8,687 research outputs found

    Synthetic vascular ultrasound imaging through coupled fluid-structure interaction and ultrasound simulations

    Get PDF
    Although ultrasonic imaging is commonly applied in cardiovascular research and clinical practice, current blood flow and vessel wall imaging methods are still hampered by several limitations. We developed a simulation environment integrating ultrasound (US) and fluid-structure interaction (FSI) simulations, allowing construction of synthetic US-images based on physiologically realistic behavior of an artery. An in-house code was developed to strongly couple the flow solver Fluent and structural solver Abaqus using an Interface Quasi-Newton technique. A distensible tube, representing the common carotid artery (length 5cm, inner diameter 6 mm, thickness 1 mm), was simulated. A mass flow inlet boundary condition, based on flow measured in a healthy subject, was applied. A downstream pressure condition, based on a non-invasively measured pressure waveform, was used. US-simulations were performed with Field II, allowing to model realistic transducers and scan sequences as used in clinical vascular imaging. To this end, scatterers were "seeded" in the fluid and structural domain and propagated during the simulated scan procedure based on flow and structural displacement fields from FSI. Simulations yielded raw ultrasound (RF) data, which were processed for arterial wall distension and shear rate imaging. Our simulations demonstrated that (i) the wall distension application is sensitive to measurement location (highest distension found when tracking the intima-lumen transition); (ii) strong reflections between tissue transitions can potentially cloud a correct measurement; (iii) maximum shear rate was underestimated during the complete cardiac cycle, with largest discrepancy during peak systole; (iv) due to difficulties measuring near-wall velocities with US, shear rate reached its maximal value at a distance from the wall (0.812 mm for anterior and 0.689 mm for posterior side). We conclude that our FSI-US simulation environment provides realistic RF-signals which can be processed into ultrasound-derived medical images and measurements

    Simulation of ultrasonic imaging with linear arrays in causal absorptive media

    Get PDF
    Rigorous and efficient numerical methods are presented for simulation of acoustic propagation in a medium where the absorption is described by relaxation processes. It is shown how FFT-based algorithms can be used to simulate ultrasound images in pulse-echo mode. General expressions are obtained for the complex wavenumber in a relaxing medium. A fit to measurements in biological media shows the appropriateness of the model. The wavenumber is applied to three FFT-based extrapolation operators, which are implemented in a weak form to reduce spatial aliasing. The influence of the absorptive medium on the quality of images obtained with a linear array transducer is demonstrated. It is shown that, for moderately absorbing media, the absorption has a large influence on the images, whereas the dispersion has a negligible effect on the images.\ud \u

    Simulating Patho-realistic Ultrasound Images using Deep Generative Networks with Adversarial Learning

    Full text link
    Ultrasound imaging makes use of backscattering of waves during their interaction with scatterers present in biological tissues. Simulation of synthetic ultrasound images is a challenging problem on account of inability to accurately model various factors of which some include intra-/inter scanline interference, transducer to surface coupling, artifacts on transducer elements, inhomogeneous shadowing and nonlinear attenuation. Current approaches typically solve wave space equations making them computationally expensive and slow to operate. We propose a generative adversarial network (GAN) inspired approach for fast simulation of patho-realistic ultrasound images. We apply the framework to intravascular ultrasound (IVUS) simulation. A stage 0 simulation performed using pseudo B-mode ultrasound image simulator yields speckle mapping of a digitally defined phantom. The stage I GAN subsequently refines them to preserve tissue specific speckle intensities. The stage II GAN further refines them to generate high resolution images with patho-realistic speckle profiles. We evaluate patho-realism of simulated images with a visual Turing test indicating an equivocal confusion in discriminating simulated from real. We also quantify the shift in tissue specific intensity distributions of the real and simulated images to prove their similarity.Comment: To appear in the Proceedings of the 2018 IEEE International Symposium on Biomedical Imaging (ISBI 2018

    Blind deconvolution of medical ultrasound images: parametric inverse filtering approach

