research

On the logical definability of certain graph and poset languages

Abstract

We show that it is equivalent, for certain sets of finite graphs, to be definable in CMS (counting monadic second-order logic, a natural extension of monadic second-order logic), and to be recognizable in an algebraic framework induced by the notion of modular decomposition of a finite graph. More precisely, we consider the set F_∞F\_\infty of composition operations on graphs which occur in the modular decomposition of finite graphs. If FF is a subset of F_∞F\_{\infty}, we say that a graph is an \calF-graph if it can be decomposed using only operations in FF. A set of FF-graphs is recognizable if it is a union of classes in a finite-index equivalence relation which is preserved by the operations in FF. We show that if FF is finite and its elements enjoy only a limited amount of commutativity -- a property which we call weak rigidity, then recognizability is equivalent to CMS-definability. This requirement is weak enough to be satisfied whenever all FF-graphs are posets, that is, transitive dags. In particular, our result generalizes Kuske's recent result on series-parallel poset languages

    Similar works

    Full text

    thumbnail-image

    Available Versions