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On the Effectiveness of the PIT in Reducing Upstream Demand
in an NDN Router

Mahdieh Ahmadia,∗, James Robertsb, Emilio Leonardic, Ali Movaghara

aSharif University of Technology, Tehran, Iran
bTelecom ParisTech, Paris, France
cPolitecnico di Torino, Turin, Italy

Abstract

The paper revisits the performance evaluation of caching in a Named Data Networking (NDN) router where the
content store (CS) is supplemented by a pending interest table (PIT). The PIT aggregates requests for a given content
that arrive within the download delay and thus brings an additional reduction in upstream bandwidth usage beyond
that due to CS hits. We extend prior work on caching with non-zero download delay (non-ZDD) by proposing a
novel mathematical framework that is more easily applicable to general traffic models and by considering alternative
cache insertion policies. Specifically we evaluate the use of an LRU filter to improve CS hit rate performance in
this non-ZDD context. We also consider the impact of time locality in demand due to finite content lifetimes. The
models are used to quantify the impact of the PIT on upstream bandwidth reduction, demonstrating notably that this
is significant only for relatively small content catalogues or high average request rate per content. We further explore
how the effectiveness of the filter with finite content lifetimes depends on catalogue size and traffic intensity.

Keywords: Named Data Networking, Caching, Request Aggregation, Content Popularity

1. Introduction

The well-known proposal for a clean-slate, Named Data Networking (NDN) architecture for the future Internet
[1, 2] is still under active development and pre-standardization at the IRTF. A major feature of NDN is the systematic
use of in-router, line rate caching meant to significantly reduce upstream bandwidth requirements by storing local
copies of popular contents. NDN routers also perform collapsed forwarding whereby a single content download
can satisfy near simultaneous requests from multiple users. The objective of the present paper is to evaluate the
effectiveness of collapsed forwarding and to understand how it depends on the traffic and popularity characteristics.

In NDN, small chunks of content in the form of Data packets are requested by name by users who emit Interest
packets. If an Interest matches a content in the router Content Store (CS), the request is a hit and the content is returned
directly. If the content is absent, the request is forwarded to a Pending Interest Table (PIT). If there is no match in
the PIT, the request is forwarded towards a known external source and the Interest is recorded in the PIT. If the PIT
already has a matching entry, the current Interest is added to the record but not forwarded. The PIT entry is removed
when the content Data packet arrives from the external source after a download delay and may then be stored in the
CS. The aggregation of Interests in the PIT during the download delay thus realizes collapsed forwarding. The PIT
can be regarded as a supplementary meta cache that only stores names and not actual contents and thus potentially
alleviates some serious challenges in realizing a CS of adequate capacity operating at line rate.

To evaluate PIT effectiveness, it is clearly necessary to forego the usual assumption that downloads occur instan-
taneously after a request cache miss, as if there was zero download delay (ZDD). A non-ZDD assumption is required
to properly account for request aggregation. We also wish to investigate the impact on performance of time locality
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in the request process or, more specifically, of the fact that content popularity is not constant but varies in time. Our
model builds on several pieces of prior work. The non-ZDD CS-PIT system was first analyzed by Dehghan et al.
[3]. We propose an alternative approach that is computationally more efficient when requests do not follow the usual
independent reference model (IRM) but are modelled using general renewal processes. Our novel approach can also
be more easily extended to evaluate more advanced insertion policies that enhance hit rate performance.

We use renewal processes to model time locality illustrating its generally beneficial impact on performance com-
pared to IRM input. The particular renewal processes considered are inspired by prior work on the analysis of ZDD
systems with time locality by Garetto and co-authors in [4] and [5]. Our analysis is applied to a CS implementing the
usual Least Recently Used (LRU) replacement policy and also to a CS equipped with a filter that improves hit rates
by preferentially inserting the most popular contents. The particular filter we evaluate is a non-ZDD variant of the
2-LRU cache considered in [4]. We use the analysis to perform extensive numerical evaluations, whose accuracy is
confirmed by simulation, to explore the effectiveness of PIT aggregation and how this depends on critical parameters
characterizing system and demand.

Our main contributions are the following:

• We develop an original analytical framework to compute the hit rate and collapsed forwarding performance of
the non-ZDD CS-PIT system using LRU replacement under renewal traffic.

• The analysis is extended to a 2-LRU CS-PIT system where an additional LRU meta cache filter is used to avoid
caching the least popular contents.

• The accuracy of the analytical framework is demonstrated by comparison with the results of simulations in an
extensive series of experiments under synthetic and trace-based workloads.

• These evaluations constitute an exhaustive investigation of how the effectiveness of PIT aggregation depends
on download delay, CS capacity, traffic intensity and content catalogue size.

• The impact on CS-PIT performance of finite content lifetimes (approximating varying popularity) is illustrated
through results for a particular choice of renewal input and real trace data.

The rest of the paper is organized as follows. Sec. 2 reviews related work. In Sec. 3, we introduce the principal
concepts and notations. In Sec. 4, we analyse LRU and 2-LRU replacement policies applied to the CS-PIT system
and derive performance metrics of interest. In Sec. 5, we evaluate the accuracy of our analysis through extensive
simulations and evaluate the performance of considered policies for contents with finite lifetime. Finally, we conclude
the paper in Sec. 6. To facilitate reproducibility, we have made simulation and analysis code available on GitHub [6].

2. Related Work

The literature on the modelling and analysis of caching policies is vast, as exemplified by the recent survey paper
[7]. We limit the present discussion to papers that are most directly related to our work on the impact of PIT request
aggregation in an NDN router and the use of a pre-filter to improve hit rates.

