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ABSTRACT OF THE DISSERTATION 

 

 

Quantification and Reconstruction 

in Photoacoustic Tomography 

by 

Zijian Guo 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2012 

Research Advisor: Professor Lihong Wang 

 

Optical absorption is closely associated with many physiological important parameters, such 

as the concentration and oxygen saturation of hemoglobin. Conventionally, accurate 

quantification in PAT requires knowledge of the optical fluence attenuation, acoustic 

pressure attenuation, and detection bandwidth. We circumvent this requirement by 

quantifying the optical absorption coefficients from the acoustic spectra of PA signals 

acquired at multiple optical wavelengths. We demonstrate the method using the optical-

resolution photoacoustic microscopy (OR-PAM) and the acoustical-resolution photoacoustic 

microscopy (AR-PAM) in the optical ballistic regime and in the optical diffusive regime, 

respectively. 

 

The data acquisition speed in photoacoustic computed tomography (PACT) is limited by the 

laser repetition rate and the number of parallel ultrasound detecting channels. 

Reconstructing an image with fewer measurements can effectively accelerate the data 

acquisition and reduce the system cost. We adapted Compressed Sensing (CS) for the 

reconstruction in PACT. CS-based PACT was implemented as a non-linear conjugate 

gradient descent algorithm and tested with both phantom and in vivo experiments. 

 

Speckles have been considered ubiquitous in all scattering-based coherent imaging 

technologies. As a coherent imaging modality based on optical absorption, photoacoustic 



iii 
 

(PA) tomography (PAT) is generally devoid of speckles. PAT suppresses speckles by 

building up prominent boundary signals, via a mechanism similar to that of specular 

reflection. When imaging smooth boundary absorbing targets, the speckle visibility in PAT, 

which is defined as the ratio of the square root of the average power of speckles to that of 

boundaries, is inversely proportional to the square root of the absorber density. If the 

surfaces of the absorbing targets have uncorrelated height fluctuations, however, the 

boundary features may become fully developed speckles. The findings were validated by 

simulations and experiments. The first- and second-order statistics of PAT speckles were 

also studied experimentally. While the amplitude of the speckles follows a Gaussian 

distribution, the autocorrelation of the speckle patterns tracks that of the system point 

spread function. 
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Chapter 1 

 

Introduction 

 

1.1 Quantitative Photoacoustic Tomography 

(PAT) 

 

Total, oxygenated, and deoxygenated hemoglobin concentrations ([HbT], [HbO2], and 

[HbR]) are fundamental pathophysiological parameters in biomedicine. For example, 

abnormally low [HbT] may be caused by loss of blood, nutritional deficiency, 

chemotherapy, inflammation, kidney failure or bone marrow problems, while 

abnormally high [HbT] may be related to exposure to high altitude, smoking, 

dehydration and tumors. Blood oxygen saturation (sO2), which is defined as [HbO2] 

divided by [HbT], is vital in understanding brain hemodynamics in response to sensory 

stimulations, monitoring healing of burns [1] and wounds [2], and evaluating the 

effectiveness of chemotherapy and radiotherapy on tumors [3]. Several techniques have 

been developed to quantify hemoglobin concentration and sO2 in vivo, including diffuse 

optical tomography (DOT) and blood oxygen level dependent (BOLD) contrast 

magnetic resonance imaging (MRI). Positron emission tomography (PET) is used to 

monitor the oxygen metabolism. However, all of these modalities have disadvantages: 

for example, poor spatial resolution, relative quantification, and undesirable contrast 

agent injection [4, 5]. 
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Photoacoustic (PA) tomography (PAT) can quantify hemoglobin concentrations in vivo 

based on endogenous contrast with both fine spatial resolution and high sensitivity [6]. 

In PAT, the sample is typically illuminated by a pulsed laser. Following the absorption 

of optical energy, an initial pressure is generated via thermo-elastic expansion. The initial 

pressure then propagates as ultrasonic waves, which are detected by ultrasonic sensors. 