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.910179The problem of reconstruction of ultrasound images by means of blind deconvolution has long been recognized as one of the central problems in medical ultrasound imaging. In this paper, this problem is addressed via proposing a blind deconvolution method which is innovative in several ways. In particular, the method is based on parametric inverse filtering, whose parameters are optimized using two-stage processing. At the first stage, some partial information on the point spread function is recovered. Subsequently, this information is used to explicitly constrain the spectral shape of the inverse filter. From this perspective, the proposed methodology can be viewed as a ldquohybridizationrdquo of two standard strategies in blind deconvolution, which are based on either concurrent or successive estimation of the point spread function and the image of interest. Moreover, evidence is provided that the ldquohybridrdquo approach can outperform the standard ones in a number of important practical cases. Additionally, the present study introduces a different approach to parameterizing the inverse filter. Specifically, we propose to model the inverse transfer function as a member of a principal shift-invariant subspace. It is shown that such a parameterization results in considerably more stable reconstructions as compared to standard parameterization methods. Finally, it is shown how the inverse filters designed in this way can be used to deconvolve the images in a nonblind manner so as to further improve their quality. The usefulness and practicability of all the introduced innovations are proven in a series of both in silico and in vivo experiments. Finally, it is shown that the proposed deconvolution algorithms are capable of improving the resolution of ultrasound images by factors of 2.24 or 6.52 (as judged by the autocorrelation criterion) depending on the type of regularization method used

    ACOUSTO-OPTIC IMAGING IN DIFFUSE MEDIA USING PULSED ULTRASOUND AND THE PHOTOREFRACTIVE EFFECT

    Get PDF
    Acousto-optic imaging (AOI) in optically diffuse media is a hybrid imaging modality in which a focused ultrasound beam is used to locally phase modulate light inside of turbid media. The modulated optical field carries with it information about the optical properties in the region where the light and sound interact. The motivation for the development of AOI systems is to measure optical properties at large depths within biological tissue with high spatial resolution. A photorefractive crystal (PRC) based interferometry system is developed for the detection of phase modulated light in AOI applications. Two-wave mixing in the PRC creates a reference beam that is wavefront matched to the modulated optical field collected from the specimen. The phase modulation is converted to an intensity modulation at the optical detector when these two fields interfere. The interferometer has a high optical etendue, making it well suited for AOI where the scattered light levels are typically low. A theoretical model for the detection of acoustically induced phase modulation in turbid media using PRC based interferometry is detailed. An AOI system, using a single element focused ultrasound transducer to pump the AO interaction and the PRC based detection system, is fabricated and tested on tissue mimicking phantoms. It is found that the system has sufficient sensitivity to detect broadband AO signals generated using pulsed ultrasound, allowing for AOI at low time averaged ultrasound output levels. The spatial resolution of the AO imaging system is studied as a function of the ultrasound pulse parameters. A theoretical model of light propagation in turbid media is used to explore the dependence of the AO response on the experimental geometry, light collection aperture, and target optical properties. Finally, a multimodal imaging system combining pulsed AOI and conventional B- mode ultrasound imaging is developed. B-mode ultrasound and AO images of targets embedded in both highly diffuse phantoms and biological tissue ex vivo are obtained, and millimeter resolution is demonstrated in three dimensions. The AO images are intrinsically co-registered with the B-mode ultrasound images. The results suggest that AOI can be used to supplement conventional B-mode ultrasound imaging with optical information.Center for Subsurface and Imaging Systems via NSF ERC award number EEC-9986821

    Quantification and Reconstruction in Photoacoustic Tomography

    Get PDF
    Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin. Conventionally, accurate quantification in PAT requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. We demonstrate the method using the optical-resolution photoacoustic microscopy: OR-PAM) and the acoustical-resolution photoacoustic microscopy: AR-PAM) in the optical ballistic regime and in the optical diffusive regime, respectively. The data acquisition speed in photoacoustic computed tomography: PACT) is limited by the laser repetition rate and the number of parallel ultrasound detecting channels. Reconstructing an image with fewer measurements can effectively accelerate the data acquisition and reduce the system cost. We adapted Compressed Sensing: CS) for the reconstruction in PACT. CS-based PACT was implemented as a non-linear conjugate gradient descent algorithm and tested with both phantom and in vivo experiments. Speckles have been considered ubiquitous in all scattering-based coherent imaging technologies. As a coherent imaging modality based on optical absorption, photoacoustic: PA) tomography: PAT) is generally devoid of speckles. PAT suppresses speckles by building up prominent boundary signals, via a mechanism similar to that of specular reflection. When imaging smooth boundary absorbing targets, the speckle visibility in PAT, which is defined as the ratio of the square root of the average power of speckles to that of boundaries, is inversely proportional to the square root of the absorber density. If the surfaces of the absorbing targets have uncorrelated height fluctuations, however, the boundary features may become fully developed speckles. The findings were validated by simulations and experiments. The first- and second-order statistics of PAT speckles were also studied experimentally. While the amplitude of the speckles follows a Gaussian distribution, the autocorrelation of the speckle patterns tracks that of the system point spread function
    corecore