, (“breakdown”).

(4) Fork=1,2,...,mp:

0, ifk#j .
(23) U{Uj={1, 1fk=j ’ J=112)"'1m0)
(24) Ki(ro, A) = span{vy,va,... , v},

(2.5) AVi = ViTe +[0 0 ... 0 ®p41].



5

Notice that, by (2.3—4), the Lanczos vectors vy, ..., v form an orthonormal basis
for Ki(rg, A) with respect to the (non-Hermitian) inner product

(2.6) (z,y) =y"z, z,yeC".

In particular, if Algorithm 2.2 terminates regularly, it generates a basis of the affine
space zo + Km, (ro, A) which, in view of (2.2), contains the exact solution of Az = b.

Next, we remark that (2.6) is the proper (c¢f. Craven [4)) inner product for
complex symmetric matrices. Unfortunately, it has the defect that there exist vectors
v € C" which are quasi-null [4], i.e. (v,v) =0, but v #0. Consequently, it can not
be excluded that Algorithm 2.2 actually breaks down. Indeed, in view of part (a) of
Proposition 2.3, a breakdown occurs if one encounters a quasi-null vector . The
phenomenon of breakdown will be discussed further in Section 5.

We conclude this section with a result on the connection of the complex symmet-
ric variant 2.2 with the general Lanczos Algorithm 2.1. Unlike Hermitian matrices,
complex symmetric matrices do not have any special spectral properties. Indeed (see
e.g. [21, Theorem 4.4.9]), any complex n x n matrix is similar to a complex sym-
metric matrix. This result entails that the general nonsymmetric Lanczos Algorithm
9.1 differs from the complex symmetric version 2.2 only in the additional starting
vector o which can be chosen independently of g in 2.1. A strict statement of this
correspondence is given in the following

THEOREM 2.4. Let M be a complez n x n matriz and ro € C?, ro #£0.

(a) There ezxisits a complez symmetricn X n matriz A which is similar to M:

2.7 M = XAX~! where X is nonsingular.

(b) Set 7y = X~ 1ry and 50 = X-T#,. Let v, wg,on, B, Te TESP. ﬁk,&k,Bk be
the quantities generated by Algorithm £.1 (starting with ro, 50) resp. Algorithm 2.2
(starting with 7o). Let mo denote the termination indez for Algorithm 2.2. Then, for
k=1,2,...,mp:

k k
@8  a=(]] %)X"vk = (TI %)xka, & =or, (B)=hme.

=17 j=17

Proof. Only part (b) remains to be proved. First, by means of (2.7), we rewrite
Algorithm 2.1 in terms of A, X -1y, XTw;. By comparing the resulting iteration with
Algorithm 2.2 and using induction on k, one readily verifies (2.8). 0

After these preliminaries, we finally turn to linear systems (1.1) now. In the
sequel, it is always assumed that A is nonsingular.

3. The biconjugate gradient algorithm for complex symmetric matri-
ces. In his celebrated papers [24, 25}, Lanczos also proposed a scheme, closely related
to Algorithm 2.1, for solving general non-Hermitian linear systems, namely the bicon-
jugate gradient algorithm (BCG). We refer the reader to [11, 31, 22] for a detailed
discussion of the BCG approach.

Like Algorithm 2.1, BCG for general linear systems is started with two vectors:
the residual ro = b — Az of the initial guess zo and a second vector sp # 0. We
remark that so is still unspecified. Due to the lack of a criterion for the choice of sg,
one usually sets sp = ro in practice. For the case of complex symmetric matrices A,
it is straightforward to show that, in analogy to the complex symmetric variant 2.2
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of the general Lanczos Algorithm 2.1, the choice sp = r¢ results in a scheme which
requires only half the work and storage of general BCG. The resulting procedure is as
follows:
ALGORITHM 3.1. (BCG for A= AT)
(1) Stert:
e Choose o € C";
e Setpy=ro=0b— Axzp and compuie rgro.

(2) Fork=1,2,... do:

o Compute Apy_, and p{_lAp;,_l,'
pr;r_lApk_l =0 orr]_,rie1=0: Set my = k— 1, and stop;
Otherwise, set &, = r{_lrk_l/pf_lApk-l;
Compute ) = 241 + 6ppr—1 and rp = rp_) — S Apr—y;
Compute r{ry and set pr = rirg/ry _ Te-1;
Compule pp = ri + piDi—1-

In the sequel, BCG always refers to the complex symmetric Algorithm 3.1. Next,
we list some basic properties of BCG which follow readily from results (e.g. Jacobs
[22]) for the general biconjugate gradient method.

ProrosITION 3.2.

(a) In ezact erithmetic, Algorithm 3.1 stops afier a finite number of steps k =
m; +1 and 0 < m; < m,. Furthermore, z,,, = A”'b if m; = m, (“regular termina-
tion”), and z,,, # A™'b if my < m, (“breakdown”).

(b) Fork=1,2,... ,my:

(3.1) rl_rica=0k#4, i=12,...,m,
(3.2) Kg(ro, A) = span{ro,r1,... ,Pe-1}.

(c) Let k € {1,2,...,m1}. Then, z; is uniquely determined by the Galerkin
condition

(3.3) (b—Aze)Ty=0 forall ye€ Ki(ro,A), zi=zo+ Ki(ro,4),

with respect to the inner product (2.6).
By comparing (3.1-2) with (2.3-4), we conclude that r;_, is parallel to the Lanc-
zos vector v; generated by Algorithm 2.2. More precisely, one easily verifies that

(3.4) ric1 = (=1)¥6 - 81y BroiBeme, kE=1,2,...,m).

Notice that there are two different causes for breakdown of Algorithm 3.1. The first
one, namely the occurrence of a quasi-null residual vector r;_,, is, in view of (3.4),
equivalent to the breakdown of the complex symmetric Lanczos Algorithm 2.2. In
addition, Algorithm 3.1 breaks down if one encounters a search direction pr_; # 0
with pI_, Api—1 = 0. This second cause of breakdown is more severe than the first
one. As we will see in Section 4, it occurs if no Galerkin iterate (3.3) exists.

