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a b s t r a c t

It is known that the restarted full orthogonalization method (FOM) outperforms the
restarted generalized minimum residual (GMRES) method in several circumstances for
solving shifted linear systems when the shifts are handled simultaneously. Many vari-
ants of them have been proposed to enhance their performance. We show that another
restarted method, the restarted Hessenberg method (Heyouni, 1996) based on Hessenberg
procedure, can effectively be employed, which can provide accelerating convergence rate
with respect to the number of restarts. Theoretical analysis shows that the new residual of
shifted restarted Hessenbergmethod is still collinear with each other. In these cases where
the proposed algorithm needs less enough elapsed CPU time to converge than the earlier
established restarted shifted FOM, the weighted restarted shifted FOM, and some other
popular shifted iterative solvers based on the short-term vector recurrence, as shown via
extensive numerical experiments involving the recently popular application of handling
time fractional differential equations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Considering a real large-scale sparse nonsymmetric matrix A ∈ Rn×n and the right-hand side b ∈ Rn, we are interested
in simultaneously solving shifted nonsingular linear systems

(A − σiI)x = b, σi ∈ C, i = 1, 2, . . . , ν, (1.1)

where I denotes the n × n identity matrix. Such shifted systems often arise in many scientific and engineering fields,
such as control theory [1,2], structural dynamics [3], eigenvalue computations [4], numerical solutions of time-dependent
partial/fractional differential equations [5,6], QCD problems [7], image restorations [8] and other simulation problems
[9–12]. Among all the systems, when σi = 0, the linear system Ax = b is usually treated as the seed system.
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It is well known that Krylov subspace methods are widely used for the solution of linear systems (see e.g. [13]). Denoting
the k-dimensional Krylov subspace with respect to A and b by

Kk(A, v) := span{v, Av, . . . , Ak−1v}, (1.2)

we can observe that the relation, so-called shift-invariance property, described below always holds for the shifted matrices
in

Kk(A, v) := Kk(A − σiI, v), i = 1, 2, . . . , ν, (1.3)

which shows that the iterations of (1.1) are dependent on the same Krylov subspace as the iterations of the seed system.
This implies that if we choose the initial vector x0 properly (for example, all the initial guesses are zero), once a basis has
been generated for one of these linear systems, it could also be reused for all other linear systems. Therefore, if we employ
a Krylov subspace method to solve (1.1) simultaneously, a certain amount of computational efficiency can be maintained if
the Krylov subspace is the same for all shifted systems each time. This happens when the generating vectors are collinear,
for the basis and the square Hessenberg matrix are required to be evaluated only once; refer, e.g., to [9,11,14–16] for details.

Several numerical techniques have been proposed in the past few years that attempt to tackle this kind of linear
systems (1.1). For shifted nonsymmetric (non-Hermitian) linear systems, iterative methods such as the shifted quasi-
minimal residual (QMR) method, the shifted transpose-free QMR (TFQMR) method [3,17], the shifted induced dimension
reduction (IDR(s)) method [9,18,19], and the shifted QMR variant of the IDR (QMRIDR(s)) method [20] have been devel-
oped. It should be mentioned that iterative methods based on the conventional Bi-Lanczos process [13, pp. 229–233]
(or the A-biorthogonalization procedure [21, pp. 40–45]) have also been constructed for solving shifted non-Hermitian
linear systems. Extensions of these methods, such as the shifted biconjugate gradient method and its stabilized variants,
namely BiCG/BiCGStab(ℓ) [14,22], the shifted biconjugate residual method and the corresponding stabilized variant, i.e.
BiCR/BiCRSTAB [23], and the shifted generalized product-type methods based on BiCG (GPBiCG), have been recently
established in [24]. In addition, a recycling BiCG method was introduced and employed for handling shifted nonsymmetric
linear systems from model reduction [25]. These Krylov subspace methods based on Bi-Lanczos-like procedures are not
emphasized in this paper, but these alternatives are still worth mentioning.

On the other hand, the restarted generalizedminimal residual (GMRES)-typemethods arewidely known and appreciated
to be efficient on (1.1), refer to [3,26–29] for details, the computed GMRES shifted residuals are not collinear in general after
the first restart so that it loses the computational efficiency mentioned above. Consequently, certain enforcement has to be
made for guaranteeing the computed GMRES shifted residuals collinear to each other in order tomaintain the computational
efficiency; see e.g. [3,26]. Note that in this case, only the seed system has the minimum residual property, the solution of the
other shifted systems is not equivalent to the GMRES method applied to those linear systems, refer to [3,16,26]. In contrast,
it is more natural and more effective for the restarted full orthogonalization method (FOM) to be applied to shifted linear
systems simultaneously handled, for all residuals are naturally collinear [11,30]. As a result, the computational efficiency can
be maintained because the orthonormal basis and the Hessenberg matrix are required to be calculated only once each time.
Jing and Huang in [15] further accelerated this method by introducing a weighted norm (i.e., the weighted Arnoldi process).
In 2014, Yin and Yin have studied restarted FOMwith the deflation technique which is first introduced byMorgan in [31] for
solving all shifted linear systems simultaneously. Due to restarting generally slows the convergence of FOM by discarding
some useful information at the restart, the deflation technique can remedy this disadvantage in some sense by keeping Ritz
vectors from the last cycle, see [16] for details.

