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Abstract

We introduce two partially ordered sets, PAn and P
B
n , of the same cardinalities as the type-A and

type-B noncrossing partition lattices. The ground sets of PAn and P
B
n are subsets of the symmetric

and the hyperoctahedral groups, consisting of permutations which avoid certain patterns. The
order relation is given by (strict) containment of the descent sets. In each case, by means
of an explicit order-preserving bijection, we show that the poset of restricted permutations is
an extension of the re�nement order on noncrossing partitions. Several structural properties of
these permutation posets follow, including self-duality and the strong Sperner property. We also
discuss posets QAn and QBn similarly associated with noncrossing partitions, de�ned by means
of the excedance sets of suitable pattern-avoiding subsets of the symmetric and hyperoctahedral
groups. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

There are more than 150 di�erent objects enumerated by Catalan numbers; [25]
contains an extensive list of such combinatorial objects and their properties. Two of
the most carefully studied ones are noncrossing partitions and permutations avoiding a
3-letter pattern.
A partition � of the set [n]:={1; 2; : : : ; n}, having blocks �1; �2; : : : ; �k , is called

noncrossing if there are no four elements 16a¡b¡c¡d6n so that a; c∈ �i and
b; d∈ �j for some distinct blocks �i and �j. The set of noncrossing partitions of [n]
constitutes a lattice under the re�nement order (where �¡� if each block of � is a
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union of blocks of �). An investigation of structural and enumerative properties of
this lattice was initiated by Kreweras [14], and continued by several authors, e.g.,
[7–9,15,16,20,24]. We denote the lattice of noncrossing partitions of [n] as NCAn , since
it is a subposet (indeed, a sub-meet-semilattice) of the intersection lattice associated
with the type-A hyperplane arrangement in Rn (which consists of the hyperplanes with
equations xi = xj, for 16i¡ j6n). For our purposes, recall from [14] that the poset
NCAn is ranked with rank function rk(�)=n−bk(�) (where bk(�) denotes the number of
blocks of the partition �), rank-symmetric and rank-unimodal with rank sizes given by
the Narayana numbers (1=n

( n
k

)( n
k+1

)
)06k¡n. Furthermore, it is self-dual (see [14,20])

and has the strong Sperner property (see [20]; that is, for every k, the maximum
cardinality of the union of k antichains is the sum of the k largest rank-sizes).
A permutation �=�1�2 · · · �n of [n], or, in what follows, an n-permutation, is called

132-avoiding if there are no three positions 16a¡b¡c6n so that �a¡�c ¡�b.
Classes of restricted permutations avoiding other patterns are de�ned similarly. Such
classes of permutations arise naturally in theoretical computer science in connection
with sorting problems (e.g., [13,27]), as well as in the context of combinatorics related
to geometry (e.g., the theory of Kazhdan–Lusztig polynomials [4] and Schubert varieties
[2]). The investigation of classes of pattern avoiding permutations from an enumerative
and algorithmic point of view includes [1,3,5,6,17,19,28], to name a few.
In Section 2 we introduce the partially ordered set PAn whose elements are the

132-avoiding n-permutations, ordered by �¡� if Des(�)⊂Des(�), where Des denotes
the descent set of a permutation. One can think of PAn as a Boolean algebra of rank
n− 1 in which each element S is replicated as many times as there are 132-avoiding
permutations with S as the descent set. We show that this poset of restricted permu-
tations is an extension of the lattice of noncrossing partitions NCAn by exhibiting a
natural order-preserving bijection from the dual order (NCAn )

∗ to the poset PAn . This
yields the fact that PAn has the same rank-generating function as NC

A
n (implicit in [21],

where the joint distribution of the descent and major index statistics on 132-avoiding
permutations is shown to agree with the joint distribution of the block and rb statistic
on noncrossing partitions). It then follows that PAn is rank-unimodal, rank-symmetric
and strongly Sperner. We also prove that PAn is itself a self-dual poset.
We also present type-B analogues of these results. These constitute Section 3 of

the paper. The notion of a type-B noncrossing partition of [n] is that �rst considered
by Montenegro [15], systematically studied by Reiner [18], and further investigated
by Hersh [11]. These authors show that type-B noncrossing partitions of [n] form a
lattice, NCBn , which shares naturally a variety of properties of NC