Closely related to the biconjugate gradient method for general linear systems
(1.1) is the conjugate gradients squared algorithm (CGS hereafter) which was recently
proposed by Sonneveld [33].

ALGORITHM 3.3. (CGS for general A)

(1) Start:

e Choose zo € C™ and 50 € C", 50 # 0;
e Setpg=up=rg=>b— Az and compule sg'ro.



(2) Fork=1,2,... do:
o Compute Apy—, and soT Api-1;
If 50T Api—1 = 0 or soTre_y = 0: Stop;
Otherwise, sel o = sg'rk_l/sg'Apg._u
Compute gi = up—1 — arApr-1;
Compute zp = zp—1 + ar(ue—1 + qi) and rp = i1 — arA(up—y + qi);
Compute s} ry and set fi = sTre/sdre-1;
Compute up = ¢ + Brar;
Compute pi = ug + Be(qx + Brpr-1)-

Notice that, like general BCG, CGS has a second unspecified starting vector so.
However, unlike BCG, even with the special choice so = ro, CGS can not exploit
the complex symmetry of A. In particular, for A = AT Algorithm 3.3 requires per
iteration about twice as much work as the BCG Algorithm 3.1.

Finally, as a special case of the general connection [33) between the CGS and

BCG approaches, we have the following
PROPOSITION 3.4. Let A = AT, ro = r2% = r§%, and, in Algorithm 3.3,
so =ro. Then, fork=10,1,...,m,,

rB%C = pi(A)ro and r&& = (pk(A))zro

for some py € I with pe(0) = 1.

4. A quasi-minimal residual algorithm for complex symmetric matri-
ces. In this section, we propose a new approach for solving complex symmetric linear
systems. The method is based on the complex symmetric Lanczos Algorithm 2.2. For
simplicity, we assume throughout this section that, in exact arithmetic, Algorithm 2.2
terminates regularly, i.e.

(4.1) B #£0 for k=1,2,...,m Bm.+1=0.

Moreover, let always be k € {1,2,... ,m,} in the following.

4.1 Basic approach. Let z; be the kth iterate of any Krylov subspace method
(1.6). Then, by (2.4) and with V; as defined in (2.1), we have

(4.2) zy =zo+ Vizx where 2 € ct.
Using (2.5) and ro = B1v1, it follows from (4.2) that

(4.3) ry = b— Az;, =79 — Asz - ﬁﬂ!l - Vg+1f‘gl§ - Vg+1 (ﬂlel - ngk).

Here, e;:=[1 0 --- 0]7 denotes the first unit vector,
(4.4) Ty = [ﬂ::ef] with el :=[0 --- 0 1],

and, if k¥ = my, vm,41 := 0. Recall that T was defined in (2.1).
Clearly, the aim is to choose z; in (4.2-3) such that r; =~ 0 as good as possible.

In the BCG approach, this is attempted by enforcing the Galerkin condition (3.3).
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Using (2.3-4) and (4.3), one easily verifies that (3.3) holds iff r; and vi4, are parallel
or, equivalently, z; is a solution of the linear system

(45) TkZ = ﬂlel.

Note that, by (4.1), (4.5) is inconsistent if T} is singular. Thus, we have the following
PROPOSITION 4.1. A BCG iterate z2C satisfying the Galerkin condition (3.9)

ezists if, and only if, Ty is nonsingular. Moreover, if it ezists, it is unigue and given

by
(4.6) :tBOG =zo+Vizi and rp= —ﬂk.H(Zg)kUg.H
where z; is the solution of ({.5) and (21)x denotes its kth component.

Proposition 4.1 demonstrates the defects of the BCG approach. Simple examples
show that singular Tx may indeed occur, and then, in view of Proposition 3.2, the BCG
Algorithm 3.1 would break down in exact arithmetic. In floating-point arithmetic, such
a breakdown is unlikely to happen. However, T; may still be close to singular and
then the Galerkin condition (3.3) defines a poor approximation to the true solution
of (1.1). This is the reason for the typical erratic convergence behavior with wildly
oscillating residual norms.

Obviously, the question arises whether there is a better strategy than (3.3) for
choosing z; in (4.2-3). Ideally, one would like to have the minimal residual (MR)
property

(47) - Azl = 16— Az]| = min [[Vi4: (Brer — Tiza)|l-

min
£€zo+Ka(ro,A)
However, by (2.3), in general (see Theorem 4.4 for an exception) the columns of Vi4.
are orthonormal only with respect to (2.6) rather than the Euclidean inner product
(z,y) = y¥ z. Consequently, solving the least-squares problem on the right-hand side
of (4.7) results in an algorithm for which work and storage per iteration step k grows
linearly with k. Hence, if one insists on a “true” iterative scheme with constant work
and storage per iteration, this excludes the MR method.

Here, we propose the quasi-minimal residual (QMR) approach as a substitute for
(4.7). Let

Qip1 = diag(wl,wg, . ,wg+1) with wj > 0 forall j
be a given positive diagonal weight matrix and rewrite (4.3) in the form
(4.8) re = (VinQ5},) (Wibres - Q1Tiz).
Instead of ||ri|| as in (4.7), one may at least minimize the vector of components in the
representation (4.8) of ry:
(4.9) min |jw 1€y = Q1 Tiz|.
2€CH

Hence, we define the iterates of the QMR method as follows:
(4.10) Ty = ::?"R = 2o+ Vizi where z; € C* is the solution of (4.9).

Notice that, 4417} is a (k + 1) x k matrix which, by (4.4) and (4.1), has full rank.
Thus, the least squares problem (4.9) always has a unique solution z;.