Our analysis is inspired by that proposed by Dehghan et al. in [3]. Their analysis applies to non-ZDD CS-PIT
systems under the characteristic time approximation [8, 9]. The authors derive expressions for hit rates and request
forwarding probabilities under a renewal traffic model for caching policies including LRU. More recently, Dai et al.
[10] have considered a different implementation of LRU for the CS-PIT system where the LRU list is updated on
request arrival rather than on content insertion after download. This approach makes it possible to apply to non-ZDD
caches previous theoretical justifications of the characteristic time approximation for LRU with IRM input ([8], [9]),
under the assumption that content metadata is never evicted from the LRU list between request arrival and download.
However the assumption made in [10] seems somehow artificial. This is the reason why in our paper we prefer to
restore the more natural assumptions made in [3]. We apply the characteristic time approximation to non-ZDD caches,
and we validate the accuracy of this approximation by simulation. We develop an original, computationally efficient
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mathematical framework for the non-ZDD CS-PIT system under a general renewal traffic model, notably enabling
evaluation of the impact of time locality.

Our work significantly extends the model of [3] by considering a more efficient cache insertion policy than simple
LRU. A number of such policies have been proposed in the literature of which the following references constitute a
representative sample. Their common objective is to avoid “poluting” the cache with unpopular items that are unlikely
to produce subsequent cache hits. One popular device is to insert a new content only if it has been requested one or
a given number of times in a preceding fixed length time period [11, 12, 13]. An alternative insertion criterion is the
presence of a given number of previous requests for the content among a certain number of most recent requests [14,
15]. The final LRU cache might be preceded by a number of, real or virtual, cache stages with contents progressively
moving from one to another on request arrivals [4, 16, 17]. A simpler filter mechanism is to add new contents only
with a certain, small probability that may be constant [18, 4] or content specific [19, 20]. In the present work we only
consider the so-called 2-LRU cache where new contents are moved to the actual LRU on a request miss only if they
are present in a filter list managed as a virtual LRU cache. This mechanism has been shown in previous work to be
reasonably efficient (e.g., [4, 16]) and can be readily adapted to the considered non-ZDD, CS-PIT system.

3. System Assumptions

In this section, we introduce the principal concepts and notation. We discuss the assumptions used to perform the
analysis in Sec. 4 and the evaluations in Sec. 5.

3.1. CS-PIT Interplay
Caching policies are usually analyzed under the assumption that content downloads occur immediately after a

cache miss request. In practice, in an NDN router, the delay between a CS miss and the content download can be
significant and in this time, one or more subsequent requests may be aggregated in the PIT. In the following, such a
request is referred to as a PIT hit while any request arriving while the content is in the CS is termed a CS hit. Let pcs

hit(k)
denote the probability a request for some content k is a CS hit and P(PIT hit |CS miss) the conditional probability of
a PIT hit given a CS miss. The probability of a PIT hit, ppit

hit (k), is the probability a request is a CS miss and a PIT hit
which can be calculated as

ppit
hit (k) = P(PIT hit |CS miss) × P(CS miss).

Any request that is a miss at both CS and PIT is forwarded upstream so that the proportion of requests that result in a
download is

p f wd(k) = (1 − P(PIT hit |CS miss)) × P(CS miss) = 1 − ppit
hit (k) − pcs

hit(k). (1)

The round trip download delay for a forwarded request for content k is assumed to be an independent random variable
denoted Dk. In this paper, we assume that each content download request will have a response. Moreover, the PIT
is not subject to any storage constraint and is therefore able to aggregate all content requests arriving during the
downloaded delay.

3.2. CS Insertion and Eviction Policies
Cache performance depends on the policies used to decide if a given content should be inserted and, if so, which

other content must be evicted to make room. We limit our evaluation to two variants of the well-known LRU policy.
LRU eviction is simple enough for operation at line speed and is more efficient than alternatives like FIFO or Random
[4]. The framework could be extended to these policies, notably by applying models introduced in [4], but we do not
expect our general conclusions on the impact of demand characteristics on PIT effectiveness to change.

We first consider the classical LRU policy where all downloaded contents are systematically inserted in the CS.
We then consider a more selective insertion policy, which is intended to improve hit rate performance. A content is
inserted on download only if its name is present in a list that preferentially records popular items. We refer to this
list and its update mechanism as a ‘filter’. Many possible filter mechanisms have been proposed and analyzed in the
literature, as discussed in Sec. 2. Here we suppose the CS is equipped with a filter consisting of a list of content
metadata updated using LRU. New contents are only added to the CS if their metadata is present in the filter list. This
insertion and eviction policy applied to a ZDD cache is called 2-LRU in [4] and has been shown to be an efficient
solution. Its precise specification for the non-ZDD CS-PIT system is deferred to Sec. 4.2.
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3.3. Content Popularity

Cache performance depends critically on how requests are spread over the population of distinct content items.
We assume here that users request items from a total population of K constant size chunks. The request rate for a
given chunk is determined by a popularity distribution {pk},

∑
1≤k≤K pk = 1, such that, if the overall request rate is λ,

the request rate for content k is λk = λpk. The content items are ordered such that p1 ≥ p2 ≥ · · · ≥ pk and we consider
Zipf popularities,

pk = k−α/
K∑

i=1

i−α. (2)

Observations on real demand have shown that this model is a reasonable approximation for Internet content re-
trieval (see [21] for a recent confirmation). Zipf popularity is such that, in any finite period, the cumulative distribution
of the number of requests per content exhibits power law behaviour. In particular, a typically very large proportion
of contents will be requested only once (so-called “one-hit-wonders” [12, 22]) while many more are not requested at
all. It is thus difficult to accurately measure and model the tail of the content popularity distribution, as discussed by
Olmos and Kauffmann [23].

The Zipf representation is a simple approximation that is considered adequate for the present analysis. It is
sufficiently general to explore the performance of the CS-PIT system under a range of popularity profiles as determined
by the values of K and α. For α < 1 and K large, note that ZDD LRU hit rates for a cache of capacity C depend on
C/K and not separately on C and K [8].