A
n . In particular, NC

B
n

is a rank-unimodal, self-dual, strongly Sperner poset. We de�ne a poset PBn into which
NCBn can be embedded via an order-preserving bijection, with properties analogous to
those obtained for type-A. The parallel between the type-A and type-B cases includes
the fact that the poset PBn is de�ned in terms of pattern-avoiding elements of the
hyperoctahedral group (or signed permutations), ordered by containment of the descent
set. The relevant pattern restriction is the simultaneous avoidance of the patterns 21
and �2 �1. This class of restricted signed permutations was considered in [22], where
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B-analogues are proposed for type-A results in [21] concerning combinatorial statistics
for noncrossing partitions and restricted permutations.
In brief, a class of partitions and one of permutations are equinumerous, and further,

the count of the partitions by number of blocks agrees with the count of permuta-
tions by number of descents. A similar situation arises for certain type-B analogues of
these objects. Our results show that these enumerative relations are manifestations of
structural relations between partial orders which can be de�ned naturally on the ob-
jects under consideration. We also discuss posets QAn and Q

B
n of restricted permutations

and signed permutations ordered by containment of their sets of excedances. The �nal
section of the paper consists of remarks and problems for further investigation.

2. The type-A case

2.1. A bijection and its properties

It is not di�cult to �nd a bijection from the set of noncrossing partitions of [n]
onto that of 132-avoiding n-permutations. Here we exhibit and analyze the structure
of such a bijection, f, which will serve as the main tool in proving the results of this
section. To avoid confusion, integers belonging to a partition will be called elements,
while integers belonging to a permutation will be called entries. An n-permutation will
always be written in the one-line notation, p = p1p2 · · ·pn, with pi = p(i) denoting
its ith entry.
Let �∈NCAn . We construct the 132-avoiding permutation p = f(�) corresponding

to it as follows. Let k be the largest element of � which is in the same block of �
as 1. Put the entry n of p in the kth position, i.e., set pk=n. As p is to be 132-avoiding,
this implies that the entries larger than n− k are on the left of n in p, and the entries
smaller than or equal to n − k are on the right of n. Delete k from � and apply this
procedure recursively, with obvious minor adjustments, to the restrictions of � to the
sets {1; : : : ; k − 1} and {k + 1; : : : ; n}, which are also noncrossing partitions. Namely,
if j is the largest element in the same block as k + 1, we set pj = n − k, so that
the restriction �1 of � to {k + 1; k + 2; : : : ; n} yields a 132-avoiding permutation of
{1; 2 : : : ; n− k} placed on the right of n in p=f(�). Similarly, if in the restriction �2
of � to the set {1; 2; : : : ; k − 1} the largest element in the same block as 1 is equal to
j, we set pj = n − 1. Thus, recursively, �2 yields a 132-avoiding permutation which
we realize on the set {n− k+1; n− k+2; : : : ; n−1} and we place it to the left of n in
p=f(�). In other words, with a slight abuse of notation, f(�) is the concatenation of
f(�2); n, and of f(�1), where f(�2) permutes the set {n− k +1; n− k +2; : : : ; n− 1}
and f(�1) permutes the set [n− k].
To see that this is a bijection note that we can recover the maximum of the block

containing the element 1 from the position of the entry n in p, and then proceed
recursively.
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Fig. 1. The Hasse diagram of PA4 .

Example 1. If �= ({1; 4; 6}; {2; 3}; {5}; {7; 8}), then f(�) = 64573812.

Example 2. If p= ({1; 2; : : : ; n}), then f(p) = 12 · · · n.

Example 3. If p= ({1}; {2}; : : : ; {n}), then f(p) = n · · · 21.

The following de�nition is widely used in the literature.

De�nition 1. Let p = p1p2 : : : pn be an n-permutation. We say that i∈ [n − 1] is a
descent of p if pi ¿pi+1. The set of all descents of p is called the descent set of p
and is denoted Des(p).

Now we are in a position to de�ne the poset PAn of 132-avoiding permutations we
want to study.

De�nition 2. Let p and q be two 132-avoiding n-permutations. We say that p¡q in
PAn if Des(p)⊂Des(q).

Clearly, PAn is a poset as inclusion is transitive. The Hasse diagram of PA4 is shown
in Fig. 1.

Observation 1. In a 132-avoiding permutation; i is a descent if and only if pi+1 is
smaller than every entry on its left. Such an element is called a left-to-right minimum.
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So p¡q in PAn if and only if the set of positions of left-to-right minima in p is a
proper subset of the set of positions of left-to-right minima in q.

The following proposition describes the relation between the blocks of �∈NCAn and
the descent set of the 132-avoiding permutation f(�).

Proposition 1. The bijection f has the following property: Let i¿1. Then
i∈Des(f(�)) if and only if i + 1 is the smallest element of its block in �∈NCAn .