Clearly, the QMR approach still depends on the weights w;. A natural choice is
(4.11) wi=|lyll, i= 1,2,...,k+1,

so that all basis vectors vj /w; in the representation (4.8) of ri have Euclidean length 1.
Our numerical tests (cf. Section 7) also confirmed (4.11) as the best strategy.
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4.2 Practical implementation. Next, we present an algorithm for the actual
computation of the QMR iterates (4.10). The derivation is similar to that of Paige
and Saunders’ SYMMLQ and MINRES algorithms [29] for real symmetric matrices.

By (4.4), (2.1), and (4.1), Q41 T: is a tridiagonal (k + 1) x k matrix with full
column rank. Hence, it admits a QR factorization of the type

(4.12) Qee1QenTi = [’E*]

where Qg4 is a unitary (k+ 1) x (k+1) matrix and R a nonsingular matrix of the
form

r¢y n2 63 0 ... 07

0 ¢ m o .o

(4.13) Re=|0 "6 0
g

: o T

Lo ... ... ... 0 (&l

The decomposition (4.12) can be generated by means of a series of k complex Givens
rotations (e.g. [18, p. 47])

Q(c,-,s,-)='[_°;'j 2] ¢;ER, 5 €C, E+lslP=1, j=1,... .k

In particular, (4.12) is easily updated from the factorization QxQuTi-1 = Ri- of the
previous step by setting

(4.14) Qusr = [1,,0_ ‘ Q(cgu)] [%k (1)]

and computing ci, s; and the new elements 6, M, (1 of Ry as follows:

0r = Ticowk-18k, M = Ce-1Ck—2wk-1Pc + T 1weCk,
= Z12.4 .2 2\/?
Gk = chrwrar — Se—1Ck—2wi-18k, Gl = (l(bl + wig1|Bi41l ) ,

= { ICelCe/1Cel, if C:t #0
el if (x =0,

By (4.12) and since Q41 is unitary, (4.9) is equivalent to

(4.15)

e =Ce/Cr 8k = w1 Be41/Ce-

. R
(4.16) mgi w1P1Qisr101 — [ Ok] z

z€

From (4.10) and (4.16), it follows that

- t -
417) zir=zo+Vizk where z; := R; Ya, [‘Fkil] =141 = w151Qk 4101,
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Notice that, in view of (4.14), t; differs from the previous vector t; ., only by its kth
component 7 := (tx)r = cx7e. Next, we define vectors p; via

(4.18) [pr P2 - pe)i=VeRg'

Finally, using (4.17-18) and (4.13), one obtains the recursion

1
Tp = Tp—1+ TPk, Where pip= C_k(vk = NkPek-1— kak-z),

for the QMR iterates. In combination with Algorithm 2.2, the following implementa-
tion results:
ALGORITHM 4.2 (QMR METHOD).
(1) Stert:
o Choose 29 € C";
o Setty=b—Azg, vo=po=p-1=0;
e Set By = (ﬁ'{'ﬁl)ln, Fl=wiBi,co=c-1 =1, and 50 =51 = 0.

(2) Fork=1,2,... do:
- e IffBi =0, stop: zx—1 solves Az = b.

o Otherwise, compute vy = Vi /i and ap = vZ'Au), ;
- - - 1/2
Set By = Avi — g — Bevi—1, Begr = (F4q0e41) 'S

Compute O, N, (i, ¢k, and si, using formulas (4.15);
Set px = (v — MePr—1 — Okpr-2)/Ce;

Set 1y = Ck Tk, Te41 = —8kTE;

Compute 2 = Tg—1 + TLPk.

The assumption (4.1) guarantees that, in exact arithmetic, Algorithm 4.2 stops
for k = m, + 1 and, by (2.2), 24—, is indeed the solution of (1.1) then. However,
in floating-point arithmetic, this finite termination property of the Lanczos recursion
is no longer valid, and the stopping criterion stated in Algorithm 4.2 is not useful in
practice. Instead, one should terminate the iteration as soon as ||ri]| is sufficiently
reduced. We remark that ri is not directly available in Algorithm 4.2. However, in
view of (4.19), if one updates one additional auxiliary vector, namely

CiTiy1
|s182 - - - 8 |Pwi 41

he = hey + Vi41, hoi=ro,

then ||ri|| can be computed via
lirall = ls1sz---8el? - llAel|-
Finally, notice that, for the weighting strategy (4.11),

\/37 s+t’t
loell = — 7
|Be |

s:=Re¥g, t:=Imuy,

can be obtained without extra cost during the computation of i o = sT s—tT1+2is7 2.
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4.3 Properties. In this subsection, we list some further properties of the QMR

approach.
ProroOSITION 4.3. Fork=1,2,... ,my:
(a)
(4.19) rM = (s e 4 (crFean fwrar)vra;

(b) The BCG iterate zC defined by (3.3) ezists if, and only if, cx # 0. Moreover,
tfee #0, then

(4.20) 2P = M 4+ (R /cr)p,
(4.21) . [IFBC) = |wiBis152 - - - se—18k] - l|vesrll/(Wes1lee])-

Proof. (a) By (4.17), (4.12), and (4.8), we have

0
(4.22) rOMR = 7 1ty Where Biqr = Vit Qi 0
1

With (4.14), it follows that successive vectors 41 and W are connected by
(423) ’ ﬂ)k+1 = —FE‘IIJk + (Ck /Uk+1)vk+1.

Finally, by combining (4.23) and (4.22) and using fi41 = -sk-ﬁ, one obtains (4.19).
- (b) First, we note that (4.12), (4.4), and (4.14) imply

(4.24) QU Ty = [Iko-l :)k] R

Thus, by Proposition 4.1, zP exists iff cx # 0. Now assume c; # 0. Using (4.5-6),
(4.24), and (4.17), we get

-1 | -
(4.25) z8% = 2o+ Va2 where 22° = B! [’._: /clg] .