Content popularities vary over time and to ignore this variability can lead to significant errors in predicting cache
performance [24, 25]. The authors of [24] and [25] independently proposed to account for varying popularities
through a so-called shot noise model. In this approach, contents appear at the instants of a stochastic process and
receive requests at a rate that varies over time, eventually decreasing to zero at the end of its ‘lifetime’. The analysis
of this model is challenging, however [25, 26]. We adopt a more tractable model first proposed by Garetto et al. [5] .

In the model of [5], contents are alternately active and inactive. An active phase has an exponentially distributed
duration and corresponds to the content lifetime. During its active phases, requests for content k arrive as a Poisson
process of rate νk. The inactive phase also has an exponential distribution of mean large enough that, with high
probability, any cached content is evicted before the next active phase. The content thus appears in a new incarnation
in each active phase. This request arrival process is known as an interrupted Poisson process (IPP) [27]. The overall
request rate for content k is

λk =
νkTon

Ton + To f f
, (3)

where Ton and To f f are the mean durations of active (on-period) and inactive (off-period) phases.

3.4. Request Process

We suppose requests for any content occur at the epochs of a stationary renewal process [28]. Let ti for i ≥ 0 be
successive request times for content k. The distribution of the inter-request intervals Xi = ti − ti−1 is denoted Fk(t)
and their density fk(t). The average request rate is then λk = 1/E[Xi] where E[Xi] =

∫ ∞
0 (1 − Fk(t))dt. The age of a

stationary renewal process at an arbitrary instant t is the time between t and the previous request arrival and does not
depend statistically on t. Let A(k) denote the age of the request process for content k. Its distribution is given by

P(A(k) < a) = F̂k(a) = λk

∫ a

0
(1 − Fk(x))dx, for a ≥ 0. (4)

The number of requests in an arbitrary interval of length t following a request arrival (e.g., in (ti, ti + t]) is a random
variable denoted Nt. We also define random variable S n = X1 + · · ·+ Xn which denotes the time until the arrival of the
nth request. The distribution of S n can be calculated as

P(S n ≤ t) = P(Nt ≥ n) = F(n)
k (t),
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where F(n)
k is the n-fold convolution of Fk. The expectation of Nt is called the renewal function that we denote by

mk(t) and is given by

mk(t) = E[Nt] =

∞∑
n=1

P(Nt ≥ n) =

∞∑
n=1

F(n)
k (t). (5)

In our evaluations we consider some particular renewal processes. The simplest is the Poisson process where
Fk(t) = 1 − e−λk t. This choice models the so-called independent reference model (IRM) where the probability an
arbitrary request is for content k is independent of all previous requests and equal to pk. The IRM ignores variations
in relative popularity over time and all temporal locality between requests, i.e., the fact that if a content is requested at
some instant in time, then the probability of a request for the same content arriving in the near future tends to increase.

As discussed in Sec. 3.3, time varying popularity can be modeled using the IPP. This is a renewal process where
intervals (ti+1 − ti) have a hyper-exponential distribution with two states [27]. In Sec. 5 we consider a particular hyper-
exponential renewal process to evaluate the accuracy of the analysis before fitting the parameters of this model to
statistics derived from trace analyses.

3.5. The Characteristic Time Approximation

To evaluate CS-PIT system performance we adapt the now well-known characteristic time approximation. This
approximation has become popular following its proposal by Che et al. [29] for evaluating LRU under the IRM, and
its later analytical justification by Fricker et al. [9]. It was, however, first derived as an accurate asymptotic limit by
Fagin in a paper from 1977 [8]. It has recently been applied more extensively to other cache insertion and eviction
policies with IRM or renewal input, in [4], [30], [31] and [32].

For an LRU cache, the approximation consists in assuming a content inserted at some instant and not subsequently
requested will be evicted after a deterministic characteristic time TC . This represents the time for requests for C distinct
contents to occur where C is the cache capacity. For a renewal request process, the probability an arbitrary request for
content k will be a hit is then

phit(k) = Fk(TC), (6)

while the probability the content is present in the cache at an arbitrary instant is

pin(k) = F̂k(TC). (7)

TC is determined on numerically solving the equation

C =

K∑
k=1

pin(k). (8)

Note that under the characteristic time approximation the system is modeled as a cache which has unlimited
instantaneous capacity but limited average capacity equal to C, where contents have a constant time to live (TTL)
equal to TC [4, 33]. The TTL is reset to TC when the content is inserted and on every subsequent cache hit. This
interpretation is used in the following analysis.

4. Performance of non-ZDD Policies

We derive characteristic time approximations for the hit rate performance of a CS implemented as an LRU cache
or as an LRU cache with filter, accounting for non-zero download delay.

4.1. LRU CS

The LRU CS is implemented as a double linked list of pointers to stored content. Items are moved to the front
of the list on insertion following a download and at the instants of subsequent requests that are hits. When a new
item is inserted at the front, the last item in the list is the least recently used and is evicted. A non-ZDD LRU cache
differs from classical LRU in that insertion does not occur immediately following a request miss but is deferred for a
download delay D. Any further requests occurring in this delay are aggregated in the PIT.
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Figure 1: Request process and CS status for a given content under non-ZDD LRU.

To compute hit rates, we apply the characteristic time approximation interpreting TC as the common ‘time to
live’. We consider the sojourn of any item in the CS-PIT system that, in this interpretation, is independent of that
of other items. For brevity we omit the index k identifying the content in question in previously introduced notation.
Figure 1 illustrates occupancy cycles delimited by requests that are a miss for both CS and PIT. As requests occur as
a stationary renewal process, these cycles are statistically independent and hit rate performance can be derived from
expected values in a typical cycle.

The cycle begins with a request miss at time t0 and terminates with the next miss following content eviction,
where content eviction occurs at time tE . Without loss of generality we set t0 = 0. The miss at 0 triggers an upstream
request (the Interest packet is forwarded towards a known source) and an initial registration in the PIT. The content is
downloaded and arrives after delay D. Any requests made between 0 and D are PIT hits and are not forwarded. The
number of such requests is ND.