The strength of the initial pressure ( )0P r  in the unit of Pa at the location r  in the 

biological tissue is proportional to the local absorbed optical energy density ( )A r  in 

units of J m–3. From multi-wavelength PA measurements, we can obtain the optical 

spectrum ( ),A r λ  [i.e., ( )A r  versus optical wavelength λ ], which can be used to 

quantify hemoglobin concentrations in the same way as DOT [7]. In the optical ballistic 

regime, the lateral resolution of PAT is determined by optical focusing [8], and thus it is 

comparable to that of other optical microscopy modalities. In the optical diffusive 

regime, however, the resolution of PAT is determined by ultrasonic waves [9], and PAT 

provides much better spatial resolution than DOT, in which the inverse algorithm is ill-

posed. While DOT can only monitor sO2 which is volume-averaged over multiple 

blood vessels, PAT can pinpoint blood vessels and evaluate their individual sO2 levels 

[10]. Moreover, PAT inherently exploits optical absorption contrast, and thus it has a 

much higher sensitivity to optical absorption than other optical microscopy modalities 

[11] and DOT (see Appendix A). 

 

Nevertheless, using PAT to quantify hemoglobin concentrations conventionally requires 

knowledge of the local optical fluence [12, 13]. In the quantification model, hemoglobin 

concentrations are derived [7] from the optical absorption coefficient ( , )a rμ λ  in the 

unit of m–1 by solving the following equation for multiple values of λ : 

2HbR HbO 2( , ) ( )[HbR]( ) ( )[HbO ]( )a r r rμ λ ε λ ε λ= + , 

where HbR ( )ε λ  and 
2HbO ( )ε λ  are the known molar extinction coefficients (m–1M–1) of 

deoxyhemoglobin (HbR) and oxyhemoglobin (HbO2) at wavelength λ . Apart from 

spatial variation of the Grueneisen coefficient (Γ ) [6], PAT images, however, are spatial 

mappings of the absorbed optical energy density ( ) ( ) ( ), , ,aA r r F rλ μ λ λ= , where 
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( , )F r λ  represents the local optical fluence in units of J m–2. To obtain the intrinsic 

quantity ( , )a rμ λ  from ( ),A r λ , we need to quantify ( , )F r λ , which is usually 

unknown due to light transport in the scattering tissue.  

 

( , )F r λ  can be quantified in vivo either invasively [4] by inserting a calibration target or 

non-invasively [14-17] by using an auxiliary modality. In the invasive method, an 

exogenous optical absorber with known absorption spectrum ( ', )a rμ λ  is inserted at 

'r  near the target objects of interest. The PA amplitudes due to ( , )A r λ  of the target 

objects of interest are normalized by the PA amplitude due to ( ', )A r λ  of the 

calibration target. By assuming ( ', ) ( , )F r F rλ λ≈ , we have 

( , ) ( ', ) ( , ) / ( ', )a ar r A r A rμ λ μ λ λ λ= . 

This method physically compensates for the fluence attenuation; however, it is invasive. 

The non-invasive method involves solving both the optical diffusion equation and the 

PA wave equation iteratively. However, additional optical measurements are required, 

and the inverse algorithms are ill-posed. 

 

The temporal profile of the PA signal has also been used to quantify optical absorption 

coefficients with reflection-mode PA imaging systems [18-21]. For example, if a pencil 

beam incident perpendicularly on the blood vessel surface, then the energy deposition in 

the vessel decays exponentially along the beam propagation direction. If at wavelength 

λ  the reduced scattering coefficient '( )sμ λ  is much smaller than the absorption 

coefficient ( )aμ λ  of blood, fitting the received PA signals with Beer’s law yields 

( )aμ λ . Here, knowledge of the local optical fluence is not required, because ( )aμ λ  is 

quantified from the relative temporal decay profile. However, various acoustic effects 

may distort the received PA signals. Acoustic attenuation in biological tissue has a 

power law dependence on the frequency, and therefore the shapes of the acoustic pulses 

change as they propagate. Also, as ultrasonic detectors have limited bandwidths, the 

detected PA signal is the convolution of the received acoustic pulse and the mechanical-

electrical impulse response of the detector. As such, the temporal profiles no longer 
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follow the exponential decay. Consequently, directly fitting the temporal profile for 

optical absorption coefficients can be inaccurate. 