By comparing (4.25) with (4.17), (4.20) follows. For the proof of (4.21), notice that,
by (4.25), (4.13) , and the formula for s; in (4.15),

(4.26) Bi+1(2PF ) = BearTe/(Grcr) = Tese/(wesrcr)-

Furthermore, Algorithm 4.2 shows that

(4.27) || = jw1Pr8182 - 8k=1]-

Finally, by inserting (4.26-27) into the formula (4.6) for rP% | we arrive at (4.21). 0
In view of part (b) of Proposition 4.3, the QMR method has the additional feature

that it also yields all existing BCG iterates. This is in contrast to the BCG Algorithm
3.1 which breaks down as soon as the first nonexisting BCG iterate is encountered. We
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remark that, by (4.21), ||rP%¢|| can be computed without extra cost from quantities
which are generated in Algorithm 4.2 anyway. In particular, one may monitor ||r2%||
during the course of the QMR algorithm, and, whenever the actual BCG iterate is
desired, compute zP°¢ via (4.20).

There is an important special case for which the QMR method (with weighting
strategy (4.11)) is even equivalent to the MR approach (4.7). Consider the subclass
of (1.3) of complex symmetric matrices of the form

(4.28) A=T+icl, T=TT real symmetric, o >0.

Assume that ryp € R (this can always be achieved by a proper choice of ). Then, it is
easily verified that the Lanczos vectors v; generated by Algorithm 2.2 are all real and
therefore, by (2.3), orthonormal with respect to the usual Euclidean inner product.
In particular, by (4.11), w; = 1, and the least squares problem (4.9) is equivalent to
the one on the right-hand side of (4.7). Hence we have the following

THEOREM 4.4. Let A be of the form ({.28) and ro € R™. Then, the ilerales z;
generated by Algorithm 4.2 (with w; = 1) satisfy the minimal residual property (4.7).

5. On the breakdown of the complex symmetric Lanczos algorithm. Re-
call that, throughout Section 4, possible breakdowns of the complex symmetric Lanc-
zos recursion were explicitly excluded by assuming (4.1). In this section, we make
some remarks about the general case and derive a theoretical result concerning so-
called incurable breakdowns.

First, let us return to the nonsymmetric Lanczos Algorithm 2.1. It stops as soon
as wTv = 0 occurs. If this is caused by v = 0 or w = 0, then one has found an invariant
subspace. Unfortunately, Algorithm 2.1 may also break down, i.e. stop with wTv =0
and v, w # 0 (see e.g. [35, p. 389]). Although this happens very rarely in practice, the
poesibility of such breakdowns has brought the ponsymmetric Lanczos method into
discredit and, certainly, kept many people from actually using the algorithm. However,
especially due to the efforts of Taylor [34], Draux [6], Parlett, Taylor, and Liu [30], and,
most recently, Gutknecht [19], the phenomenon of breakdown is now well understood.
Moreover, there are look-ahead [34, 30, 19] variants of the Lanczos algorithm which
allow to leap — except in the very special case of an incurable breakdown [34] — over
those iterations in which the standard algorithm would break down.

Here, we only sketch the basic idea of the look-ahead procedure for the special
case of the complex symmetric Lanczos method. For a more detailed description of
the look-ahead approach (for the general case) the reader is referred to [19]. Assume
that breakdown occurs in Algorithm 2.2. In view of Proposition 2.3 this happens iff
there is no complete set of m, Lanczos vectors vi € Ki(ro,A), k=1,...,m,, which
are orthonormal (cf. (2.3)) with respect to the indefinite inner product (2.6). Clearly,
there exists a maximal subset

(5'1) {khkz,-n:kl}g{1»2:---’”1*}, 15k1<k2<"'<k15m*,

such that for each j = 1,2,...,J there exists a vector v;; € Ky ;(ro, A) satisfying the
orthonormality relations

(5.2) vv=0 forallv€ Ky;_1(ro,4) and viv; =1

By the definition of Krylov subspaces, Ki(ro, A) = {P(A)ro | P € ll;_}, and espe-
cially

(5.3) v, = P),,._;(A)ro with Pk’-_1 € II,,,._I.
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Therefore, we can rewrite (5.2) in terms of polynomials:

(5.4) (ij_l,P) =0 forall P€ll;;-2, (Pk,»-1,Pk,-—1) #0,
with the indefinite inner product

(5.5) : (P,Q) = rg P(A)Q(A)ro.

A polynomial Pi, .1 € Ilg;y which fulfills (5.4) is called a regular orthogonal (with
respect to (5.5)) polynomial of degree k; — 1. It is well known [6, 19] that three
successive regular orthogonal polynomials are connected via a three-term recurrence.
By (5.3), it follows that there is a corresponding three-term recurrence relating the
vectors vg;-1, Vk,, and Vg 41. The look-ahead Lanczos procedure is a modification of
Algorithm 2.2 which — based on this three-term relation — generates the vectors v,
j=1,2,...,J. These vectors can then be completed to a basis of Ki, by setting, e.g.

vp= AFHiy, for k=ki+1LE+2,..,ka=1,7=01...,J-1

(cf. [17]). Here, for j = 0, we set ko := 1. We remark that the resulting look-ahead
Lanczos algorithm produces block tridiagonal matrices Tk;, j = 1,... ,J, of the type
(2.1) with (k; — k;_1) x (kj — k;—1) matrices ax; on the block diagonal. '

In exact arithmetic, the outlined algorithm terminates with the block tridiagonal
Ti,. Suppose that k; = m, in (5.1). Then Ty, represents the restriction of the matrix
A to the A—invariant subspace K, (ro, A). Obviously, in view of (2.2), the solution of
(1.1) can then be computed from the quantities generated by the look-ahead Lanczos
procedure. On the other hand, if k; < my in (5.1), it is not possible to obtain the
solution of (1.1) by means of the Lanczos process. For this reason, the case ky < m,
is called incurable breakdown.