Requests arriving between times D and tE are CS hits. The number of such hits is N ≥ 0. We have N = 0 if the
remaining inter-request interval following D is greater than TC and tE = D + TC (Figure 1a). For N > 0, the content
is evicted after the first interval that is greater than TC . In this case tE = tND+N + TC , where tND+N denotes the time of
occurrence of the last CS hit request (Figure 1b).

The performance of this system was analysed by Dehghan et al. [3]. They propose a formal evaluation for a
cache with a general renewal request process implementing LRU, FIFO or Random insertion policies but only present
numerical results for the IRM, i.e., for Poisson requests. The derived formulas are difficult to apply in practice for
more general processes and demand prohibitively long execution times (see Appendix A). We have therefore derived
a simpler, novel approximation that we now describe.

To compute TC from (8) we need an expression for pcs
in , the probability the content is in the CS at an arbitrary

instant t. This occurs if one of the following holds:

(i) the last request before t was a CS hit and arrived in [t − TC , t), or

(ii) the last request before t was not a CS hit, the content download occurred before t and the content was not evicted
before t (i.e., D ∈ [t − TC , t]).

Event (i) occurs when the age of the request process A is less than TC and, from (4), has probability F̂k(TC). Let R be
the residual download time at the arrival time of the last request before t given that this was a CS miss. Event (ii) can
then be expressed R < A < R + TC . We deduce the expression

pcs
in = pcs

hit · F̂(TC) + (1 − pcs
hit) · P(R < A < R + TC). (9)

A similar argument can be applied to deduce an expression for pcs
hit. In this case the situation of the content in events

(i) and (ii) is considered at a request instant yielding

pcs
hit = pcs

hit · F(TC) + (1 − pcs
hit) · P(R < X < R + TC), (10)
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where X represents the last inter-request interval. Solving (9) and (10), we have,

pcs
in =

ZF̂(TC) + Ẑ (1 − F(TC))
1 − F(TC) + Z

(11)

pcs
hit =

Z
1 − F(TC) + Z

, (12)

where Z = P(R < X < R + TC) and Ẑ = P(R < A < R + TC). In Sec. 4.1.1, we will explain how to approximate Z and
Ẑ using moments of the residual download time. Finally, using Eq. (1), the forwarding probability is given by

p f wd =
(1 − pcs

hit)
1 + E[m(D)]

, (13)

where E[m(D)], the expected number of PIT hit requests, is computed with respect to the distribution of download
delay D and P(PIT hit |CS miss) = E[m(D)]/(1+E[m(D)]) is the conditional probability of a PIT hit given a CS miss,
meaning the probability that the request is not the first request in the interval [0,D) (the first request is forwarded). In
other words, the forwarding probability equals the probability of a miss request times the probability that the request
is the first request in the cycle (the next E[m(D)] requests on average are PIT hits).

4.1.1. Leveraging Residual Download Time Moments to Approximate Z and Ẑ
In the above equations, R is a random variable distributed like the remaining download time of a sample request

arriving at some time ti ∈ [0,D). Figure 1 depicts R1, the remaining download time of the first request, R1 = D − t1.
We proceed by first approximating the moments of R and then fitting a standard distribution using moment matching.

Let rn(t) be the sum of the n-th moments of the residual download times of all requests arriving in [0, t) for some
constant t ≤ D: rn(t) = E[

∑Nt
i=0(t − ti)n], where the ti are request times and Nt is the number of requests during interval

(0, t). To compute rn(t), we have,

rn(t) = tn +

∫ t

0
rn(t − x)dF(x) = tn +

∫ t

0
(t − x)ndm(x),

where the second equality follows on rewriting the renewal equation in terms of the renewal function [28]. The
moments of R satisfy

E[Rn] =
E[rn(D)]

E[m(D)] + 1
. (14)

These moments can be used to derive a phase type distribution that fits the distribution of R arbitrarily closely [34].
In practice, in all our numerical evaluations, it has proved sufficient to fit just the first two moments; however we also
observed that matching only the first moment is sufficient for IRM input. We will now rewrite expressions for Z and
Ẑ as

Z =

∫ ∞

0
(F(r + TC) − F(r)) dR(r),

Ẑ =

∫ ∞

0

(
F̂(r + TC) − F̂(r)

)
dR(r). (15)

4.2. LRU CS with Filter

To improve CS hit rates we preferentially insert more popular contents, as identified by a filter placed in front
of the CS. The filter consists of a double linked list of contents updated using the standard LRU policy on every
request arrival. Filter performance can thus be derived using the classical LRU characteristic time approximation: the
filter hit probability for content k of a filter of size M is p f lt

hit (k) = Fk(TM) where characteristic time TM is such that∑
K F̂k(TM) = M.

Filter size M should be set in such a way that TC ≥ TM which typically happens when C ≥ M. For small values of
M, the insertion probability will be very small and 2-LRU will behave optimally for IRM traffic (i.e., the cache will
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Figure 2: Request process and CS status for a given content under non-ZDD LRU with a filter.

store only the most popular contents) [4]. Optimality is no longer assured, however, when the request process exhibits
temporal locality.

A content is inserted in the CS only if on download at least one of the requests in [0,D) was a filter hit. Figure 2
illustrates the cycle between two forwarded requests (at t0 and tND+1) when the content is absent from the filter. This
means the content is added to the filter at epochs ti for 0 ≤ i ≤ ND but always evicted before the next request at ti+1.

To approximate pcs
hit and p f wd, we assume the filter and CS-PIT states are independent [4]. This independence

assumption approximation was first proposed for k-LRU caches in [4] and shown there to be accurate in comparison
to results of simulations. An exact evaluation without the independence assumption was provided in [4] for k = 2
and has since been extended for k > 2 by Gast and Van Houdt [30]. However, the accuracy of the independence
assumption is confirmed in [30], especially for the present 2-LRU cache, and we adopt it here since it is considerably
simpler to apply than the exact solution. Moreover, while the analysis could be extended to k-LRU caches for k > 2,
we know from results in [4] that 2-LRU is more reactive and tends to have better performance when demand exhibits
temporal locality.