However, as we know, both the restarted GMRES method and the restarted FOM for solving shifted linear systems are
derived by using the Arnoldi procedure [13, pp. 160–165], which turns to be expensive when m (the dimension of Krylov
subspace) becomes large because of the growth of memory and computational requirements as m increases. So it is still
meaningful to search some cheaper iterativemethods for solving shifted linear systems (1.1). Here,we consider to exploit the
Hessenberg reduction process [32–35] because it generally requires less arithmetic operations and storage than the Arnoldi
process and is thus favorable for producing a linear system solver. Moreover, it has been proved that we can establish two
families of Krylov subspacemethods, namely the Hessenbergmethod [35] and the changingminimal residual method based
on the Hessenberg process (CMRH) [33–35], by using the basic principles behind the (restarted) FOM and the (restarted)
GMRES method, respectively, refer to [35,36] for this discussion. Some recent developments concerning the CMRH, which
is very similar to the GMRES method, and the Hessenberg process can be found in [34,37–39]. Since the restarted FOM
is built via combining the Arnoldi process and Galerkin-projection idea [13, pp. 165–168], so it is natural to extend the
restarted FOM for solving shifted linear systems (1.1), refer to [30] for details. Meanwhile, the restarted Hessenberg method
is also established via combining the Hessenberg process with Galerkin-projection philosophy. Moreover, as mentioned
earlier, the Hessenberg process has many similar algorithmic properties of the Arnoldi process. To sum up, the framework
of the restarted FOM for shifted linear systems gave us a simple and natural problem: Does there exist a variant of the
original restarted Hessenberg method for solving shifted linear systems? The major contribution of the current paper is to
answer this question. The answer is yes, and it requires a similar but efficient idea from that used in the restarted shifted
FOM. As a result, a feature of the resulting algorithm is that all residuals are naturally collinear in each restarted cycle; and
the computational efficiency can be maintained because the (non-orthogonal) basis and the square Hessenberg matrix are
required to be calculated only once each time. Our method indeed may provide the attractive convergence behavior with
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respect to the less number of restarts and the elapsed CPU time, which will be shown by numerical experiments described
in Section 4. Moreover, the established algorithm is able to solve certain shifted systems which both the restarted shifted
FOM and the restarted weighted shifted FOM [15] cannot handle sometimes.

The remainder of the present paper is organized as follows. In Section 2, we briefly review the Hessenberg process and
the restarted Hessenberg method for nonsymmetric linear systems. Section 3 discusses the naturally collinear property
of residual during each cycle of the restarted Hessenberg method. Then, we demonstrate how to generalize the restarted
shifted Hessenberg method for solving shifted linear systems (1.1). Implementation details will be also described. In
Section 4, extensive numerical experiments are reported to illustrate the effectiveness of the proposed method. Finally,
some conclusions about this method are drawn in Section 5.

2. The Hessenberg process and the restarted Hessenberg method

In order to extend the restarted Hessenberg method for solving shifted linear systems well, we first recall the restarted
Hessenberg method, which is established from the Hessenberg process. According to Refs. [35,37,40], it is not hard to
conclude that the restarted Hessenberg method is greatly close to the restarted FOM, which is derived from the well-known
Arnoldi process. Although the restarted Hessenberg method has been proved to be cheaper than the restarted FOM, the
restarted Hessenberg method is still not very popular in the field of Krylov subspace methods for solving linear systems.
This observation is just like the (restarted) FOM, which is simpler but often less popular than the GMRES method due to
the minimal norm property of the latter [13]. However, as mentioned earlier, the (restarted) FOM is attractively extended
for solving shifted linear systems, here this motivation also encourages us to revive the restarted Hessenberg method for
solving such shifted systems (1.1).

2.1. The Hessenberg process

Starting point of the algorithms derived in this paper is the Hessenberg process for reducing a given nonsymmetric
matrix to the Hessenberg decomposition [32,34]. In [41], the Hessenberg process is originally described as an algorithm
for computing the characteristic polynomial of a given matrix A. This process can also be applied for the reduction to the
Hessenberg form of A and is presented as an oblique projection in [32, pp. 377–381]. For ease of notation we will assume
that both the matrix and the vectors involved in the solution algorithms are real, but the results given here and in other
sections are easily modified for a complexmatrix and complex vectors. Exploiting the pivoting strategy described above, the
Hessenberg procedure can be reproduced in Algorithm 1.

Algorithm 1 The Hessenberg procedure with pivoting strategy
1: Set p = [1, 2, . . . , n]T and determine i0 such that |(v)i0 |= ∥v∥∞

2: Compute β = (v)i0 , then l1 = v/β and p(1) ↔ p(i0)
3: for j = 1, 2, . . . , k, do
4: Compute u = Alj
5: for i = 1, 2, . . . , j, do
6: hi,j = (u)p(i)
7: u = u − hi,jli
8: end for
9: if (j < n and u ̸= 0) then

10: Determine i0 ∈ {j + 1, ..., n} such that |(u)p(i0)|= ∥(u)p(j+1):p(n)∥∞;
11: hj+1,j = (u)p(i0); lj+1 = u/hj+1,j; p(j + 1) ↔ p(i0)
12: else
13: hj+1,j = 0; Stop
14: end if
15: end for

Let Lk be the n × kmatrix with column vectors l1, . . . , lk, H̄k be the (k + 1) × k upper Hessenberg matrix whose nonzero
entries are the hj,k and by Hk the matrix obtained from H̄k by deleting its last row. Then it is not hard to demonstrate that
these matrices given either by Algorithm 1 satisfy the well-known formulas

ALk = Lk+1H̄k

= LkHk + hk+1,klk+1eTk
(2.1)

and PkLk is lower trapezoidal where PT
k = [ep1 , ep2 , . . . , epn ] and the pi’s (for i = 1, . . . , n) are defined in Algorithm 1, refer

to [33,34] for details. In [34], it is worth mentioning that Heyouni and Sadok had introduced the Hessenberg process with
over-storage to deal with the dense matrix for saving the computational storage, but here we will not pursue it in detail.
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At the end of this subsection, it is worthmentioning that the earlier work1 of Howell & Stephens [43] and Stephens’ Ph.D.
dissertation [42] have really made some further progress on the backward error analysis for the Hessenberg process. They
had obtained the following theorem, which can be regarded as a slight improvement onWilkinson’s results [32]. For a proof,
one can consult Stephens’ Ph.D. dissertation [42].

Theorem2.1. Let Hk be the first k columns of H̄k computed in floating point arithmetic by the Hessenberg algorithm. Then assume
that Ã is a permutation of A from which Hk is produced. If the (i, j)-th entry of Ã is aij and denote |Ã| as the matrix with entries
|aij|.

