552 research outputs found

    Medium Access Control, Packet Routing, and Internet Gateway Placement in Vehicular Ad Hoc Networks

    Get PDF
    Road accidents represent a serious social problem and are one of the leading causes of human death and disability on a global scale. To reduce the risk and severity of a road accident, a variety of new safety applications can be realized through wireless communications among vehicles driving nearby each other, or among vehicles and especially deployed road side units (RSUs), a technology known as a vehicular ad hoc network (VANET). Most of the VANET-enabled safety applications are based on broadcasting of safety messages by vehicles or RSUs, either periodically or in case of an unexpected event, such as a hard brake or dangerous road condition detection. Each broadcast safety message should be successfully delivered to the surrounding vehicles and RSUs without any excess delay, which is one of the main functions of a medium access control (MAC) protocol proposed for VANETs. This thesis presents VeMAC, a new multichannel time division multiple access (TDMA) protocol specifically designed to support the high priority safety applications in a VANET scenario. The ability of the VeMAC protocol to deliver periodic and event-driven safety messages in VANETs is demonstrated by a detailed delivery delay analysis, including queueing and service delays, for both types of safety messages. As well, computer simulations are conducted by using MATLAB, the network simulator ns-2, and the microscopic vehicle traffic simulator VISSIM, in order to evaluate the performance of the VeMAC protocol, in comparison with the IEEE 802.11p standard and the ADHOC MAC protocol (another TDMA protocol proposed for ad hoc networks). A real city scenario is simulated and different performance metrics are evaluated, including the network goodput, protocol overhead, channel utilization, protocol fairness, probability of a transmission collision, and safety message delivery delay. It is shown that the VeMAC protocol considerably outperforms the existing MAC schemes, which have significant limitations in supporting VANET safety applications. In addition to enhancing road safety, in-vehicle Internet access is one of the main applications of VANETs, which aims at providing the vehicle passengers with a low-cost access to the Internet via on-road gateways. This thesis presents a new strategy for deploying Internet gateways on the roads, in order to minimize the total cost of gateway deployment, while ensuring that a vehicle can connect to an Internet gateway (using multihop communications) with a probability greater than a specified threshold. This cost minimization problem is formulated by using binary integer programming, and applied for optimal gateway placement in a real city scenario. To the best of our knowledge, no previous strategy for gateway deployment has considered the probability of multihop connectivity among the vehicles and the deployed gateways. In order to allow a vehicle to discover the existence of an Internet gateway and to communicate with the gateway via multihops, a novel data packet routing scheme is proposed based on the VeMAC protocol. The performance of this cross-layer design is evaluated for a multichannel VANET in a highway scenario, mainly in terms of the end-to-end packet delivery delay. The packet queueing at each relay vehicle is considered in the end-to-end delay analysis, and numerical results are presented to study the effect of various parameters, such as the vehicle density and the packet arrival rate, on the performance metrics. The proposed VeMAC protocol is a promising candidate for MAC in VANETs, which can realize many advanced safety applications to enhance the public safety standards and improve the safety level of drivers/passengers and pedestrians on roads. On the other hand, the proposed gateway placement strategy and packet routing scheme represent a strong step toward providing reliable and ubiquitous in-vehicle Internet connectivity

    An Efficient Cross-Layer Design for Multi-hop Broadcast of Emergency Warning Messages in Vehicular Networks

    Get PDF
    International audienceThe main objective of Vehicular ad hoc networks (VANETs) is to make road transportation systems more intelligent in order to anticipate and avoid dangerous, potentially life-threatening situations. Due to its promising safety applications, this type of network has attracted a lot of attention in the research community. The dissemination of warning messages, such as DENMs (Decentralized Environmental Notification Messages), requirse an efficient and robust routing protocol. In previous studies, the active signaling mechanism has shown its ability to prevent collisions between users trying to allocate the same resource. In this paper, we propose an original message forwarding strategy based on the active signaling mechanism. Our proposal disseminates warning messages from a source vehicle to the rest of the network while minimizing the access delay and the number of relay nodes. For this purpose, a special time slot is dedicated to forwarding emergency warning messages. To avoid access collisions on this slot, the active signaling scheme we propose favours the selection of the furthest node as the forwarder. We carry out a number of simulations and comparisons to evaluate the performances of the scheme

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research
    • …
    corecore