Next, we derive a criterion for the occurrence of incurable breakdown in the
complex symmetric Lanczos algorithm. In the following, it is assumed that A is
diagonalizable. Then (e.g. [21, Theorem 4.4.13)), A has a complete set of orthonormal
(with respect to (2.6)) eigenvectors. In particular, ro can be expanded into eigenvectors
of A. More precisely, by collecting components corresponding to identical eigenvalues,
we get

My
To = E :Plul
=1

where p; # 0, Au; = Ajuy, and, if { # j, YR YR u,Tu,- =0.

(5.6)

Notice that, unless all eigenvalues of A are distinct, quasi-null vectors u; may occur
in (5.7). In view of the following theorem, this is equivalent to incurable breakdown.

THEOREM 5.1. Let A = AT be a diagonalizable nxn matriz and ro € C". Then,
in (5.1), ky = m, if, and only if, the eigenvectors in the ezpansion (5.6) of ro satisfy

(5.7) wTu #0 forall 1=1,...,m.
Proof. We need to show that (5.7) is equivalent to the existence of a regular

orthogonal polynomial of degree m, — 1 with respect to the inner product (5.5). From
the general theory of orthogonal polynomials, it is well known (e.g. (3, pp. 11-12])
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that regular orthogonal polynomials of degree k exist iff the corresponding moment
matrix My := (pj+1)j,i=0,... k is nonsingular. For the case of (5.5), by (5.6), we have

m,
(58) Hj = Tg‘AjTo = Zp,z)du;ru;, ] = 0, 1, fee s
i=1

Note that moment matrices are in particular Hankel matrices. By applying Kro-
necker’s Theorem on the rank of infinite Hankel matrices [16, pp. 204-207] to My, :=
(Bj+1)j1=0,1,..., it follows that

(5.9) rank M, = rank M; =rank M,,,_; =m forall k>m-—1,

where m is the number of poles of the rational function

(-]

f(z) = Z %

j=0

Using (5.8) and 3772, X /23*1 = 1/(2 = X), one obtains the following expansion of f:
. m. p,zu;ru:
(5.10) f(z) = E — for all |z| > mex Ml

In particular, by (5.10), m < m, with equality holding iff (5.7) holds true. Hence, in
view of (5.9), M,,,_; is nonsingular iff (5.7) is fulfilled. This concludes the proof. 0
As mentioned, (5.7) is guaranteed if A has only simple eigenvalues. Thus we have
the following
COROLLARY 5.2. If A= AT is an n x n matrir with n distinct eigenvalues, then
incurable breakdowns can not occur in the complex symmetric Lanczos Algorithm 2.2,

6. Complex versus equivalent real linear systems. In this section, we study
connections between (1.1) and its equivalent real versions. Unless stated otherwise, A
is now assumed to be a general complex n x n matrix.

6.1. Equivalent real linear systems. By taking real and imaginary parts in
(1.1), we can rewrite (1.1) as the real linear system

Rezx Rebd _|ReA —-ImA
(6-1) A*[Imz]_ Imb]’ A 1= [ImA ReA ]
A second real version of (1.1) is

Reb _[ReA ImA
=[Imb]’ Aus 1= [ImA -ReA]'

Obviously, (6.1) and (6.2) are the only essentially different possibilities of rewriting
(1.1) as a real 2n x 2n system. Furthermore, note that A, is nonsymmetric iff A # AR
is non-Hermitian, whereas A, is symmetriciff A = AT. Hence, for complex symmetric
linear systems the approach (6.2) appears to be especially attractive since it permits
the use of simple CG type methods such as SYMMLQ and MINRES [29] for real

symmetric matrices.

Rez
-Imz

(6.2) An [
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In the following proposition, we collect some simple spectral properties of A, and

A
PROPOSITION 6.1.
(a) Let J = X~1AX be the Jordan normal form of A. Then A, has the Jordan

normal form

(6.3) [g %] = X:lA.X,, where X, = —

In particular,
(6.4) o(A,) = o(A)Uo(4).

(b) The matrices Ayy and —A,, are similar. In particular,
(6.5) =2\, =X € 0(Aw) forall A€ o(Anm)

Moreover,

o(A) = {X €C| 3 € 0(A4)}.

(c) Let A = AT be complez symmetric. Then, there ezists a singuler value de-
composition (the so-called Takagi SVD) of A of the form
(6.6) A=USUT, U unitary, T = diag(s1,03,...,00)20.

Moreover, A,, is a real symmetric matriz with spectral decomposition

T
6.7) A,.,,:[’Z’ "YZ] [’03 _02] [’; 'Yz] where Y =ReU, Z =ImU.

Proof. (a) First, note that

(6.8) X.=S [)0( -;)? where S:= -\—}_5 [_I;} _IiI"] is unitary.

In particular, (6.8) shows that with X also X, is nonsingular. One readily verifies
that '

Heo_JA O

and, in view of (6.8), this implies (6.3). (6.4) is an obvious consequence of (6.3).

(b) Since
0 L] 0 IL]_
5 §) 4[5 §]=ae

the real matrices A,, and —A,, are similar. Hence, (6.5) holds true. The relation
between o(A.,) and o(AA) is known (see [21, p. 214] for a proof).

(c) (6.6) is the well-known Takagi singular value decomposition for symmetric
matrices (e.g. [21, Corollary 4.4.4]). By rewriting (6.6) in terms of the real and
imaginary parts of A and U, one obtains (6.7) (cf. [21, pp. 212-213]). O

Roughly speaking, Krylov subspace methods are most effective for coefficient
matrices A whose spectrum, except for possibly a few isolated eigenvalues, is contained
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in a half-plane which excludes the origin of the complex plane. On the other hand,
if this half-plane condition is not satisfied and if a large number of eigenvalues of A4
straddle the origin, usually the convergence of CG type algorithms is prohibitively
slow. Typically, in these situations (see [7, 12, 13] for examples), iterations based on
Krylov subspaces generated by A offer no advantage over solving the normal equations
(1.5) by standard CG. See Theorem 6.4 for a theoretical result along these lines.