(Ã + △A)Lk = Lk+1H̄k, |△A| ≤ γn(|Ã∥Lk| + |Lk+1∥H̄k|),

where γn = nϵ/(1 − nϵ) and ϵ is the unit roundoff (or machine precision) [44, p. 3] such that 1 = fl(1 + ϵ) in which ‘‘fl(·)’’
indicates correctly rounded floating-point arithmetic.

According to Theorem 2.1, the Hessenberg process with pivoting strategy cannot be proved to be backward stable in
finite precision arithmetic. Meanwhile, this result (i.e., Theorem 2.1) also indicated that for most problems the backward
error is usually small [42,43, p. 49]. Moreover, in our practical implementations of most test problems considered in the
current study, no noticeable instabilities of the Hessenberg process with pivoting strategy have been detected. Based on the
above observations, Algorithm 1 can be promising and thus represents a cost-effective alternative to the Arnoldi procedure
in iterative solutions of some certain systems of linear equations.

2.2. The restarted Hessenberg method

As we know, it derives the restarted FOM from the specified Hessenberg decomposition like (2.1), which is generated by
Arnoldi process. Here we follow this framework of restarted FOM to derive the restarted Hessenberg method via combining
the Hessenberg decomposition with the Galerkin-projection idea. Given an initial guess x0 to the seed linear system Ax = b,
we now consider an orthogonal projection method [13], which takes L = Km(A, r0) in which r0 = b − Ax0. Then we search
an approximate solution xm from the affine subspace x0 +Km(A, r0) of dimensionm, i.e., we can express it as xm = x0 +Lmym
for the vector ym, where Lm = [l1, l2, . . . , lm] is constructed via the Hessenberg process. Furthermore, the residual vector
can be computed

rm = b − Axm = r0 − LmHmym − hm+1,mlm+1eTmym
= Lm(βe1 − Hmym) − hm+1,mlm+1eTmym.

(2.2)

Then in this method, we need to enforce the following Galerkin condition:

rm ⊥ {e1, e2, . . . , em}, (2.3)

where ei is the ith vector of the canonical basis of Rn. This orthogonality condition yields that ym is the solution of the
followingm × m linear system,

Hmym = βe1, (2.4)

refer to [34,35,40] for details. As a consequence, the approximate solution using the abovem-dimensional subspace is given
by

xm = x0 + Lmym, where ym = H−1
m (βe1). (2.5)

Finally, an iterative solver based on Algorithm 1 and called the Hessenberg (Hessen) method is obtained, but for practical
implementation, here we give the pseudo-codes of the restarted Hessenberg method as Algorithm 2.

Algorithm 2 The restarted Hessenberg method (referred to as Hessen(m))
1: Start: Choose x0 ∈ Rn, the restarting frequencym ∈ Z+. Compute r0 = b−Ax0 and set p = [1, 2, . . . , n]T and determine

i0 such that |(r0)i0 |= ∥r0∥∞

2: Compute β = (r0)i0 , then l1 = r0/β and p(1) ↔ p(i0), where ↔ is used to swap contents.
3: Hessenberg process: Generate the Hessenberg basis and the matrix Hm using the Hessenberg process (i.e. Algorithm 1)

starting with l1.
4: Approximate the solution: Solve y = H−1

m (βe1) and update xm = x0 + Lmym, where Lm = [l1, l2, . . . , lm].
5: Restart: If converged then stop; otherwise set x0 := xm and goto 1.

The above algorithm depends on a parametermwhich is the dimension of the Krylov subspace. In practice it is desirable
to select m in a dynamic fashion. This would be possible if the residual norm of the solution xm is available inexpensively

1 A short note for describing the relations between their ELMRES method [42,43] and Sadok’s CMRH [33] is available online at http://ncsu.edu/hpc/
Documents/Publications/gary_howell/contents.html#codes.

http://ncsu.edu/hpc/Documents/Publications/gary%5Fhowell/contents.html%23codes
http://ncsu.edu/hpc/Documents/Publications/gary%5Fhowell/contents.html%23codes
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(without having to compute xm itself). Then the algorithm can be stopped at the appropriate step using this information. The
following proposition gives a result in this direction.

Proposition 2.1. The residual vector of the approximate solution xm computed by the Hessenberg method (without restarting) is
such that

rm = b − Axm = −hm+1,m[ym]mlm+1,

where [ym]m represents the last element of ym and therefore

∥b − Axm∥2 =

⏐⏐⏐hm+1,m[ym]m

⏐⏐⏐ · ∥lm+1∥2. (2.6)

Proof. With the help of Eqs. (2.2) and (2.5), we can note that

rm = Lm(βe1 − Hmym) − hm+1,mlm+1eTmym
= −hm+1,mlm+1eTmym

because of the definition of ym, i.e.,Hmym = βe1. This can immediately lead to the identity in Eq. (2.6) by using the 2-norm. □

The previous results are also achieved for the FOM [13, Proposition 6.7], except thatwe have ∥Lm+1∥2 = 1 and hm+1,m > 0,
and so

r fomm = −hm+1,m[ym]mlm+1 and ∥rm∥2 = hm+1,m

⏐⏐⏐[ym]m

⏐⏐⏐. (2.7)

Also note that these formulas imply that the 2-norm of the residual can be determined, without having to compute the
correction xm. At the end of this subsection, it follows that

rm = −hm+1,m[ym]mlm+1, (2.8)

then we have rm = βmlm+1 and βm := −hm+1,m[ym]m, which indicates that rm is naturally collinear with lm+1.
Without considering the restarting strategy, just like analyzing the convergence relations between the CMRH and

the GMRES method, we may also follow the analogous ideas of Sadok & Szyld [37], Duintjer Tebbens & Meurant [38],
and Schweitzer [45] to present some specified analyses which explain why the Hessenberg method can have the good
convergence behavior. But this is not the emphasis of our present paper.