Denoting the probability of insertion by q and applying the arguments of Sec. 4.1 above, we deduce,

pcs
in = pcs

hit · F̂(TC) + q · (1 − pcs
hit) · Ẑ,

pcs
hit = pcs

hit · F(TC) + q · (1 − pcs
hit) · Z,

where Z and Ẑ are given by (15). Solving these equations gives,

pcs
in = q ·

ZF̂(TC) + Ẑ (1 − F(TC))
1 − F(TC) + Z · q

, (16)

pcs
hit =

Z · q
1 − F(TC) + Z · q

. (17)

Note that these formulas would apply to any filter for which one can determine the insert probability q. They would
apply in particular if q were simply a constant probability of insertion, as envisaged in the probabilistic cache policy
[18, 4] or content specific, as in the access-time aware and utility maximization cache policy proposed, respectively,
in [19] and [20].

For the present LRU filter, the requests illustrated in Figure 2 delimit independent cycles and q = E
[
1 − (1 − p f lt

hit )
ND+1

]
.

We approximate this as follows,
q ≈ 1 − (1 − p f lt

hit )
[E[m(D)]+1]

. (18)

Recall that we have omitted dependence on the content k but in fact the above probabilities are all content specific.
For k-LRU, the insertion probability q could be obtained using the same formula with p f lt

hit now relating to the last
LRU filter and computed recursively using the ZDD k-LRU formulation given in [4, Eq. (11)]. Given expression (17)
for the probability a given content is present in the CS, we can determine TC numerically from (8) and thereby, the
CS hit probabilities. The forwarding probability p f wd is given by (13), as before.
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5. Performance evaluation and insights

We first investigate the behavior of the CS-PIT system for a range of parameter settings under synthetic workloads,
confirming the accuracy of our analysis by comparison with simulation results. We then use the analytical model to
evaluate performance when contents have realistically long but finite lifetimes. Finally, to further validate the model
and the derived insights, we perform some trace-based simulations.

5.1. System Configuration
We consider two instances of the request process: the Poisson process, corresponding to the IRM, and a process

with 2-state hyper-exponential inter-request times: the inter-request interval for content k is drawn from an exponential
distribution of rate zλk with probability z/(z + 1) and an exponential distribution of rate λk/z with probability 1/(z + 1),
where z is a parameter that determines the degree of time locality in the request process. We set z = 10 to model
strong correlation between requests. Observe that this process is also equivalent to an IPP where requests arrive at
rate νn ≈ 9 · λn in an on-period and the off-period is almost 8 times longer than the on-period [27, Sec. 2.3]. We call
this process ‘hyper10’. Note that when z = 1, the resulting renewal process is a Poisson process and there is no time
locality between requests. To validate the analysis of Sec. 4 and to investigate system behavior, we use the parameter
settings in Table 1. We have used constant download delays, the same for all contents drawn from the range reported
in [35]. The Zipf parameter α is set to 0.8 for all evaluations though we discuss the impact of alternative values in
Sec. 5.5. Results are systematically presented for both LRU and 2-LRU policies.

5.2. Performance Impacts
Results are displayed for two performance measures: the overall CS hit probability pcs

hit and the overall forwarding
probability p f wd. The PIT hit probability can be derived from (1). Throughout this section, we depict the results
for LRU CS with filter using the label 2-LRU. Simulation results are plotted as crosses. We have simulated 5 runs
of 109 requests for each cross which ensures statistically stable results. The confidence interval is reported for each
point, but the vertical error bars on each point is not larger than the thickness of the point and therefore not visible.
The simulator is available on GitHub [6]. The plots, whose behavior is discussed below, confirm that the analytical
model is generally very accurate. Note that 2-LRU is consistently better than LRU in all cases depicted in Figures 3 to
6. Similarly, time locality yields consistently higher hit probabilities and lower forwarding probabilities for hyper10
traffic compared to results for the IRM. We now comment on specific impacts revealed by each set of plots.

5.2.1. Download Delay
Figure 3 shows how performance depends on download delay D or more generally on the average number of

requests aggregated during a download delay. The latter normalized variable, λD/K, is shown as the second x axis in
Figure 3. The CS hit probability decreases as D increases but this decrease is more than compensated by an increase
in PIT hits yielding a decreasing trend for the forwarding probability for practical D values. Observe that for very
small download delays, e.g., 0 < D < 0.1 ms, the forwarding probability tends to increase slightly with D but this
increase is too small to be visible in the figure. The effectiveness of the PIT is clearly higher for the longer delays and
may therefore bring greater benefits in more remote areas of the Internet topology. These results show the PIT plays
the role of a supplementary cache and can have a significant impact on performance. The difference in p f wd between
LRU and 2-LRU decreases as D increases suggesting the PIT compensates for the absence of filter.

Table 1: Parameter Settings

Parameter Default Range

Zipf Parameter (α) 0.8
Catalogue Size (K) 106 105 - 109

[Catalog Size/CS Capacity] Ratio (C/K) 10−3 10−4 - 0.5
Download Delay (D) 100 ms 0 - 300 ms
Request Rate (λ rqt/s) 105 10 - 106

Filter Size (M) C
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Figure 3: The impact of download delay or average aggregated requests on CS hit probability and forwarding probability under LRU and 2LRU
for fixed catalogue size K = 106, CS capacity C = 1000 and request rate λ = 105 (rqt/s). Average aggregated request values, λD/K, are shown as
the second x axis.
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Figure 4: CS hit probability and forwarding probability versus CS capacity under non-ZDD LRU and non-ZDD 2LRU for fixed catalogue size
K = 106 and request rate λ = 105 (rqt/s).