Proof. For n=1 and 2 the statement is clearly true and we use induction on n. Suppose
we know the statement for all positive integers smaller than n. Then we distinguish
two cases:

1. If 1 and n are in the same block of �, then the construction of f(�) starts by
putting the entry n in the last slot of f(�), then deleting the element n from �.
This does not alter either the set of minimum elements of the blocks nor the set
of descents. Therefore, this case reduces to the general case for n − 1, and is
settled by the inductive hypothesis.

2. If the largest element k of the block containing 1 is smaller than n, then as we
have seen above, f(�) is the concatenation of f(�2); n; f(�1), and f(�1) is not
empty. Clearly, by the de�nition of f(�); k ∈Des(f(�)) and the element k + 1
is the minimum of its block. From this and the inductive hypothesis applied to
f(�1) and f(�2), the proof follows.

2.2. Properties of PAn

Proposition 1 implies that PAn is isomorphic to the order on noncrossing partitions
in which �¡�′ if the set of minima of the blocks of �′ is contained in the set of the
blocks of �. This yields the �rst result of this section.

Theorem 1. The lattice of noncrossing partitions NCAn is a subposet of P
A
n .

Proof. We show that our bijection f is an order-reversing map NCAn →PAn . The conclu-
sion then follows from the self-duality of the lattice of noncrossing partitions. Suppose
�¡� in NCAn . This means � is a �ner partition than �, so every element which is the
minimum of its block in � is also the minimum of its block in �. By Proposition 1
this implies Des(f(�))⊂Des(f(�)), so f(�)¿f(�) in PAn .

Clearly, PAn is a ranked posed (with rank function rkPAn (p)=#Des(p)), and we have
rkNCAn (�) = n− 1− rkPAn (f(�)).

Corollary 1. The poset PAn is rank-symmetric; rank-unimodal and strongly Sperner;
and its rank generating function is equal to that of NCAn .
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Proof. The properties of the rank sizes of PAn are immediate consequences of
Proposition 1 and the corresponding properties known to hold for NCAn . Moreover,
every antichain of PAn is, via the bijection f, an antichain of NCAn , and the strong
Sperner property of PAn follows from the strong Sperner property of NCAn .

We now turn to showing that PAn is self-dual, based on the next lemma.
For S ⊆ [n−1], let Permn(S) denote the number of 132-avoiding n-permutations with

descent set S.

Lemma 1. Let S be any subset of [n−1] and let �(S) denotes its ‘reverse complement’;
that is; i∈ �(S)⇔ n− i 6∈ S. Then Permn(S) = Permn(�(S)).

Proof. We use induction on n. For n= 1; 2; 3 the statement is true. Now suppose we
know it for all positive integers smaller than n. Denote by t the smallest element of
S, and let p be a 132-avoiding n-permutation whose descent set is S.

1. Suppose that t ¿ 1. Then we have p1¡p2¡ · · ·¡pt and, because p avoids the
pattern 132, the values of p1; p2; : : : ; pt are consecutive integers. So, for given
values of p1 and t, we have only one choice for p2; p3; : : : ; pt . This implies

Permn(S) = Permn−(t−1)(S − (t − 1)); (1)

where S − (t − 1) is the set obtained from S by subtracting t − 1 from each of
its elements.
On the other hand, we have n − t + 1; n − t + 2; : : : ; n − 1∈ �(S), mean-

ing that in any permutation q counted by Permn(�(S)) the chain of inequalities
qn−t+1¿qn−t+2¿ · · ·¿qn holds. To avoid forming a 132-pattern in q, must have
(qn−t+2; : : : ; qn) = (t − 1; t − 2; : : : ; 1). Therefore,

Permn(�(S)) = Permn−(t−1)(�(S)|n− (t − 1)); (2)

where �(S)|n − (t − 1) denotes the set obtained from �(S) by removing its last
t − 1 elements. Clearly, Permn−(t−1)(S − (t − 1)) = Permn−(t−1)(�(S)|n− (t − 1))
by the induction hypothesis, so Eqs. (1) and (2) imply Permn(S) = Permn(�(S)).

2. If t = 1, but S 6= [n − 1], then let u be the smallest index which is not in S.
Then again, to avoid forming a 132-pattern, the value of pu must be the smallest
positive integer a which is larger than pu−1 and is not equal to any pi for i6u−1.
So again, we have only one choice for pu. On the other hand, the largest index
in �(S) will be n− u. Therefore, in permutations q counted by Permn(�(S)), we
must have qn−u = 1 as Observation 1 implies that qn−u must be the rightmost
left-to-right minimum in such permutations, and that is always the entry 1.
In order to use this information to reduce our permutations in size, we de�ne