3. The shifted variant of the restarted Hessenberg method

Based on the above mentioned, we follow Simoncini’s framework [30] about deriving the restarted shifted FOM to
establish the shifted variant of the restarted Hessenbergmethod. Consider now the shifted systems (1.1). Shifting transforms
(2.1) into

(A − σiI)Lm = Lm(Hm − σiIm) + hm+1,mlm+1eTmym, (3.1)

where Im is the identity matrix of orderm. Due to (3.1), the only difference in the Hessenberg method is that ym is calculated
via solving the reduced shifted systems (Hm−σiIm)y = βe1. Therefore, the expensive step of constructing the non-orthogonal
basis Lm is performed only once for all values of σi of interest, i ∈ {1, . . . , ν}, whereas ν reduced systems of size m need to
be solved. This is the case if the right-hand sides are collinear. In the following, we shall assume that x0 = 0 so that all
shifted systems have the same right-hand side. Restarting can also be employed in the shifted case. The key fact is that the
Hessenberg method residual rm is a multiple of the basis vector lm+1, see Eq. (2.8) for details. The next proposition shows
that collinearity still holds in the shifted case when the Hessenberg method is exploited.

Proposition 3.1. For each i = 1, 2, . . . , ν, let x(i)m = Lmy
(i)
m be a Hessenberg method approximate solution to (A − σiI)x = b in

Km(A − σiI, b), with Lm satisfying (3.1). Then there exists β
(i)
m ∈ R such that r (i)m = b − (A − σiI)x

(i)
m = β

(i)
m lm+1.

Proof. For i = 1, 2, . . . , ν, we have

r (i)m = b − (A − σiI)x(i)m = r0 − (A − σiI)Lmy(i)
m

= r0 − Lm(Hm − σiIm)y(i)
m − hm+1,mlm+1eTmy

(i)
m

= Lm
[
βe1 − (Hm − σiIm)y(i)

m

]
− hm+1,m[y(i)

m ]mlm+1.

Setting β
(i)
m = −hm+1,m[y(i)

m ]m, i = 1, 2, . . . , ν, we obtain r (i)m = β
(i)
m lm+1. □

It is observed that all the residuals r (i)m are collinear with lm+1, and thus they are collinear with each other. This property
is excellent so that we could restart the shifted Hessenberg method by taking the common vector lm+1 as the new initial
vector, and the corresponding approximate Krylov subspace is Km(A, lm+1). Just as the first cycle, all the new residuals still
satisfy the formula r (i)m = β

(i)
m lm+1, and the restarted Hessenberg process can be repeated until convergence. This leads to the

shifted restarted Hessenberg method for simultaneously solving shifted linear systems (1.1). We described this final idea in
detail as following Algorithm 3.
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Algorithm 3 The restarted shifted Hessenberg method
1: Given A, b, x0 = 0, {σ1, . . . , σν}, I = {1, 2, . . . , ν} and the restarting frequencym ∈ Z+.
2: Set r0 = b and take p = [1, 2, . . . , n]T and determine i0 such that |(r0)i0 |= ∥r0∥∞

3: Compute β
(i)
0 = (r0)i0 , then l1 = r0/β

(i)
0 , p(1) ↔ p(i0), where ↔ is used to swap contents.

4: Set x(i)m = x0, i = 1, 2, . . . , ν.
5: Compute the Hessenberg decomposition ALk = LkHk + hk+1,klk+1eTk by Algorithm 1
6: for each i ∈ I do
7: Solve y(i)

m = (Hm − σiIm)−1(β (i)
m e1)

8: Update x(i)m = x(i)m + Lmy
(i)
m

9: end for
10: Eliminate converged systems. Update I. If I = ∅, exit. EndIf
11: Set β

(i)
m = −hm+1,m[y(i)

m ]m for each i ∈ I
12: Set l1 = lm+1. Goto 5

Similarly, it was shown in [30] that the information sharing does not cause any degradation of convergence performance,
and the convergence history of shifted Hessenberg method on each system is the same as that of the usual restarted
Hessenberg method applied individually to each shifted system. We should point out that an outstanding advantage of this
approach is that the non-orthogonal basis {l1, . . . , lm} is only required to be computed once for solving all shifted systems in
each cycle, so that a number of computational cost can be saved. In addition, Algorithm 3 is also attractive when both A are
real while the shifts {σi}’s are complex. Indeed, at each cycle after restarting, all the complex residuals are collinear to the
(m + 1)-st real basis vector Lm+1, and the expensive step for constructing the non-orthogonal basis Lm+1 can be performed
in real arithmetics, see [17,30] and Section 4 for this issue.

Next, we shall analyze the computational cost of implementing the restarted shifted Hessenberg method, the restarted
shifted FOM, and theweighted restarted shifted FOM. It is known from Section 3 and Refs. [15,30] that themain difference of
arithmetic operations of these threemethods comes fromprocesses in producing the basis vectors of Krylov subspaces. Other
operational requirements, like solving ν linear sub-systems defined as Line 7 in Algorithm 3 and the update of y(i)

m , are similar
for the three mentioned methods. Therefore, it makes sense to only consider the computational cost of the Hessenberg,
Arnoldi and weighted Arnoldi processes which underpin the implementation of Algorithm 3, the restarted shifted FOM
and the weighted restarted shifted FOM. Let us denote by Nz the number of nonzero entries of A in (1.1). The cost of an
inner product is assumed to be 2n flops. Since the first j − 1 elements of lj are zero, then some arithmetic operations can
be saved. For instance, the cost of updating the vector lj (the j-loop in Algorithm 1) in the Hessenberg process reduces to∑m

i=1
∑i

j=12(n − (j − 1)) = m(m + 1)(n − (m − 1)/3) flops instead of 2m(m + 1)n and 5
2m(m + 1)n flops in the Arnoldi

process and the weighted Arnoldi process, respectively. If we neglect the cost of computing the maximum of the vector lj in
the Hessenberg procedure, then we obtain the number of operations per restart (i.e., m steps) by the Hessenberg process,
the Arnoldi process and the weighted Arnoldi process (refer to [15] for instance) as Table 1.