For complex linear systems which arise in practice the half-plane condition is
usually satisfied. Indeed, mostly

(6.9) o(A) C {} € C|ImA > 0}.

However, by rewriting (1.1) as real linear systems (6.1) resp. (6.2), one deliberately
creates coefficient matrices whose spectra are most unfavorable for Krylov subspace
methods. The case (6.2) is especially bad since, in view of (6.5), ¢(Aw) is symmetric
with respect to real and imaginary axis and hence the eigenvalues always embrace the
origin. Similarly, by (6.4), the coeficient matrix A, of (6.1) in general has eigenvalues
in the upper as well as in the lower half-plane. In particular, if (6.9) holds and, as
in most applications, the Hermitian part (A + AH)/2 of A is indefinite, the spectrum
of A, straddles the origin and the half-plane condition is not satisfied for A,. The
following example illustrates this behavior.

Ezample 6.2. Consider the class (4.28) of complex symmetric matrices A =T +
ic] where T = T7 is real and ¢ > 0. Obviously,

o(A)={A=p+ioc|p€a(T)}
(6.10) cS:= [pm+iﬂ,#M+i°’]-

Here pim and ppr denote the smallest and largest eigenvalue of T, respectively. Note
that the complex line segment S is parallel to the real axis and always contained in
the upper half of the complex plane. In view of (6.4), (6.10) implies

o(A)={rA=ptic|pea(T)}cSUS.

We remark that SUJ is a tandem slit consisting of the two complex intervals S and S
which are parallel and symmetric to each other with respect to the real axis. Moreover,
the eigenvalues of A, straddle the origin, if the Hermitian part T of 4 is indefinite.
Finally, using (4.28) and part (b) of Proposition 6.1, we obtain

o(Awm) = {A=2VpT + 02 | p € o(T)}
Cc [— \/#}, +0?,- ] U [a,\/pfwﬁ-a’l.

Note that the class (4.28) is closely related to shifted skewsymmetric matrices. Indeed,
if, instead of Az = b, we rewrite —iAz = —ib as a real system (6.1), one obtains

(6.11)  (—iA), = [‘_’_’7': 67;"] =olp—N, N:= [;{ -OT] (._. _Nr).

Then, the eigenvalues are contained in a line segment which is parallel to the imaginary
axis and symmetric with respect to the real axis:

o((=iA)) = D =oxip|peo} Clo—ipo+ir, p=max{itml, luml}
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6.2. Correspondence of Krylov subspace methods. In analogy to (1.6)
for complex linear systems (1.1), a Krylov subspace method for the solution of the

equivalent real systems (6.1) resp. (6.2) generates iterates

Rezy| _ [Rezo Rerg (r)
(6.12) [Imzk] - Im::o] +P(4) [Imro] » Pell,
resp.
Rezy | _ | Rexo Rero (r)
(6.13) —-Imzk] - —Imzo] + P(An) [Imro} , PE

Here and in the sequel, IIf,"_)1 denotes the subset of II_; of polynomials with real
coefficients. Furthermore, the notation

K{(e,B) = {P(B)e | P ()} (C Kale, B))

will be used.
At first glance, it might appear that Krylov subspace iterations (1.6) resp. (6.12-
13) for the original complex systems resp. its equivalent real versions correspond to
each other. However, as the following proposition shows this is not the case in general.
ProPOSITION 6.3. Let k € N.
(a) Let P € Tx_,. Then, z; = zo + P(A)rg is equivalent to
(6.14) R""] = [Rezo

Rerg Imro
Imzi | = |Imzo

|+ R [Jore] 4 Pacan | 111,

where P = Py +iP;, P, P, € I{7),.
(b) Let P € II(QI. Then, (6.13) is equivalent to

(6.15) zr=Rezi+ilmz; =29+ R(IA)ﬁ-{- S(ZA)Zro

where RE€ T\ » and S € I{() ;) ore defined by P(3) = R(A?) + AS(X?).
Proof. First, we note that, for 5 =0,1,...,

618) (A = [pod ] e (a? = [ By maa)

as is easily verified by induction on j.
(a) Let +; and §; be the coefficients of the real polynomials P, and P;, respectively.

Then,

k-1
ReP(A) =Y (7;Re &’ - §;Im 4)
j=0
k-1 ) i
ImP(A) =Y (7 Im A’ + 6 Re &').
j=0

(6.17)
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By reformulating £z = zo+ P(A)ro, by means of (6.17) and the first relation in (6.16),
in terms of real and imaginary parts, one immediately obtains (6.14).

(b) A routine calculation, using the second identity in (6.16), shows that (6.13) can
be rewritten as

[Rems | = [ Reme |+ [ Relnctare s sl |

Hence (6.13) and (6.15) are equivalent. ]

In view of part (a) of Proposition 6.3, the corresponding real equivalent of com-
plex Krylov schemes (1.6) are iterations of the type (6.14) and not the obvious real
Krylov subspace methods (6.12). Clearly, the actual choice of the polynomials in (1.6)
resp. (6.12-13) is aimed at obtaining iterates which are — in a certain sense — best
possible approximations to the exact solution of the corresponding linear system. By
using schemes of the type (6.12), from the first, one gives up k of the 2% real pa-
rameters which are available for optimizing complex Krylov subspace methods (1.6.).
Consequently, it is always preferable to solve the complex system (1.1) rather than the
real version (6.1) by Krylov subspace methods. Furthermore, numerical tests reveal
that the convergence behavior of the two approaches can be drastically different (see
Section 7).

6.3. A connection between MR and CGNR for complex symmetric
matrices. Now assume that A is a complex symmetric n x n matrix. Then, in view
of part (c) of Proposition 6.1, A, is a real symmetric indefinite matrix whose spectrum
is given by

(6.18) 0(Aw) = {x0; |i=1,...,n}.