S ′ ⊂ [n−2] as follows: i∈ S ′ if and only if either i¡u and then, by the de�nition
of u; i∈ S, or i¿u and i + 1∈ S. In other words, we decrease elements larger
than u by 1; intuitively, we remove u from [n− 1], and translate the interval on
its right one notch to the left. If we now take �(S ′), that will consist of entries
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j so that j¡n − u and (n − 1) − (j − 1) = n − j 6∈ S. So in other words, we
simply remove n− u from [n− 1] (there has been nothing on the right of n− u
in �(S) to translate). Note that the size of �(S) decreases with this operation as
n−u∈ �(S). As we have seen in the previous paragraph, we had only one choice
for pu and pn−u, so removing them this way does not change the number of
permutations with a given descent set. Thus we have Permn(S) = Permn−1(S ′),
and also Permn(�(S)) = Permn−1(�(S ′)). By induction hypothesis, the right-hand
sides of these two equations agree, and therefore the left-hand sides must agree,
too.

Example 4. If n=8 and S={1; 6}, and so �(S)={1; 3; 4; 5; 6}, then u=2; n−u=6,
and indeed, S ′ = {1; 5} and �(S ′) = {1; 3; 4; 5}.

3. Finally, if S = [n − 1], then the statement is trivially true as Permn(S) =
Permn(�(S)) = 1.

So we have seen that Permn(S) = Permn(�(S)) in all cases.

It is now easy to verify that the reverse complementation of the descent set can be
used to construct an anti-automorphism of PAn .

Theorem 2. The poset PAn is self-dual.

Proof. It is clear that, in PAn , permutations which have the same descent set will cover
the same elements and they will be covered by the same elements. The permutations
with a prescribed descent set S form an orbit of Aut(PAn ) and they can be permuted
among themselves arbitrarily by elements of Aut(PAn ). On the other hand, Lemma
1 shows that the orbits corresponding to S ⊆ [n − 1] and to its reverse-complement
�(S) are equinumerous. Hence, a map PAn →PAn which establishes a bijection between
{p∈PAn : Des(p) = S} and {q∈PAn : Des(q) = �(S)} for each S ⊆ [n− 1] provides an
order-reversing bijection of PAn .

2.3. A poset derived from excedances

It is shown in [21] that the joint distribution of the excedance and Denert statis-
tics on 321-avoiding permutations agrees with the joint distribution of the block and
rb statistics on noncrossing partitions. This suggests the de�nition of the poset QAn
consisting of the 321-avoiding n-permutations ordered by containment of the set of
excedances, and invites the question of how QAn compares with the poset P

A
n .

A permutation � has an excedance at i if �(i)¿i. For example, the excedance
set of � = 32514 is Exc(�) = {1; 3}. Let exc(�) denote the number of excedances
of �. Following [21], there is a bijection � from NCAn to 321-avoiding n-permutations
such that exc(�(�)) = bk(�) − 1. Namely, if the set of minima of the blocks of
�∈NCAn , omitting the block containing 1, is {f2¡ · · ·¡fk} and the set of
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maxima of the blocks, again, omitting the block containing 1, is {l2¡ · · ·¡lk}, then
let �(�) be the permutation whose value at fi−1 is li for i=2; 3; : : : ; k, and whose other
values constitute an increasing subsequence in the remaining positions. For instance,
if �= {1; 5; 7}{2}{3; 4}{6}{8; 10}{9}∈NCA10, then we have (f2; : : : ; f6)= (2; 3; 6; 8; 9)
and (l2; : : : ; l6) = (2; 4; 6; 9; 10), and we obtain �(�) = 2 4 1 3 6 5 9 10 7 8.
Recall from [21] that the set of excedances of �(�) is precisely {f2 − 1; f3 − 1;

: : : ; fk − 1}. Similarly, to the case of descents discussed for 132-avoiding permuta-
tions, a covering relation �¡�′ in NCAn corresponds to the deletion of an excedance:
Exc(�(�′))=Exc(�(�))−{i}, for a suitable i∈Exc(�(�)). Hence, taking advantage of
the self-duality of NCAn , one can establish directly that the poset Q

A
n enjoys the same

properties as PAn : There is an embedding of NC
A
n into the poset QAn of 321-avoiding

n-permutations ordered by containment of the set of excedances; the embedding is
rank-preserving and QAn is a strongly Sperner poset.
The fact that the posets PAn and Q

A
n have strongly similar properties is not accidental.

Proposition 2. The posets PAn and QAn are isomorphic.