In Table 1, m is the restarting frequency; and the definition of ‘‘D-orthogonal’’ basis can be found in [15, Algorithm 2].
Firstly, it is worth mentioning that the restarted shifted Hessenberg, the restarted shifted FOM, and the weighted restarted
shifted FOM have the similar implementations of Lines 6–12 of Algorithm 3. More precisely, if we suppose that it requires to
run those three Krylov subspace solvers within ξ ı, ı ∈ {f , h, wf } restarting cycles, respectively, then their algorithmic costs
(roughly) read as,

• Restarted shifted FOM: ξ f c f + ξ f (2mNz + 2m(m + 1)n);
• Restarted shifted Hessenberg method: ξ hch + ξ h

(
2mNz + m(m + 1)n −

1
3m(m − 1)(m + 1)

)
;

• Restarted weighted shifted FOM: ξwf cwf
+ ξwf

(
2mNz +

5
2m(m + 1)n

)
,

where c f , ch and cwf denote respectively the total cost of the restarted shifted FOM, the restarted shifted Hessenbergmethod
and the restarted weighted shifted FOM for implementing Lines 6–12 of Algorithm 3 per restarting cycle. In fact, the main
cost of these seven lines of Algorithm 3 (or corresponding pseudo-codes of the restarted shifted FOM and the restarted
weighted shifted FOM) is to solve ν linear systems with shifted Hessenberg coefficient matrices of sizem×m, which can be
solved in O(νm2) operations via QR factorization [46]. This fact implies that we can have c ȷ ∼ O(νm2), ȷ ∈ {f , h, wf }.

As observed from the above considerations, when these three mentioned shifted iterative solvers need to the similar
number of restarts for solving shifted linear systems (1.1), i.e., ξ f

≈ ξ h
≈ ξwf , it clearly finds that the total algorithmic cost

of the restart shifted Hessenberg method can be less than that of both the restarted shifted FOM and the weighted restarted
shifted FOM, also see Section 4 for further discussions from numerical experiments.

4. Numerical examples

Far from being exhaustive, in this section, the feasibility of the restarted shifted Hessenberg method is demonstrated
for four different, but representative groups of practical problems. We will compare the proposed method (referred to
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Table 1
Comparison of the Arnoldi, weighted Arnoldi, and Hessenberg procedures.

Process Number of operations Orthogonal basis

Arnoldi 2mNz + 2m(m + 1)n Yes
Weighted Arnoldi 2mNz +

5
2m(m + 1)n D-orthogonal

Hessenberg 2mNz + m(m + 1)n −
1
3m(m − 1)(m + 1) No

Table 2
Set and characteristics of test problems in Example 1 (listed in increasing matrix size).

Index Matrix Size Field nnz(A) σj (j = 1, 2, . . . , 8)

Σ1 Poisson3Da 13,514 Computational fluid dynamics 352,762 σj = −8j × 10−5

Σ2 memplus 17,758 Circuit simulation problem 99,147 σj = −j × 10−4

Σ3 FEM_3D_thermal1 17,880 Thermal problem 430,740 σj = −j × 10−3

Σ4 Grond4e4 40,000 2D/3D problem 199,200 σj = −j × 10−3

Σ6 shyy161 76,480 Computational fluid dynamics 329,762 σj = −5j × 10−2

Σ5 vfem 93,476 Electromagnetics problem 1434,636 σj = −5j × 10−5

Table 3
Compared results about different shifted Krylov subspace solvers for Example 1 in aspects of the MVPs and CPU.

Index sHessen(m) sFOM(m) wsFOM(m) sIDR(1) sQMRIDR(1) sBiCGSTAB(2)

MVPs CPU MVPs CPU MVPs CPU MVPs CPU MVPs CPU MVPs CPU

Σ1 360 0.709 320 0.774 ‡ ‡ 228 0.772 245 0.737 220 1.245
Σ2 640 0.794 960 1.682 ‡ ‡ 931 1.121 1628 2.093 792 3.024
Σ3 240 0.606 280 0.886 ‡ ‡ 255 1.031 348 1.169 260 1.970
Σ4 560 1.206 480 1.933 ‡ ‡ 478 1.434 866 2.749 480 3.886
Σ5 360 1.655 320 2.558 ‡ ‡ 538 3.152 1899 11.086 392 13.308
Σ6 280 4.910 320 8.287 ‡ ‡ 464 12.327 481 14.749 440 22.222

as sHessen(m)) with the restarted shifted FOM (abbreviated as sFOM(m)) [30], the restarted weighted shifted FOM
(referred to as wsFOM(m)) in [15], the shifted QMRIDR(1) method (abbreviated as sQMRIDR(1)), the shifted IDR(1) method
(referred to as sIDR(1)), and the shifted BiCGSTAB(2)method (abbreviated as sBiCGSTAB(2)) in all the listed experiments.
Numerical comparisons about the attractive convergence performance of iterative solvers aremade in twomain aspects: the
number of matrix–vector products (abbreviated as MVPs) and the elapsed CPU time in seconds2 (abbreviated as CPU), some
numerical experiments involving have been reported in this section. The dimension of approximation subspace is chosen to
bem.

Unless otherwise stated, the initial guess solutions x0 (= x(i)0 ) and the right-hand side vector b are taken as x0 =

[0, 0, . . . , 0]T and b = [1, 1, . . . , 1]T , respectively. Suppose that x(i)k are the approximate solutions in the kth cycle, we stop
the iteration procedure if all the x(i)k satisfy

∥b − (A − σiI)x
(i)
k ∥2

∥b∥2
< tol = 10−8, i ∈ I

or when this condition of the relative residual was not satisfied within Maxmvps = 4000 iterations for all shifted linear
systems (denoted by ‡). All experimentswere performedon aWindows7 (64 bit) PC-Intel(R) Core(TM) i5-3740CPU3.20GHz,
8 GB of RAM using MATLAB 2014a with machine epsilon 10−16 in double precision floating point arithmetic.

Example 1. All large-scale sparse test matrices in this example are from the University of Florida Sparse Matrix Collec-
tion [47], except thematrixGrond4e4.3 For the sake of convenience, properties of test problems (matrix size and the number
of nonzero elements etc.) and choices of shift parameters σj (j = 1, 2, . . . , 8) are displayed in Table 2. The linear system
(A − σ1I)x(1) = b was treated as the seed system. In addition, here we choose the restart frequency m = 40. The numerical
results for different shifted iterative solvers for targeted linear systems (1.1) are reported in Table 3.

