22,779 research outputs found

    A geometry of information, I: Nerves, posets and differential forms

    Get PDF
    The main theme of this workshop (Dagstuhl seminar 04351) is `Spatial Representation: Continuous vs. Discrete'. Spatial representation has two contrasting but interacting aspects (i) representation of spaces' and (ii) representation by spaces. In this paper, we will examine two aspects that are common to both interpretations of the theme, namely nerve constructions and refinement. Representations change, data changes, spaces change. We will examine the possibility of a `differential geometry' of spatial representations of both types, and in the sequel give an algebra of differential forms that has the potential to handle the dynamical aspect of such a geometry. We will discuss briefly a conjectured class of spaces, generalising the Cantor set which would seem ideal as a test-bed for the set of tools we are developing.Comment: 28 pages. A version of this paper appears also on the Dagstuhl seminar portal http://drops.dagstuhl.de/portals/04351

    Spin reorientation in TlFe1.6Se2 with complete vacancy ordering

    Full text link
    The relationship between vacancy ordering and magnetism in TlFe1.6Se2 has been investigated via single crystal neutron diffraction, nuclear forward scattering, and transmission electron microscopy. The examination of chemically and structurally homogenous crystals allows the true ground state to be revealed, which is characterized by Fe moments lying in the ab-plane below 100K. This is in sharp contrast to crystals containing regions of order and disorder, where a competition between c-axis and ab-plane orientations of the moments is observed. The properties of partially-disordered TlFe1.6Se2 are therefore not associated with solely the ordered or disordered regions. This contrasts the viewpoint that phase separation results in independent physical properties in intercalated iron selenides, suggesting a coupling between ordered and disordered regions may play an important role in the superconducting analogues.Comment: Minor changes; updated references and funding acknowledgemen

    A self-dual poset on objects counted by the Catalan numbers and a type-B analogue

    Get PDF
    We introduce two partially ordered sets, PnAP^A_n and PnBP^B_n, of the same cardinalities as the type-A and type-B noncrossing partition lattices. The ground sets of PnAP^A_n and PnBP^B_n are subsets of the symmetric and the hyperoctahedral groups, consisting of permutations which avoid certain patterns. The order relation is given by (strict) containment of the descent sets. In each case, by means of an explicit order-preserving bijection, we show that the poset of restricted permutations is an extension of the refinement order on noncrossing partitions. Several structural properties of these permutation posets follow, including self-duality and the strong Sperner property. We also discuss posets QnAQ^A_n and QnBQ^B_n similarly associated with noncrossing partitions, defined by means of the excedence sets of suitable pattern-avoiding subsets of the symmetric and hyperoctahedral groups.Comment: 15 pages, 2 figure

    The Expectation Monad in Quantum Foundations

    Get PDF
    The expectation monad is introduced abstractly via two composable adjunctions, but concretely captures measures. It turns out to sit in between known monads: on the one hand the distribution and ultrafilter monad, and on the other hand the continuation monad. This expectation monad is used in two probabilistic analogues of fundamental results of Manes and Gelfand for the ultrafilter monad: algebras of the expectation monad are convex compact Hausdorff spaces, and are dually equivalent to so-called Banach effect algebras. These structures capture states and effects in quantum foundations, and also the duality between them. Moreover, the approach leads to a new re-formulation of Gleason's theorem, expressing that effects on a Hilbert space are free effect modules on projections, obtained via tensoring with the unit interval.Comment: In Proceedings QPL 2011, arXiv:1210.029

    GCD matrices, posets, and nonintersecting paths

    Full text link
    We show that with any finite partially ordered set one can associate a matrix whose determinant factors nicely. As corollaries, we obtain a number of results in the literature about GCD matrices and their relatives. Our main theorem is proved combinatorially using nonintersecting paths in a directed graph.Comment: 10 pages, see related papers at http://www.math.msu.edu/~saga
    • …
    corecore