5.2.2. CS Capacity
Figure 4 illustrates the impact of CS capacity. Note that the gain in CS hits of 2-LRU over LRU is especially

significant for small caches where LRU is clearly inadequate. On the other hand, with the default download delay
of 100 ms, the reduction in pcs

hit is compensated by an increase in ppit
hit so that both policies yield nearly the same

forwarding rate, especially for hyper10 traffic. Temporal locality can thus bring an increase in PIT hit probability over
that prevailing under IRM demand.

5.2.3. Traffic Intensity
It is well known that cache performance under the ZDD assumption is independent of traffic intensity in re-

quests/sec since it depends only on the order of requests and not on their precise timing. This insensitivity is not
preserved under the present non-ZDD model. Figure 5a for IRM input shows that the forwarding probability de-
creases significantly for high arrival rates thanks to an increasing probability of PIT hit. As the duration a pending
request remains in the PIT is fixed at D the number of aggregated requests increases in proportion to λ. Similar
trends are observed for the hyper10 request process. Temporal locality of requests, however, further accentuates the
dependence of both CS and PIT performance on λ.

5.2.4. Catalogue Size
Figure 6 shows the impact of an increasing catalogue size. Results for very large catalogues are derived by analysis

alone as simulation then becomes impractical. The catalogue size varies from 105 to 109 while other parameters have
the default settings. The case for D = 0 (i.e., the usual ZDD assumption) is also shown for comparison. We observed
in the previous analysis that high traffic densities can lead to a decrease of the CS hit probability as more requests
miss the CS during the download time. In Figure 6, the per-content traffic intensity decreases as the catalogue size
grows leading therefore to a CS hit probability that increases and tends to the ZDD value. Figure 6a suggests that
the PIT hit probability under IRM input is negligible for large catalogues, i.e., under low per-content traffic intensity.
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Figure 5: CS hit probability and forwarding probability versus request rate under non-ZDD LRU and non-ZDD 2LRU for fixed CS capacity C = 103

and catalogue size K = 106.
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Figure 6: CS hit probability and forwarding probability versus catalogue size under LRU and 2-LRU (ZDD and non-ZDD) for fixed C/K ratio
= 10−3 and request rate λ = 105 (rqt/s).

For hyper10 traffic in Figure 6b, on the other hand, request time locality means PIT aggregation remains effective for
bigger catalogues and the non-ZDD model is necessary to accurately predict performance.

5.3. Impact of Finite Lifetime

We now complement the evaluation scenarios of the previous section using a more realistic model of popularity
variation. The hyper-z model can artificially model temporal locality but hardly represents realistic variations since
high activity periods, representing finite lifetimes, have the same mean number of requests so that content lifetime
durations are inversely proportional to popularity. In this section we assume lifetimes have a given average duration.
For illustration purposes, we set the same lifetime for all contents though the model would allow content specific
durations.

Measurements reported in the literature show that the average lifetime of the most dynamic fraction of video
on demand contents is around 2 days (see [24]). It is hardly practical to simulate a system with such a wide range
of timescales, from sub-second download times to days long lifetimes, for moderate to high request densities. We
therefore rely here on analytical results that allow us to explore a wider range of possible values. As explained in
Sec. 3.4, we model time varying popularity using IPP renewal processes. The lifetime is identified with an exponential
on-period of mean duration Ton while the exponential off-period is of mean duration To f f = 9 ·Ton. To f f must be large
enough that it is considerably larger than the characteristic time TC so that each on-period appears as a new content
with respect to CS and PIT states.

We take parameter values from the paper [5] where the IPP model was first proposed. Ton and catalogue size K
are set so that the rate at which ‘new’ contents occur, denoted γ, and the mean number of active contents are fixed.
Thus K = 10γTon. We set γ = 5 · 104 contents per day, the value reported in [5], and select Ton from 1, 7 and 30 days
to explore a range of scenarios. Other parameters take default values from Table 1.

Figure 7 plots pcs
hi and p f wd for two relative cache sizes C/K = .02 and C/K = .2, as functions of a measure of

request density, denoted ρ, for Ton = 1 day and Ton = 7 days. Request density is defined as the expected total number
of requests occurring in a content lifetime. In the IPP model, there are “lifetimes” that in fact have no requests.
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Figure 7: CS hit probability and forwarding probability versus request density for different Ton durations under non-ZDD LRU and non-ZDD
2-LRU for two CS sizes C = 0.02K and C = 0.2K. Black dashed lines represent the case for D = 0.
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Figure 8: CS hit probability and forwarding probability versus CS capacity for different Ton durations under non-ZDD LRU and non-ZDD 2-LRU
when request density is fixed to ρ = 106.

Considering actual lifetimes to be manifested by at least one request (as is the case in any trace of real traffic), we
define ρ as follows,

ρ =

K∑
k=1

(1 + νkTon)/K = 1 + λ/γ. (19)

Cases (a) and (b) behave similarly for small ρ. The CS hit probability is small and, moreover, the 2-LRU policy
can become less effective than LRU. This is explained by the low reactivity of these policies at low densities: the
first request and first two requests in an on-period are necessarily misses for LRU and 2-LRU, respectively. The
relative impact of these systematic misses is significant when ρ < 10. When C is smaller, the number of systematic
misses relative to the misses due to content churn decreases and, as a result, we see a less steep line for ρ < 10 when
C/K = 0.02 compared to C/K = 0.2.

As ρ increases, the CS hit rate attains a maximum that is flat over the range 102 ≤ ρ ≤ 104 and roughly equal
for both values of TON . This hit rate would be attained with IRM input with the same popularity distribution. The
impact of systematic misses for the first and first 2 requests in a lifetime for LRU and 2-LRU, respectively, becomes
negligible when the number of requests per lifetime is typically large. Moreover, the impact of PIT request aggregation
is negligible until ρ > 104.

For very large densities, collapsed forwarding comes into play and the forwarding probability decreases signifi-
cantly. The key variable is the average number of aggregated requests per download delay, as identified in Sec. 5.2.1,
and equal here to ρD/Ton. From Figure 3, the PIT significantly improves performance when this variable is greater
than .01, roughly corresponding to ρ > 104 in case (a) and to ρ > 105 in case (b).