From the results reported in Table 3, the wsFOM(40) cannot test any problems in this example, i.e, its performance is
not promising. Then it is indeed worth mentioning that the proposed sHessen(40) method is better than the sFOM(40)
in terms of the elapsed CPU time and even the number of matrix–vector products (except Σ1, Σ3, and Σ5), it exactly
follows the cost analysis that presented in the end of Section 3 about sHessen(40) and sFOM(40). Moreover, our proposed
sHessen(40) method is even more promising than the last three short-term recurrence shifted Krylov subspace solvers
in aspects of the elapsed CPU time. In addition, it is worth mentioning that in two cases: sIDR(1), sQMRIR(1), and
sBiCGSTABA(2) forΣ1 andsIDR(1)&sBiCGSTABA(2) forΣ4, although thesHessen(40)method requiresmore number

2 All timings are averages over 10 runs of the proposed algorithms.
3 See our GitHub repository at https://github.com/Hsien-Ming-Ku/UESTC-Math/tree/master/Problems.

https://github.com/Hsien-Ming-Ku/UESTC-Math/tree/master/Problems
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Table 4
Compared results about different shifted Krylov subspace solvers for Example 2 in aspects of the MVPs and CPU. (σj ∈ I,m = 40)

Index sHessen(m) sFOM(m) wsFOM(m) sIDR(1) sQMRIDR(1) sBiCGSTAB(2)

MVPs CPU MVPs CPU MVPs CPU MVPs CPU MVPs CPU MVPs CPU

Π1 560 0.498 480 0.651 ‡ ‡ 376 0.571 416 1.176 360 1.909
Π2 280 0.258 200 0.283 ‡ ‡ 199 0.306 210 0.636 192 1.059
Π3 240 0.233 200 0.297 ‡ ‡ 206 0.326 216 0.659 196 1.103
Π4 840 14.646 760 16.682 ‡ ‡ 682 12.235 733 24.225 660 36.971
Π5 760 13.798 680 15.126 ‡ ‡ 672 11.941 729 23.316 652 36.566
Π6 1280 22.383 1200 26.271 ‡ ‡ 546 10.409 591 19.382 1068 29.479

of matrix–vector products than the other mentioned shifted solvers for corresponding test problems, the sHessen(40)
method is still cheaper in terms of the elapsed CPU time. This is because other shifted Krylov subspace solvers based on
short-termvector recurrences needmore extra inner products andn-vectors updated,which are sometimes time-consuming
[19,20,22]. As emphasized, our proposed sHessen(m) method still can be regarded as a highly recommended choice for
solving shifted linear systems (1.1) considered in Example 1.

Example 2. In the second example, we performed experiments with a set of matrices coming from a lattice quantum
chromodynamics (QCD) application downloaded from the University of Florida Sparse Matrix Collection [47]. The set of
test matrices is a collection of three 3, 072 × 3.072 and three 49, 152 × 49, 152 complex matrices, i.e., conf5_0-4x4-
14, conf6_0-4x4-20, conf6_0-4x4-30, conf5_4-8x8-15, conf5_4-8x8-20 and conf6_0-8x8-20. Here we orderly
denote these seven test matrices as indices Πi (i = 1, 2, . . . , 6). For each matrix D from the collection, there exists some
critical value κc such that for 1

κc
< 1

κ
< ∞, the matrix A =

1
κ
I −D is real-positive. For each D, we took A = ( 1

κc
+ 10−3)I −D

as our base matrix. As described in [28,47], all the matrices D are discretizations of the Dirac operator used in numerical
simulations of quark behavior at different physical temperatures. In our numerical experiments, one set of shifted values
I = −{.001, .002, .003, .004, .005, .006, .01, .02, .03, .04, 0.05, 0.06} for shifted linear systems is considered. Meanwhile,
the linear system Ax = bwas employed as the seed system. The numerical results about various Krylov subspace solvers for
shifted linear systems (1.1) are displayed in Table 4.

As seen from Table 4, our proposed iterative solvers (sHessen(m)) can be successfully employed to solve the shifted
linear systems (1.1) in Example 2, whereas the wsFOM(m) cannot do it at all. More precisely, the proposed method,
sHessen(m), is more efficient and cheaper than both the sFOM(m) for solving shifted linear systems (1.1) in terms of
the elapsed CPU time. Since the required number of MVPs are similar, the computational cost of the sHessen(m) method
can be less than that of both sFOM(m) and wsFOM(m). For test problems (Π1, Π2, and Π3), the sHessen(m) method is
even more competitive than other short-term recurrence shifted Krylov subspace methods in aspects of the elapsed CPU
time. Additionally, it highlighted that the sIDR(1) method is the best choice for handling test problems (Π4, Π5, and Π6)
in terms of the elapsed CPU time. At the same time, the sHessen(m)method is still more efficient than both sQMRIDR(1)
and sBiCGSTAB(2) method for the last three test problems (except the sQMRIDR(1) method for the test problem Π6).
Moreover, it isworthmentioning that these three short-term recurrence shifted Krylov subspace solvers require less number
of MVPs than those corresponding to both the sHessen(m)method and the sFOM(m), whereas the last two shifted Krylov
subspace solvers still can save the elapsed CPU time. This is due to that the other short-term vector recurrence shifted
Krylov solvers need more extra inner products and n-vectors updated, which are often highly time-consuming [19,20,22].
In conclusion, we canmention that the sHessen(40)method can be still considered as a useful alternative for handling the
sequence of shifted linear systems (1.1) in Example 2.

Example 3 (Two Dimensional (2D) Heat Equation [48]). In this application about evaluating the action of amatrix exponential
on a vector, we consider the fourth-order spatial semi-discretization of the following 2D heat equation⎧⎨⎩

∂u
∂t

=
1

2π2

(∂2u
∂x2

+
∂2u
∂y2

)
,

u(x, y, 0) = u0(x, y) = sin(πx) sin(πy)
(4.1)

is employed to model many applications in geo-engineering. A finite difference discretization with N × N points in the
domain Ω = [0, 1]2 results in a sparse discretized matrix with a more complex structure, i.e.⎧⎨⎩Ax

du(t)
dt

= Bxu(t), t ∈ [0, T ]

u(0) = u0.