Proof. For each S ⊆ [n−1], let E321n (S) be the set of 321-avoiding n-permutations with
excedance set S ⊆ [n− 1].
Let also D132n (�(S)) be the set of 132-avoiding n-permutations with descent set equal

to �(S), the reverse-complement of S. Thus, in the notation of the previous subsection,
the cardinality of D132n (�(S)) is Permn(�(S)).
We construct a bijection s :E321n (S)→D132n (�(S)) (illustrated by example 5). If

p∈E321n (S), then, as seen earlier in the de�nition of �, the entries pj with j 6∈ S
form an increasing subsequence. This, and the de�nition of excedance imply that pj
is a right-to-left minimum (that is, smaller than all entries on its right) if and only if
j 6∈ Exc(p) = S.
Now let p′ =pnpn−1 · · ·p1 be the reverse of p. Then p′ is a 123-avoiding permu-

tation having a left-to-right minimum at position i6n exactly if n+ 1− i 6∈ S.
There is exactly one 132-avoiding permutation p′′ which has this same set of

left-to-right minima at these same positions [19]. Namely, p′′ is obtained by keep-
ing the left-to-right minima of p′ �xed, and successively placing in the remaining
positions, from left to right, the smallest available element which does not alter the
left-to-right minima. We set s(p) = p′′. Observation 1 then tells us that i∈Des(p′′)
if and only if n− i 6∈ S, in other words, when i∈ �(S), and so p′′ belongs indeed to
D132n (�(S)).
It is easy to see that s is invertible. Clearly, p′ can be recovered from p′′ as the

only 123-avoiding permutation with the same values and positions of its left-to-right
minima as p′′. (All entries which are not left-to-right minima are to be written in
decreasing order.) Then p can be recovered as the reverse of p′.
The bijections s :E321n (S)→D132n (�(S)) for all the choices of S ⊆ [n − 1] produce

an order-reversing bijection from QAn to PAn . But P
A
n is self-dual, so the proof is

complete.
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Example 5. Take p = 2 4 1 6 3 5 9 10 7 8∈E32110 (S) for S = {1; 2; 4; 7; 8}. Then its
reversal p′=8 7 10 9 5 3 6 1 4 2 has left-to-right minima 8; 7; 5; 3; 1 in positions 1; 2; 5;
6; 8. We obtain s(p) = p′′ = 8 7 9 10 5 3 4 1 2 6, a permutation in D13210 ({1; 4; 5; 7}).

3. The type-B case

3.1. The type-B noncrossing partitions

The hyperplane arrangement of the root system of type Bn consists of the hyperplanes
with equations xi = ±xj for 16i¡ j6n and the coordinate hyperplanes xi = 0, for
16i6n. The subspaces of Rn arising as intersections of hyperplanes from among
these can be encoded by partitions of {1; 2; : : : ; n; �1; �2; : : : ; �n} satisfying the following
properties: (i) if {a1; : : : ; ak} is a block, then {a1; : : : ; ak} is also a block, where the bar
operation is an involution; and (ii) there is at most one block, called the zero-block,
which is invariant under the bar operation. The collection of such partitions are the
type-B partitions of [n]. If 1; 2; : : : ; n; �1; �2; : : : ; �n are placed around a circle, clockwise
in this order, and if cyclically successive elements of the same block are joined by
chords drawn inside the circle, then, following [18], the class of type-B noncrossing
partitions, denoted NCBn , is the class of type-B partitions of [n] which admit a circular
diagram with no crossing chords. Alternatively, a type-B partition is noncrossing if
there are no four elements a; b; c; d in clockwise order around the circle, so that a; c
lie in one block and b; d lie in another block of the partition. The total number of

type-B noncrossing partitions of [n] is
(
2n
n

)
(see [18]). As in the case of type A, the

re�nement order on type-B partitions yields a geometric lattice (in fact, isomorphic
to a Dowling lattice with an order-2 group), and the noncrossing partitions constitute
a sub-meet-semilattice as well as a lattice in its own right. As a poset under the
re�nement order, NCBn is ranked, with rk(�)= n− # (of pairs of non-zero blocks). For
example, � = {1; �3; �5}; {�1; 3; 5}; {4}; {�4}; {2; �2} is an element of NCB5 having 2 pairs
of non-zero blocks and its rank is equal to 3. The rank sizes in NCBn are given by
(
( n
k

)2
)06k6n (see [18]).

The numerous properties of NCAn which also hold for NC
B
n (as shown in [18,11]), es-

tablish the latter as a natural B-analogue. In particular, NCBn is a self-dual, rank-unimodal,
strongly Sperner poset, analogously to the properties of NCAn of concern in Section 2.
We now turn to a type-B counterpart of the restricted permutations considered in the
preceding section.