Figure 8 plots pcs
hit and p f wd as functions of CS capacity for different values of the average on-period duration. We

set the request density to ρ = 106 in this scenario. The results again confirm that when ρ is adequately large, CS hit
probability is roughly inversely proportional to the length of the on-period, i.e., content lifetime. On the other hand,
for a fixed ρ value, the PIT is more effective when the ratio of download delay to lifetime is larger and/or the requests
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Figure 9: CS hit probability and forwarding probability versus request density under LRU and 2-LRU. The largest ρ value represents the results for
the original trace.
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Figure 10: CS hit probability and forwarding probability versus download delay represented as average number of aggregated requests per download
delay under LRU and 2LRU for CS capacity C = 104.

show more time locality, i.e., for Ton = 1.

5.4. Trace-based Evaluation

To further validate the analysis and the derived insights, we have performed trace-based simulations. We use a
trace of YouTube video requests provided to us by the authors of [24]. This trace (labelled Trace 4 in [24]) contains
3.8M requests for 1.76M videos generated from 31124 distinct IP addresses within the network of an Italian ISP and
was recorded over a 35 day period in 2012.

Excluding contents with less than 10 requests, lifetimes range from about 1 day for the most dynamic group of
contents to about 25 days. Request density, defined above as the average number of requests during each content
lifetime, is approximately ρ ≈ 2.16. To simulate smaller densities we have to thin the observed request process: each
request is retained with probability p and we simulate densities from ρ ≈ 1 to ρ ≈ 2.16 by ranging p between 0 and 1.

Figure 9 shows hit rates and forwarding probabilities for LRU and 2-LRU caches with capacities C = 104 and
C = 106 as a function of ρ. The forwarding probability is just equal to the CS miss rate here for such low densities.
The results confirm the analytical findings for small densities discussed in Sec. 5.3: the performance of both LRU and
2-LRU suffers from systematic misses and the less reactive 2-LRU is worse than LRU for the larger cache.

To study the larger request density regime where the PIT becomes effective in reducing the forwarding probability
we must artificially increase the download delay. This is because the trace density of ρ ≈ 2.16 is simply too low to
produce request aggregation with a realistic download delay of 100 ms or less. Increasing the download delay allows
us to explore performance over a range of average aggregated requests values.

The results are displayed in Figure 10. CS hit rates and forwarding probabilities are qualitatively similar to those
shown in Figure 3 tending to validate the analysis. As further validation, Figure 10 plots trace simulation results
together with analytical results derived by fitting the IPP model to the trace data. Specifically, we have used the data
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provided in Table 2 in [24] to fit the mean on-time Ton(k) and the request rates νk for the 5 lifetime classes identified
in the table. The closeness of the analytical and simulation results confirms that the assumption of Poisson request
arrivals within each lifetime is a reasonable approximation for the CS-PIT system, as previously noted in [24] for a
simple cache. The small errors in model predictions are mainly due to significant bias in the lifetime estimates arising
from the limited trace length and the small number of requests observed for many contents.

5.5. Discussion
The results of this section show that the effectiveness of PIT aggregation varies widely depending on the chosen

scenario. It is useful therefore to discuss observed behavior in the light of known demand and network characteristics.
The PIT is very effective in reducing forwarding rates when demand is high and concentrated on a relatively small

catalogue of contents (cf. Figure 5 and Figure 6). The key parameter is the average number of requests occurring
in the download delay, λD/K. For the considered Zipf(.8) popularity distribution, the PIT has a noticeable impact
when λD/K > 0.01. This condition may be satisfied for certain NDN deployments but perhaps not for core routers
performing content retrieval from the entire Internet.

Known statistics on different types of content, like the Web or YouTube videos, suggest catalogues approaching
the petabyte in total volume [36], while traces from real traffic observations reveal volumes of at least several tens of
terabytes [21]. Converted to NDN chunks (close in size to IP packets) this suggests catalogues K in excess of 1010.
On the other hand, demand in a core NDN router with multiple 10 Gb/s links might generate O(106) requests per
second at peak times. The request rate per content item (O(10−4)) is still rather low for the PIT to be effective (in
Figure 5, the same relative per content request rate would occur at λ = 100). The scenario would be more favorable
with a more skewed popularity distribution (e.g., Zipf(1)) though most measurements in the field suggest this is not
very likely (e.g., [21]).

The plots in Figures 3 to 6 demonstrate the generally positive impact on hit rate performance of time locality. On
the other hand, Figure 7 and Figure 9 show that finite lifetimes can significantly reduce the effectiveness of reactive
caching policies like LRU and 2-LRU when demand is relatively low. The critical parameter here is the expected
number of requests in a content lifetime that we have termed request density, ρ.

To understand why performance is poor for low densities, note that an unlimited capacity LRU cache would have
a hit rate of (ρ − 1)/ρ: for a trace like that used in Sec. 5.4, the total number of requests is ρ times the number of
distinct contents while there is exactly 1 miss per content. This hit rate is only within 10% of the ideal hit rate of 1
(that would eventually be attained with IRM demand) for ρ > 10. The hit rate of an unlimited capacity 2-LRU cache
would always be lower than that of LRU since only requests after the first two yield hits. For a limited cache, however,
there is a crossover point as ρ increases. We have observed that the crossover occurs earlier for smaller caches since
this point is where the selectivity of 2-LRU trumps the greater reactivity of LRU which happens earlier for smaller
cache sizes, but it does not appear possible to explain this behaviour through simple closed-form formulas.

As a practical consequence, note that when density ρ is small, in an edge router delivering content from a large
catalogue say, it may be necessary to perform proactive caching (i.e., to push the most popular contents to the CS) in
order to significantly reduce the forwarding rate.