(4.2)

It notes thatmore detailed forms of two real matrices Ax and Bx can be found in [48]. Thenwe follow the idea proposed in [5],
to compute the matrix exponential multiplying a vector u0, which is discretized from the initial condition u0(x, y). For the
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Table 5
Compared results about different shifted Krylov subspace solvers for Example 3 in aspects of CPU and MVPs (m = 40 and t = T = 1).

hx = hy sHessen(m) sFOM(m) wsFOM(m) sIDR(1) sQMRIDR(1) sBiCGSTAB(2)

MVPs CPU MVPs CPU MVPs CPU MVPs CPU MVPs CPU MVPs CPU

1/85 480 2.331 320 2.583 ‡ ‡ 304 6.759 485 4.950 264 9.215
1/90 480 2.729 400 3.689 ‡ ‡ 290 6.855 583 6.341 280 9.830
1/95 440 2.926 440 4.567 ‡ ‡ 360 9.063 643 8.115 292 12.623
1/100 440 3.403 480 5.752 ‡ ‡ 360 9.553 561 8.044 296 13.709
1/105 560 5.069 520 7.348 ‡ ‡ 428 11.967 605 9.760 312 17.053
1/110 520 5.269 560 8.593 ‡ ‡ 450 13.388 610 10.931 332 19.864
1/120 520 6.766 680 13.266 ‡ ‡ 417 13.839 617 14.045 332 21.083

quadrature nodes of rational approximation of the matrix exponential operator, we choose ν = 16 quadrature nodes for the
action of a matrix exponential on a vector (i.e., exp(tA−1

x Bx)u0), we require to solve a sequence of shifted linear systems

(zjI − A−1
x Bx)x = u0, zj ∈ C, j = 1, 2, . . . , ν.

We choose the first one (z1I − A−1
x Bx)x(1) = u0 as the seed system. More details and choosing ν = 16 complex shifts can be

found in [5] and references therein.

According to numerical results listed in Table 5, the wsFOM(m) again cannot solve any test problems at all. From the CPU
time perspective, the proposed sHessen(m) method outperforms the sFOM(m), even when the former one needs more
number of MVPs than the later one (refer to the results of hx = hy = 1/100, 1/110, 1/120). It is in line with the cost analysis
that the required number of MVPs are similar, the algorithmic cost of the sHessen(m)method can be lower than that of the
sFOM(m). Furthermore, the sHessen(m)method is alsomore competitive than other short-term recurrence shifted Krylov
subspace methods for test problems in aspects of the elapsed CPU time. Especially, the sQMRIDR(1) method even needs
more number of MVPs than those required by sHessen(m). Similarly, we should mention that although both sIDR(1)
and sBiCGSTAB(2) methods always require the less number of MVPs than those needed by sHessen(m) or sFOM(m),
the former two shifted iterative solvers are still more expensive than the last two shifted iterative methods in aspects of
the elapsed CPU time. This is because both sIDR(1) and sBiCGSTAB(2) methods require more extra inner products and
n-vectors updated, which are not always cheap in terms of the elapsed CPU time [19,20,22]. In summary, the proposed
sHessen(m)method is the best solvers among these mentioned shifted Krylov subspace methods for solving the sequence
of shifted linear systems in Example 3.

Example 4. Applications of fractional differential equations (FDEs) have been found in physical, biological, geological and
financial systems, and in the recent years there are intensive studies on them, refer, e.g., to [49,50] for this topic. Here we
consider the benchmark problem coming from the 3D time-fractional convection–diffusion–reaction equation, namely⎧⎪⎨⎪⎩

∂γ u
∂tγ

− ϵ△u + β⃗ · ∇u − ru = 0, (x, y, z) ∈ Ω = (0, 1)3, t ∈ [0, T ],

u(x, y, z, t) = 0, (x, y, z) ∈ ∂Ω, t ∈ [0, T ],

u(x, y, z, 0) = x(1 − x)y(1 − y)z(1 − z), (x, y, z) ∈ Ω̄.

(4.3)

This example can be viewed as a modification of the third example in [20]. The physical parameters are chosen as follows:
ϵ = 1 (diffusion), β⃗ = (0/

√
5, 250/

√
5, 500/

√
5)T (convection), and r (reaction). In order to solve Eq. (4.3) numerically, we

start by discretizing the spatial domain into uniformly spaced grid points. Then the finite difference approximation with the
natural ordering results in a system of FDEs as following form

dγ u
dtγ

= −Au(t), u(0) = u0. (4.4)

Since the spatial finite difference methods for (4.3) lead to the system of FDEs with the form (4.4), where u is the vector
containing the unknown solution, it is a well-known result [5,6] that, for 0 < γ < 1, the exact solution of this problem (4.4)
can be expressed as

u(t) = eγ ,1(t; −A)u0, and eγ ,1(t; −A) = t1−1Eγ ,1(−tγ A) = Eγ ,1(−tγ A), (4.5)

where Eγ ,1(z) is the Mittag-Leffler (ML) function [6,50]

Eγ ,1(z) :=

∞∑
k=0

zk

Γ (γ k + 1)
, γ > 0, z ∈ C.

In light of (4.5), to compute the solution u(t), we have to approximate the product of the matrix ML function Eγ ,1(−tγ A)
with the vector u0, which is the major computational cost for this problem. The numerical evaluation of matrix functions
Eγ ,1(−tγ A)u0 has recently gained new interest, as shown by the recent spread of literature [5,6] in this field. Moreover, these
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Table 6
Set and characteristics of test problems in Example 1 (listed in increasing matrix size).