3.2. A class of pattern-avoiding signed permutations

We will view the elements of the hyperoctahedral group Bn as signed permutations
written as words of the form b = b1b2 : : : bn in which each of the symbols 1; 2; : : : ; n
appears, and may or may not be barred. Thus, the cardinality of Bn is n!2n. To �nd a
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B-analogue of the poset PAn , we need a subset of Bn whose cardinality is #NC
B
n =

(
2n
n

)
,

which is characterized via pattern-avoidance, and over which the distribution of the
descent statistic agrees with the distribution across ranks of the type-B noncrossing
partitions of [n]. Such a class of signed permutations is Bn(1 2; �2 �1) which appears in
[22]. We include its description for the reader’s convenience.
Consider the elments of Bn which avoid simultaneously the patterns 2 1 and �2 �1. That

is, the set of elements b= b1b2 · · · bn ∈Bn such that there are no indices 16i¡ j6n
for which (i) either both bi; bj are barred, or neither is barred, and (ii) |bi|¿ |bj|
(the absolute value of a symbol means |a| = a if a is not barred, and |a| = �a if
a is barred; e�ectively, the absolute value removes the bar from a barred symbol).
The following is immediate: a (2 1; �2 �1)-avoiding permutation in Bn is a shu�e of an
increasingly ordered subset L of [n] whose elements we then bar, with its increasingly
ordered complement in [n]. For example, b= �2 1 3 �5 4 �6 7 is one of

( 7
3

)
elements of

B7(2 1; �2 �1) associated with the subset L= {2; 5; 6}⊆ [7]. Obviously, summing over the
choices of L of cardinality ranging from zero to n and over the shu�es, it follows that

#Bn(2 1; �2 �1) =
n∑
k=0

(n
k

)2
=
(
2n
n

)
= #NCBn ; (3)

as desired.
Furthermore, the distribution of descents over Bn(2 1; �2 �1) is as desired. We say that

b= b1b2 · · · bn ∈Bn has a descent at i, for 16i6n− 1, if b¿bi+1 with respect to the
total ordering 1¡ 2¡ · · ·¡n¡ �n¡ · · ·¡ �2¡ �1, and that it has a descent at n if bn is
barred. As usual, the descent set of b, denoted Des(b), is the set of all i∈ [n] such that
b has a descent at i. For example, for b= �2 1 �3 �5 4 7 �6 we have Des(b) = {1; 3; 4; 7}.
It is then transparent that if b∈Bn(2 1; �2 �1), then its descent set is precisely the set of
positions occupied by barred symbols. In conclusion,

Observation 2. For an element b of the hyperoctahedral group Bn; let L(b) denote the
set of symbols which are barred in b; and Des(b) denote the descent set of b. Then
the map b 7→ (L(b);Des(b)) gives a bijection between the class of restricted signed
permutations Bn(2 1; �2 �1) and ordered pairs of subsets of [n] of equal cardinality.

3.3. The poset PBn

As the B-analogue of the poset of 132-avoiding permutations PAn of the preceding
section, we consider the poset PBn consisting of the (2 1; �2 �1)-avoiding elements of
the hyperoctahedral group Bn, with the order relation given by b¡b′ if and only if
Des(b)⊂Des(b′).
Based on the preceding discussion and an encoding of type-B noncrossing partitions

appearing in [18], one readily obtains the properties of PBn which parallel those of P
A
n .

Theorem 3. The poset PBn of (1 2; �2 �1)-avoiding elements of the hyperoctahedral group
Bn; ordered by containment of the descent set; is an extension of the re�nement
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order on the type-B noncrossing partition lattice NCBn . The poset P
B
n has the same

rank-generating-function as NCBn ; therefore it is rank-symmetric and rank-unimodel;
and it is a self-dual and strongly Sperner poset.

Proof. It is immediate from its de�nition and Observation 2 that PBn is a ranked poset
(namely, rk(b) = #Des(b)) and has rank-sizes by (

( n
k

)2
)06k6n, equal to the rank-sizes

in NCBn . Also, P
B
n is a self-dual poset: clearly, if b′ is the (2 1; �2 �1)-avoiding signed

permutation which corresponds to the pair ([n]−L(b); [n]−Des(b)), then the mapping,
b↔ b′ is an order-reversing involution on PBn .
Toward checking that there is an order-preserving bijection from NCBn to P

B
n , we �rst

recall a fact from [18]: every partition �∈NCBn can be encoded by a pair (L(�); R(�))
of subsets of [n] whose cardinality is the number of pairs of non-zero blocks of �.
Informally, these sets consist of the Left and Right delimiters of non-zero blocks when
the elements are read in clockwise order (in the circular diagram of �). More precisely,
if n = 0 or if � has only a zero-block, we set L = R = ∅. Otherwise, �∈NCBn has
some non-zero block consisting of cyclically consecutive elements in its diagram. If
such a block consists of j1; j2; : : : ; jk in clockwise order, then |j1| belongs to L(�) and
|jk | belongs to R(�). By deleting this block and its image under barring, a type-B
noncrossing partition of [n − k] is obtained and the construction of the sets L(�)
and R(�) is completed by repeating this process as long as non-zero blocks arise. For
instance, if �={1; �3; �5}; {�1; 3; 5}; {4}; {�4}; {2; �2}, then L(�)={3; 4} and R(�)={1; 4}.
Now suppose that �¡�′ in NCBn , and that this is a covering relation (i.e., rk(�

′) =
rk(�) + 1). Then there exist l∈L(�) and r ∈R(�) such that L(�′) = L(�) − {l} and
R(�′) = R(�) − {r}, as a result of the merging of blocks entailed by the covering
relation. Thus it is clear that if �∈NCBn is mapped to the signed permutation b∈PBn
with the property that (L(b);Des(b))=(L(�); R(�)), then one obtains an order-reversing
embedding of NCBn into P

B
n . Combining this with the self-duality of P

B
n we obtain the

desired embedding of NCBn into P
B
n .

Finally, the strong Sperner property of PBn follows as in type A, from the strong
Sperner property of NCBn (see [18]) and the rank-preserving embedding of NCBn
into PBn .

3.4. A poset based on type-B excedances

As in the type-A case, there is a self-dual poset of #NCBn restricted signed permuta-
tions ordered by containment of the set of excedances. In fact, there is more than one
de�nition of the excedance statistic in the literature, in the case of the hyperoctahedral
group. We briey mention two possibilities considered in [26].
Given a signed permutation b, let k be the number of symbols which are not barred

in b. We associate to b an (n+1)-permutation �(b) by setting �(b)n+1 = k+1 and, for
16i6n, letting �(b)i=j if bi is the jth smallest among the symbols b1; b2; : : : ; bn; n+1
with respect to the linear ordering 1¡ 2¡ · · ·¡n¡n + 1¡ �1¡ �2¡ · · ·¡ �n. For
example, if b = 1 �3 2 4 5 �6 �8 7, then �(b) = 1 7 2 3 4 8 9 5 6. Now, the excedance
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set of b is de�ned to be that of �(b). It turns out [10] that for b∈Bn(2 1; �2 �1) this
de�nition makes the excedance set coincide with the descent set for each b. Therefore,
this leads to the poset PBn again.
An alternative de�nition for excedances of ‘indexed permutations’ appears in [26].

Specialized to the hyperoctahedral group it is the following.

De�nition 3. If b∈Bn, its excedance set is the union of the sets S(b) and F(b),
where S(b) is the set of excedances computed in the symmetric group for the permu-
tation |b1||b2| : : : |bn| obtained by removing all bars from the symbols in b, and F(b)=
{i: bi = �i}, the set of barred �xed points of b.

Thus, for b = 1 �3 2 4 5 �6 �8 7 we obtain excedances at {2; 6; 7} by either of the
two de�nitions. But b= �1 3 �2 has excedance at {1; 3} by the �rst de�nition (based on
�(b) = 3 1 4 2), and {1; 2} if the second de�nition is adopted.
For the remainder of this section, we work with the notion of excedance as in

De�nition 3.

Proposition 3. Let QBn denote the poset of (2 1; �2 �1)-avoiding signed permutations in
Bn; ordered by containment of their excedance set. The poset QBn is self-dual.

Proof. Let b∈Bn and b′ be the reverse of b. Let b′′ be the ‘barred complement’ of
b′, that is, |b′′i |= n+ 1− |b′i |, and b′′i is barred if and only if b′i is not barred.
Then it is straightforward to verify that i∈ S(p′′)∪F(p′′) if and only if i 6∈ S(p)∪

F(p). Therefore, the reverse complement operation reverses the inclusion of excedance
sets for signed permutations. (Thus, the entire hyperoctahedral group Bn ordered by
containment of the excedance set is a self-dual poset.) But, clearly, this involution
preserves the (2 1; �2 �1)-avoidance property, and thus QBn is self-dual.

By [26], the rank generating function of QBn is equal to that of P
B
n . Therefore it

is natural to ask whether the posets PBn and QBn are isomorphic, just as their type-A
counterparts are (Proposition 2). The answer in this case in negative. Indeed, if n=3 it
is straightforward to verify that all atoms of PB3 are covered by six elements, while the
atom �1 2 3 of QB3 is covered by seven elements (namely, �1 �2 3; �1 2 �3; �1 3 �2; 2 3 �1; �2 �3 1; 2�1 �3,
and �2 1 �3).

4. Remarks and questions for further investigation

1. Is NCBn a subposet of QBn ? We do not know whether the lattice of type-B non-
crossing partitions can be embedded in the poset QBn of (2 1; �2 �1)-avoiding signed
permutations ordered by their excedance set of De�nition 3.