6. Conclusions

The characteristic time based analytical framework developed in this paper is both versatile and accurate. We have
modelled the CS-PIT system with non-zero download delay applying LRU and 2-LRU cache replacement policies
under general renewal request processes. Analytical results, whose accuracy is confirmed by simulations, enable an
appraisal of the effectiveness of the PIT in reducing network traffic through the use of collapsed forwarding.

The effectiveness of the PIT naturally increases with the duration of the download delay. The more complex
2-LRU replacement policy gives higher CS hit rates than simple LRU in all cases but this advantage is mitigated in
non-ZDD scenarios where the PIT is a meta cache that, like the filter, tends to improve the performance of the most
popular contents.

The PIT is most effective when demand per content is relatively high such that several requests often occur in a
download delay. This happens when overall demand is high, as in a core router, but only if this demand is not spread
over a very large content catalogue. If demand is low, as in an access node or an enterprise router, and nevertheless
spread over a large catalogue, the PIT is hardly effective in realizing collapsed forwarding.
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When contents have a finite lifetime during which they are popular and receive requests (an approximate model
of popularity variation), the above remarks on PIT effectiveness still apply. In addition we observed that both reactive
cache policies, LRU and 2-LRU, can be ineffective when the expected number of requests per content is small.
Whenever this case arises in practice it is preferable to implement a placement policy where the most popular contents
are proactively pushed to the CS.

The above insights derived from the analytical model have been confirmed by the results of trace-driven simulation
experiments.

Appendix A.

We compare the complexity and accuracy of the present analytical framework with that proposed by Dehghan et
al. [3]. We first briefly review the formulas given in [3] for the performance of a non-ZDD LRU cache under general
renewal process. We then discuss the complexity needed to compute different terms in the respective formulations
and present the results of some numerical experiments.

In the notation of [3], Γt is the residual life (forward recurrence time) of the request process at time t after the start
of a cycle. The distribution of Γt is [3, Eq. (7)],

P(Γt ≤ a) = F(t + a) −
∫ t

0
(1 − F(t + a − x)) dm(x), (A.1)

where m(x) is the renewal function of a general renewal process and is given by 5.
The following expressions for pcs

in and pcs
hit are given in [3] (denoted o and h, respectively),

pcs
in =

E[ΓD] + E[N]/λ − E[ΓtE ]
E[Tcycle]

, (A.2)

pcs
hit =

E[N]
1 + E[m(D)] + E[N]

, (A.3)

where N is the number of hits in a cycle and E[Tcycle] is the expected cycle length. ΓD and ΓtE are the residual life of
the request process at content insertion time D and at content eviction time tE , respectively.

In the notation of Figure1, Tcycle =
∑1+ND+N

i=1 Xi where ND is the number of PIT hits (E[ND] = m(D)). The upper
summation limit is a stopping time for the sequence Xi and consequently we can apply Wald’s equation [3, Eq. (10)],

E[Tcycle] = (1 + E[m(D)] + E[N])/λ. (A.4)

The mean number of hits E[N] is given by [3, Eq. (8)] which, for constant D and characteristic time TC reads,

E[N] =
P(ΓD ≤ TC)
1 − F(TC)

. (A.5)

To compute TC using the expression for pcs
in and fixed point equation (8), E[N], E[ΓD] and E[ΓtE ] must be computed

at each iteration. E[N] can be computed simply using (A.5). We now explain the complexity of computing E[ΓD]
and E[ΓTE ]. Note that no method is proposed in [3] for computing these terms. We therefore use our own method to
compute them.

To compute the difference E[ΓD] − E[ΓtE ] in (A.2) we distinguish the cases where ΓD > TC , and there are no hits
in the cycle (Figure1a), and ΓD ≤ TC with at least one hit (Figure1b). In the first case, ΓD − ΓtE = TC . In the second,
E[ΓD] = E[ΓD|ΓD ≤ TC] and E[ΓtE ] = E[(X − TC)| X > TC]. We deduce,

E[ΓD] − E[ΓtE ] = P(ΓD > TC) · TC + P(ΓD ≤ TC) ·
(E[ΓD · 1{ΓD≤TC }]

P(ΓD ≤ TC)
−
E[(X − TC) · 1{X>TC }]

P(X > TC)

)
, (A.6)

where

E[ΓD · 1{ΓD≤TC }] =

∫ TC

0

(
P(ΓD ≤ TC) − P(ΓD ≤ t)

)
dt, (A.7)

E[(X − TC) · 1{X>TC }] =

∫ ∞

TC

P(X > x)dx. (A.8)

15



Computing (A.7) for every iteration over TC is the main source of complexity. It proves significantly more complex
than computing (15) in the approach proposed in this paper due to larger effective domain and the complexity of
computing (A.1). To illustrate this difference we compare the execution time and accuracy of the two approaches for
some reference scenarios. We refer to our approach as ‘method-A’ and that proposed in [3] as ‘method-B’.

We implement both methods in Python using the built-in integration function scipy.integrate.quad to com-
pute the integrals (available on GitHub [6]). We run both methods on the same server, repeating each experiment
10 times and reporting the minimum execution time to decrease the impact of uncontrolled tasks running on the
server. The iterative algorithm used to solve the fixed point equation (15) is the same for both methods. We start from
TC = C/λ and continue until |C −

∑K
k=1 pcs

in (k)| > ε for ε = 10−3. We consider the hyper10 request process defined
in Sec. 5.1 and evaluate the overall CS hit probability for different catalogue sizes. Other parameters are the default
values reported in Table 1.

Table A.2 compares the execution times for two catalogue sizes, 106 and 107. The complexity of method-B leads
to a significantly longer execution time that becomes prohibitive for large catalogues.

Table A.2: Comparison of method-A and method-B for different catalogue sizes under non-ZDD LRU for fixed C/K ratio = 10−3 and request rate
λ = 105 (rqt/s) and D = 100 ms.

Catalogue Size (K) Method Execution Time

106 method-A 1h 15 min
method-B 5h 9 min

107 method-A 3h 38 min
method-B 32h 17 min
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