1,144 research outputs found

    Counting smaller elements in the Tamari and m-Tamari lattices

    Full text link
    We introduce new combinatorial objects, the interval- posets, that encode intervals of the Tamari lattice. We then find a combinatorial interpretation of the bilinear operator that appears in the functional equation of Tamari intervals described by Chapoton. Thus, we retrieve this functional equation and prove that the polynomial recursively computed from the bilinear operator on each tree T counts the number of trees smaller than T in the Tamari order. Then we show that a similar m + 1-linear operator is also used in the functionnal equation of m-Tamari intervals. We explain how the m-Tamari lattices can be interpreted in terms of m+1-ary trees or a certain class of binary trees. We then use the interval-posets to recover the functional equation of m-Tamari intervals and to prove a generalized formula that counts the number of elements smaller than or equal to a given tree in the m-Tamari lattice.Comment: 46 pages + 3 pages of code appendix, 27 figures. Long version of arXiv:1212.0751. To appear in Journal of Combinatorial Theory, Series

    On the logical definability of certain graph and poset languages

    Full text link
    We show that it is equivalent, for certain sets of finite graphs, to be definable in CMS (counting monadic second-order logic, a natural extension of monadic second-order logic), and to be recognizable in an algebraic framework induced by the notion of modular decomposition of a finite graph. More precisely, we consider the set F_F\_\infty of composition operations on graphs which occur in the modular decomposition of finite graphs. If FF is a subset of F_F\_{\infty}, we say that a graph is an \calF-graph if it can be decomposed using only operations in FF. A set of FF-graphs is recognizable if it is a union of classes in a finite-index equivalence relation which is preserved by the operations in FF. We show that if FF is finite and its elements enjoy only a limited amount of commutativity -- a property which we call weak rigidity, then recognizability is equivalent to CMS-definability. This requirement is weak enough to be satisfied whenever all FF-graphs are posets, that is, transitive dags. In particular, our result generalizes Kuske's recent result on series-parallel poset languages
    corecore