22,321 research outputs found

    Impact of Traffic Characteristics on Request Aggregation in an NDN Router

    Get PDF
    The paper revisits the performance evaluation of caching in a Named Data Networking (NDN) router where the content store (CS) is supplemented by a pending interest table (PIT). The PIT aggregates requests for a given content that arrive within the download delay and thus brings an additional reduction in upstream bandwidth usage beyond that due to CS hits. We extend prior work on caching with non-zero download delay (non-ZDD) by proposing a novel mathematical framework that is more easily applicable to general traffic models and by considering alternative cache insertion policies. Specifically we evaluate the use of an LRU filter to improve CS hit rate performance in this non-ZDD context. We also consider the impact of time locality in demand due to finite content lifetimes. The models are used to quantify the impact of the PIT on upstream bandwidth reduction, demonstrating notably that this is significant only for relatively small content catalogues or high average request rate per content. We further explore how the effectiveness of the filter with finite content lifetimes depends on catalogue size and traffic intensity

    An efficient pending interest table control management in named data network

    Get PDF
    Named Data Networking (NDN) is an emerging Internet architecture that employs a new network communication model based on the identity of Internet content. Its core component, the Pending Interest Table (PIT) serves a significant role of recording Interest packet information which is ready to be sent but in waiting for matching Data packet. In managing PIT, the issue of flow PIT sizing has been very challenging due to massive use of long Interest lifetime particularly when there is no flexible replacement policy, hence affecting PIT performance. The aim of this study is to propose an efficient PIT Control Management (PITCM) approach to be used in handling incoming Interest packets in order to mitigate PIT overflow thus enhancing PIT utilization and performance. PITCM consists of Adaptive Virtual PIT (AVPIT) mechanism, Smart Threshold Interest Lifetime (STIL) mechanism and Highest Lifetime Least Request (HLLR) policy. The AVPIT is responsible for obtaining early PIT overflow prediction and reaction. STIL is meant for adjusting lifetime value for incoming Interest packet while HLLR is utilized for managing PIT entries in efficient manner. A specific research methodology is followed to ensure that the work is rigorous in achieving the aim of the study. The network simulation tool is used to design and evaluate PITCM. The results of study show that PITCM outperforms the performance of standard NDN PIT with 45% higher Interest satisfaction rate, 78% less Interest retransmission rate and 65% less Interest drop rate. In addition, Interest satisfaction delay and PIT length is reduced significantly to 33% and 46%, respectively. The contribution of this study is important for Interest packet management in NDN routing and forwarding systems. The AVPIT and STIL mechanisms as well as the HLLR policy can be used in monitoring, controlling and managing the PIT contents for Internet architecture of the future

    ADN: An Information-Centric Networking Architecture for the Internet of Things

    Full text link
    Forwarding data by name has been assumed to be a necessary aspect of an information-centric redesign of the current Internet architecture that makes content access, dissemination, and storage more efficient. The Named Data Networking (NDN) and Content-Centric Networking (CCNx) architectures are the leading examples of such an approach. However, forwarding data by name incurs storage and communication complexities that are orders of magnitude larger than solutions based on forwarding data using addresses. Furthermore, the specific algorithms used in NDN and CCNx have been shown to have a number of limitations. The Addressable Data Networking (ADN) architecture is introduced as an alternative to NDN and CCNx. ADN is particularly attractive for large-scale deployments of the Internet of Things (IoT), because it requires far less storage and processing in relaying nodes than NDN. ADN allows things and data to be denoted by names, just like NDN and CCNx do. However, instead of replacing the waist of the Internet with named-data forwarding, ADN uses an address-based forwarding plane and introduces an information plane that seamlessly maps names to addresses without the involvement of end-user applications. Simulation results illustrate the order of magnitude savings in complexity that can be attained with ADN compared to NDN.Comment: 10 page

    Backscatter from the Data Plane --- Threats to Stability and Security in Information-Centric Networking

    Full text link
    Information-centric networking proposals attract much attention in the ongoing search for a future communication paradigm of the Internet. Replacing the host-to-host connectivity by a data-oriented publish/subscribe service eases content distribution and authentication by concept, while eliminating threats from unwanted traffic at an end host as are common in today's Internet. However, current approaches to content routing heavily rely on data-driven protocol events and thereby introduce a strong coupling of the control to the data plane in the underlying routing infrastructure. In this paper, threats to the stability and security of the content distribution system are analyzed in theory and practical experiments. We derive relations between state resources and the performance of routers and demonstrate how this coupling can be misused in practice. We discuss new attack vectors present in its current state of development, as well as possibilities and limitations to mitigate them.Comment: 15 page
    • …
    corecore