Here 0; = 0j(A) 20,5 =1,...,n, denote the singular values of A.

Since there are simple extensions [29] of classical CG to real symmetric indefinite
matrices, it is especially tempting to solve (6.2) by one of these methods. The iterates
of these algorithms are defined either via a Galerkin condition or a minimal residual
(MR) property. Here, we consider the MR approach. Applied to (6.2) it generates a
sequence of iterates zx, k = 1,2,..., which are characterized by

(6.19) |lbux — Aweze] = min Wbue = Auszll, 2 € 20+ K(re*, Au)-
3€30+ K (re* Aue) »

Here, we have set

(6.20) buu:= [ﬁ;:] , Ik = [_Rﬁ:;k] for k=0,1,..., rg*:=byx — Auxo-
Roughly speaking, CG type algorithms for real symmetric indefinite systems converge
slowly if the coefficient matrix is strongly indefinite, in the sense that it has many pos-
itive as well as many negative eigenvalues. Unfortunately, since, by (6.18), o(Aw) is
even symmetric to the origin, A, exhibits this undesirable property. Indeed, numer-
ical tests show that the convergence behavior of the MR method (6.19) is practically
identical to that of the tabooed approach to (1.1) via solving the normal equations
(1.5) by standard CG [20]. In the sequel, we refer to this latter method as CGNR.
Notice that the iterates z of CGNR are defined by the minimization property

X - = i b— Azl|, Ki(Af 7, AH A).
(6.21)  |Ib— Az =e=,+x.'(")2r..4u)" z|l, = €zo+ Ki(A"ro )
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Next, we prove that MR and CGNR are even equivalent, if the starting residual
ri* satisfies a certain symmetry condition. Note that, corresponding to the spectral
decomposition (6.7), r§* can be expanded into eigenvectors of A, as follows:

c1
(6.22) o = [; ’Z]c with ¢= [ : }eR’".
Can

THEOREM 6.4. Let R resp. zGNR denote the iterates generated by (6.5.19-
20) resp. (6.21) starting with the same initial guess o € C". Assume that c in the
ezpansion (6.22) of r§* salisfies

(6.23) lej] = lentil, §=1,2,...,m
Then,
(6.24) OGN = MR =zg,‘fl, 1=0,1,....

Proof. First, note that, in view of (6.7) and (6.22), ¢; and cny; are components
corresponding to a pair of symmetric eigenvalues %0 of A,.. However, for any real
symmetric linear system A,z = by With “gymmetric” eigenvalues and “symmetric”
starting residual r2* in the sense of (6.18) and (6.23), respectively, the MR method

generates iterates with z; € zo + K {:),21 (Awars*, A2,) (see e.g. [13]). Consequently,
the iterates defined by (6.19) satisfy :

(6.25) 221 = z141 € 20+ Kl(r)(An"*o'*a AL).

In particular, by (6.20), (6.25) shows that z3fF = M7
It remains to prove the first relation in (6.24). To this end, we remark that

(6.26) l1Bsx — Auszl| = |lb— Az]| forall z= [_anf:] , z€C".

Moreover, by using (6.20) and part (b) of Proposition 6.3 (applied to polynomials
P()) = AS(A\?)), we deduce

(6.27) 20+ K (Aurd*, (Au)?) = {[_“{;’x] | z € zo+ K (AFro, A7 A)}
(notice that 4 = A¥ in (6.15)!). In view of (6.25-27), (6.19) (for k = 2l) can be

rewritten in the form

(6.28) |Ib—AzMR|| = min fo-Azll, =zMR € zo+K{ (A" ro, AT A).
:e:o+K,(')(A"ro,A"A)

Finally, note that the iterates of CGNR always correspond to real polynomials, i.e.
zfOMR ¢ zo+K,(')(AH ro, A# A). Hence, by comparing (6.21) with (6.28), we conclude
that ::,OGNR = :g,m. 0
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Clearly, the special symmetry condition (6.23) will not be satisfied in general.
Nevertheless, all our numerical experiments showed (cf. Section 7) that (6.24) is still
fulfilled approximately, i.e.

(6.29) zfONR MR MR, 1=0,1,... .

7. Numerical Examples. We have performed numerical experiments with all
algorithms considered in this paper in numerous cases. In this section, we present a8
few typical results of these experiments.

Consider (1.2) on the unit square G := (0,1) x (0,1) with oy € R a constant
and o, a real coeficient function. First, assume that u satisfies Dirichlet boundary
conditions. Then, approximating (1.2) by finite differences on a uniform m x m grid
with mesh size h := 1/(m + 1) yields a linear system (1.1) with A an n x n, n:= m?,
matrix of the form

(1.1) A=T+ihD, T:= Ao—oih’], D = diag(dy,ds,...,dn).

Here A is the symmetric positive definite matrix arising from the usual five-point
discretization of —A and the diagonal elements of D are just the values of o at the
_ grid points.

Similarly, if we consider the real Helmholtz equation (1.2), i.e. 02 =0, but now
with a typical complex boundary condition such as

8

5:‘:::'011 on {(1,y)|-1<y<1}

and Dirichlet boundary conditions on the other three sides of the boundary of G, one
again arrives at (7.1) where :

o, fj=iml=1,...,m,
(7.2) 9 = { 0, otherwise.

The test problems presented in this section are all linear systems Az = b with
complex symmetric coefficient matrices of the type (7.1). For Example 7.1, the mesh
size h = 1/64 was chosen resulting in a 3969 x 3969 matrix A. In Examples 7.2—4,
h = 1/32 and thus A is a 961 x 961 matrix. The right-hand side b was chosen to be a
vector with random components in [—1,1} + i[—1, 1], with the exception of Example
7.2 where b had constant components 1+ i. As starting vector zo = 0 was chosen.