Index Grid size Size nnz(A) Reaction λ ν

Ξ1 h = 0.04 13,824 93,312 r = 400 0.8 10
Ξ2 h = 0.04 13,824 93,312 r = 600 0.9 12
Ξ3 h = 0.025 59,319 406,107 r = 400 0.6 10
Ξ4 h = 0.025 59,319 406,107 r = 600 0.8 10
Ξ5 h = 0.02 117,649 809,137 r = 400 0.8 10
Ξ6 h = 0.02 117,649 809,137 r = 600 0.9 12

Table 7
Compared results about different shifted Krylov subspace solvers for Example 4 in terms of the MVPs and CPU (t = 1,m = 30).

Index sHessen(m) sFOM(m) wsFOM(m) sIDR(1) sQMRIDR(1) sBiCGSTAB(2)

MVPs CPU MVPs CPU MVPs CPU MVPs CPU MVPs CPU MVPs CPU

Ξ1 270 0.296 300 0.467 ‡ ‡ ‡ ‡ ‡ ‡ 144 1.206
Ξ2 300 0.389 390 0.680 ‡ ‡ ‡ ‡ ‡ ‡ 156 1.522
Ξ3 330 1.788 300 2.245 ‡ ‡ ‡ ‡ 341 7.885 204 9.658
Ξ4 360 1.989 360 2.717 ‡ ‡ ‡ ‡ 333 7.505 232 10.298
Ξ5 330 3.657 420 6.482 ‡ ‡ ‡ ‡ 289 17.768 252 23.219
Ξ6 360 4.316 450 7.213 ‡ ‡ ‡ ‡ 301 20.499 276 27.255

numerical evaluation methods based on the Carathéodory–Fejér approximation [51] for Eγ ,1(tγ A)v (we set t = 1) can be
represented as

Eγ ,1(−A)u0 = fν(−A)u0 =

ν∑
j=1

wj(zjI + A)−1u0, j = 1, 2, . . . , ν, (4.6)

wherewj and zj are quadratureweights andnodes, respectively. So in the implementation of the procedure (4.6), it requires to
solve a sequence of shifted linear systems, which are similar to (A+ zjI)x(j) = u0, zj ∈ C. For simplicity, here we summarize
the information about our different test problems in Table 6. The linear system Ax = u0 was treated as the seed system.
Under this condition, it is remarked that the procedure of establishing the Krylov subspace for shifted linear systems does
not involve the complex operations. Then the results about convergence performance of different shifted Krylov subspace
methods are listed in Table 7.

As observed from Table 7, the sHessen(30)method outperforms both wsFOM(30) and sFOM(30) in aspects of MVPs for
different test problems except Ξ3. Moreover, we find that the sHessen(30) method requires the least amount of elapsed
CPU time than other five shifted iterative solvers. It also finds that both wsFOM(30) and sIDR(1) fail to solve the sequence
of shifted linear systems in Example 4, even the sQMRIDR(1)method also fails to handle the first two test problems (i.e., Ξ1
and Ξ2). That is because both sIDR(1) and sQMRIDR(1) methods may occur the serious break-down due to their typical
short-term vector recurrence iterations for handling these test problems. Again, the performance of wsFOM(30) is not always
promising. On the other hand, although the number of matrix–vector products required by both sQMRIDR(1) (except both
Ξ1 and Ξ2 problems) and sBiCGSTAB(2) methods is less than those needed by both the sHessen(30) method and the
sFOM(30), these latter two solvers are still cheaper in aspects of the elapsed CPU time. This is due to that the first two iterative
methods may require more number of inner products and n-vectors updated [19,20,22], which also require to consume the
extra elapsed CPU time. In conclusion, the proposed sHessen(30) method can be viewed as an efficient alternative for
solving the sequence of shifted linear systems in Example 4.

5. Conclusions

Based on the above experimental results, we conclude that our proposed algorithm – the restarted shifted Hessenberg
method – indeed can show considerably attractive convergence performancewith respect to the elapsed CPU time compared
to the restarted shifted FOM proposed in [30], the restarted weighted shifted FOM introduced in [15] and some popular
shifted Krylov subspace solvers based on the short-term vector recurrence. Moreover, in some cases where sHessen(m)
requires less enough number of MVPs to converge, this is a reason that this algorithm can significatively reduce the CPU
consuming time. At the same time, since theHessenberg process often requires slightly less computational storage [33,34,42]
than the conventional Arnoldi process, so thesHessen(m)method seems to be preferable to the other Arnoldi-based shifted
iterative solvers (sFOM(m) and wsFOM(m)) especially if the number of restarts of these three shifted iterative solvers is
similar; see the analysis of computational cost described in Section 3. Additionally, it finds that different seed systems are
chosen before we exploit the shifted Krylov subspace solvers for different test problems in our experiments. That is mainly
due to that it is usually hard to make an optimal choice of the seed system in advance, the so-called seed switching technique
introduced in [12] may be an option for remedying this difficulty.

At the same time, it has to mention that the body of theoretical evidence is still unavailable recently for the result
that the sHessen(m) method can enjoy advantages over sFOM(m) in terms of convergence analyses. The computational
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efficiency ofsHessen(m) in respect of the restarting number and the elapsed CPU time is just illustrated on a set of problems
arising both fromextensive academic and from industrial applications. Furthermore, theoretical convergence analysis should
remain a meaningful topic of further research. In addition, as earlier mentioned [2,9,14,20], the efficient preconditioning
technique for the Krylov subspace methods to solve the shifted linear systems (1.1) is still a very difficult problem due to
remaining the shift-invariant property (1.3) of preconditioned systems. Therefore it is considerably important that in future
work we will investigate the convergence performance of the sHessen(m) method with suitable preconditioners, which
can remain shift-invariance property (1.3) for preconditioned systems. In fact, our coming work [52] has investigated the
(unrestarted) sHessen method as an efficient inner solvers of nested Krylov subspace solvers for shifted linear systems,
which were studied by Baumann and van Gijzen [9]. Numerical results demonstrate that in the framework of nested Krylov
subspace solvers, using the (unrestarted) sHessenmethod as an inner solver is often cheaper than using the (unrestarted)
sFOM as an inner solver in terms of the elapsed CPU time. Therefore, we believe that our proposed sHessen(m) method
can be employed as a meaningful and useful alternative for solving the shifted linear systems.
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