2. Self-duality of NCAn and NC
B
n extending to self-duality for P

A
n and PBn . We have

seen that each of the posets NCAn and P
A
n is self-dual and that NCAn is a subposet
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Fig. 2. The partition � = ({1}; {2; 3; 8}; {4; 5; 7}; {6}) and its image g(�) = ({1′; 8′}; {2′; 6′}; {3′; 4′};
{5′}; {7′}).

of PAn . The same is true for the pair NC
B
n ; P

B
n . Both for type A and for type B one

can exhibit an order-reversing involution on the larger poset which restricts to an
order-reversing involution on the smaller one.
We �rst construct such an involution g for NCAn which will be similar, though

not identical, to the involution de�ned in [20].
Write the elements 1; 2; : : : ; n clockwise around a circle, and write elements

1′; 2′; : : : ; n interlaced in counterclockwise order, so that 1′ is between 1 and n; 2′

is between n and n − 1, and so on, i′ is between n + 2 − i and n + 1 − i. For
�∈NCAn , join by chords — as usual — cyclically successive (unprimed) elements
belonging to the same block of �. Then de�ne g(�) to be the coarsest noncross-
ing partition on the elements 1′; 2′; : : : ; n′ so that the chords joining primed
elements of the same block do not intersect the chords of �. See Fig. 2 for an
example.
The map g is certainly a bijection, and it is order-reversing in NCAn since merging

two blocks of � subdivides a block of g(�). We claim that g is also order-reversing
on PAn . To see this, observe that for any i¿ 1, the element i is the smallest in its
block in � if and only if the element (n + 2 − i)′ is not the smallest in its block
in g(�). Indeed, the de�nition of g implies that exactly one of i and (n + 2 − i)′
can be connected to smaller elements by a chord. Therefore, g takes the set of
block-minima (not equal to 1) of � into its reverse complement in [n+ 2], so g is
indeed order-reversing on PAn .
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In the type-B case, one can obtain an analogous bijection h in a similar way: take
the circular (clockwise) representation of �, then write the elements 1′; 2′; : : : ; n′;
�1
′
; �2

′
; : : : ; �n′ so that the primed numbers interlace the unprimed, placing 1′ between

1 and �n and continuing counter-clockwise. For �∈NCBn , de�ne h(�) as above, that
is, as the unique coarsest partition on the primed set whose chords do not cross
those of �. Then h is certainly an order-reversing bijection of NCBn , and as above,
it reverses the containment of the sets L(�) and R(�), so it does extend to an
order-reversing bijection of PBn .

3. The M�obius function and order complexes of PAn and PBn . It is easy to write an
expression for the number cm(PBn ) of chains 0̂¡b1¡b2¡ · · ·¡bm¡ 1̂ of length
m+ 1 in PBn , for m¿0. Of course, c0(P

B
n ) = 1, and

cm(PBn ) =
∑

0¡k1¡k2¡···¡km¡n

(
n
k1

)(
n
k2

)
· · ·

(
n
km

)

× n!
k1!(k2 − k1)! · · · (km − km−1)!(n− km)! ; (4)

since under the correspondence bi ↔ (L(bi);Des(bi)) a chain in PBn corresponds
to an m-tuple of subsets (L(bi)) and a chain of subsets Des(b1)⊂Des(b2)⊂ · · ·⊂
Des(bm) of [n], with #L(bi)= #Des(bi)= ki. In turn, this leads to an expression for
the M�obius function of PBn ; �PBn (0̂; 1̂) =

∑
m¿0 (−1)m−1cm(PBn ).

These expressions can be regarded as partial success with the computation of the
zeta polynomial and the M�obius function. It would be interesting to elucidate further
the question of these invariants for PAn and P

B
n , and to describe the order complexes

of these posets.
4. Other posets of combinatorial objects with similar properties. The behavior of
noncrossing partitions and restricted permutations suggests the following question:
what other combinatorial objects admit a natural partial order which is self-dual and
possibly, has other nice properties? A natural candidate is the class of two-stack
sortable permutations [29]. It is known [12] that there are as many of them with
k descents as with n− 1− k descents. However, the poset obtained by the descent
ordering is not self-dual, even for n= 4, so another ordering is needed.
Similarly, the type-D noncrossing partitions and the interpolating BD-noncrossing

partitions do not, in general, form self-dual posets when ordered by re�nement
(see [18]). However, it may be interesting to �nd corresponding classes of pattern-
avoiding elements in the Weyl group for type D, along with an order-preserving
embedding NCDn →PDn analogous to the type-A and B cases.
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