As stopping criterion, we used

o= Azl o6
(7.3) R : 5= Azol <107°.
In Figures 7.1~4, the relative residual norm (7.3), Re, is plotted versus the iteration
number k, at least for those methods for which work and storage per iteration is
roughly the same. In the case of CGS resp. CGNR which both require about twice
the work of the other algorithms and especially two matrix-vector products A -v resp.
A-v, A - v per iteration, we have plotted Ry versus 2k.

In a first series of experiments, QMR (with different weighting strategies) and
BCG were compared. The natural choice (4.11) turned out to be the best strategy in all
cases. In the following, QMR always refers to Algorithm 4.2 with weights (4.11). Then
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QMR produces residual vectors whose norms are almost monotonically decreasing and
generally smaller than those of the BCG residuals. However, convergence of QMR
and BCG typically occurred after a comparable number of iterations. The following
example is typical.

Ezample 7.1. Here, (7.1) is a 3969 x 3969 matrix with ¢, = 200, and the diagonal
elements of D are given by (7.2) with a = 10. In Figure 7.1, the convergence behavior
of BCG, QMR, and of the unweighted version (w; = 1) of the QMR Algorithm 4.2 is
displayed.

Figure 7.1

Next, we compared the CGS Algorithm 3.3 with QMR and BCG. Typically, CGS
needed slightly fewer iterations than QMR and BCG to reach (7.3). However, per
iteration, QMR and BCG require only about half as much work and storage, CGS is
not competitive for complex symmetric matrices.

Ezample 7.2. In (7.1), we set n = 961,01 = 100 and d;, = 1,... ,n, are chosen
as random numbers in [0,10). Figure 7.2 shows the convergence behavior of QMR,
BCG, and two runs of CGS with different starting vectors so, namely sg = o resp.
so with random components in [—1,1] + i[-1, 1].

Figure 7.2

Notice the extremely large residual norms in the early stage of the CGS iteration.

In the following two examples, we compared CG type methods for Az = b with
real schemes for the equivalent real systems (6.1) resp. (6.2). For GMRES [32], work
and storage per iteration step k grows linearly with k and in practice it is necessary
to use restarts. In the sequel, GMRES(ko) refers to GMRES applied to (6.1) and
restarted after every ko iterations. Finally, MR(A.:) denotes the minimal residual
method (6.19) applied to the real symmetric system (6.2).

Ezample 7.8. Here, in (7.1), n = 961, o; = 100, and d; are given by (7.2) with
o = 100. In Figure 7.3, for QMR, MR(A.), GMRES(5) resp. CGNR, the relative
residual norm (7.3) is plotted versus iteration number k resp. 2k.

Figure 7.3

Notice that, although the symmetry condition (6.23) is not fulfilled, the curves for
CGNR and MR(A,,) are almost identical. This confirms (6.29). Finally, we tried
GMRES(ko) also with other restart parameters ko. For this example, the method did
never converge.

Ezample 7.4. Let A be the 961 x 961 matrix (7.1) with oy = 1000, D = o1,
o2 = 100 and set o = o2h?. Note that A is a shifted Hermitian matrix of the form
(4.28) (cf. Example 6.2). In particular, A belongs to the class of matrices (1.3) for
which efficient true minimal residual algorithms for solving Az = b exist. Here we used
the particular implementation, MR(A), derived in [14, Algorithm 2]. Recall that, by
rewriting —iAz = —ib as a real system (6.1), one obtains a shifted skewsymmetric
matrix (6.11), (—iA).. Again, for such matrices an efficient true minimal residual
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algorithm, denoted by MR((—iA).), exists [8, 12]. Figure 7.4 shows the convergence
behavior of MR(A), MR(A.), MR((—7A).),CGNR, and GMRES(20).

Figure 7.4

Notice that MR((—iA),) and CGNR are nearly identical. This is typical for the case
that o is small compared to the spectral radius of T. Furthermore, if 0 = 0, i.e.
(—iA), in (6.11) is skewsymmetric, CGNR and MR((—iA).) are even equivalent [12].

8. Concluding remarks. Complex linear systems Az = b which arise in prac-
tice often have complex symmetric coefficient matrices A. In this paper, we have
explored the use of a variant of the nonsymmetric Lanczos process for complex sym-
metric matrices for the solution of such linear systems. In particular, we have proposed
a new method of defining approximate solutions of Az = b via a quasi-minimal resid-
ual (QMR) property. In contrast to the biconjugate gradient (BCG) approach, the
QMR iterates are well-defined as long as the basic Lanczos recursion does not break
down. Moreover, unlike the wildly oscillating BCG residuals, the QMR residuals con-
verge almost monotonically. Also, existing BCG iterates can be easily computed from
_ the quantities generated during the QMR iteration. Finally, possible breakdowns —
except incurable ones — of the complex symmetric Lanczos recursion can be overcome
by using a look-ahead version of the Lanczos process. Incurable breakdowns only oc-
cur in very special situations. For example, they can not occur if all eigenvalues of A
are distinct.

It is very tempting (and often done in practice!) to avoid complex linear system
by solving equivalent real systems instead. We have presented some theoretical and
numerical results which show that this — at least for Krylov subspace methods — is
a fatal approach. Typically, the resulting real systems are unequally harder to solve
by conjugate gradient type algorithms than the original complex ones.

In this paper, we have not addressed the question of how to choose precondition-
ers M for complex symmetric linear systems. This will be the subject of a forthcoming
report. Here, we only remark that complex symmetry is preserved under precondi-
tioning as long as M is complex symmetric. In particular, all algorithms for A = AT
which we have considered can be used in conjunction with a complex symmetric pre-
conditioner M. Note that the standard techniques, such as incomplete factorization
[27), applied to A = AT generate complex symmetric preconditioners M.

Finally, we would like to mention that the quasi-minimal residual approach can
also be used to stabilize the general nonsymmetric biconjugate gradient algorithm [15].
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