 

In Chapter 2, we discuss a method to quantify optical absorption coefficients from 

acoustic spectra measured at two optical wavelengths. 

 

1.2 Compressed Sensing in PAT 

 

By combining strong optical absorption contrast and high ultrasonic resolution in a 

single modality, PAT can achieve much better spatial resolution at depths beyond the 

optical ballistic regime (~1 mm in the skin) than the traditional optical modalities [6, 

11]. When the excitation laser is replaced by microwave or RF sources, the technique is 

called thermoacoustic tomography (TAT) [22, 23]. Both PAT and TAT have been used 

successfully in a variety of applications, including high-quality in vivo vascular structural 

imaging, hemodynamic functional imaging [10, 24], and visualization of breast tumors 

[25, 26]. 

 

PAT has been implemented in various forms, and each form has its own advantages 

and applications [27]. In photoacoustic computed tomography (PACT, or simply PAT), 

an array of unfocused ultrasonic transducers is placed outside the object, and an inverse 

algorithm is used to reconstruct the image. Closed form reconstruction formulas have 

been reported in both the frequency and time domains for spherical, planar, and 

cylindrical detecting geometries [28-35]. However, a fundamental assumption of all 

these algorithms is that the spatial sampling of the detecting aperture is sufficient; 

otherwise, undersampling artifacts, such streaking artifacts or grating lobes, appear. 

 

Reliable image reconstruction with sparse sampling of the detecting aperture is 

desirable. In practical PAT systems, it is recommended [27, 36] to set the discrete spatial 
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sampling period to be two to five times smaller than the sensing aperture of the 

detector. For a scanning PAT system, it may require hundreds or even thousands of 

scanning steps to acquire an image, depending on the sizes of both the detector and the 

detecting aperture. Such scanning usually takes several minutes to complete. To reach 

real-time imaging, PAT is implemented with an array of ultrasonic transducers, where all 

or groups of the array elements can detect photoacoustic signals simultaneously. 

However, the data acquisition speed is still limited by the number of parallel data 

acquisition (DAQ) channels, and employing a large number of DAQ channels greatly 

increases the system cost. For example, for a fast 512-element ring array PAT system 

with a 64 channel data acquisition module [37], it takes 8 laser shots to collect data from 

all 512 elements. For direct 3-D reconstruction PAT applications [38, 39], the data from 

a 2-D ultrasonic array is usually an extremely sparse sampling of the detecting aperture. 

Moreover, channel crosstalk is also related to the space between neighboring elements 

(kerf), and an extensive spatial sampling may increase the crosstalk. 

 

The recently developed compressed sensing (CS) theory enables us to eliminate the 

undersampling artifacts under certain conditions. The theory has been successfully 

applied in MRI, where MRI images were able to be reconstructed from significantly 

undersampled K-space measurements. In Chapter 3, we apply the CS theory in PAT 

[40]. 

 

1.3 Speckles in PAT 

 

Speckle has been considered ubiquitous in all coherent imaging modalities, such as laser 

imagery [41, 42], ultrasonography [43, 44], synthetic aperture radar, and optical [45] 

coherence tomography [46]. Fully developed speckle is formed by the interference 

among partial waves, either scattered from randomly distributed scatterers or reflected 

from a rough surface, whose phases are completely randomized over 2π. The speckle 
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pattern generally has a high-contrast, fine-scale granular appearance, which does not 

correspond to the real structure of the sample. Although useful in certain applications, 

such as optical speckle imaging and ultrasound tissue characterization, speckle reduces 

both the effective spatial resolution and the detectability of small lesions, and thus 

deteriorates the image quality significantly. Many efforts have been made to mitigate this 

undesirable deterioration; however, speckle can be only partially reduced and only at the 

cost of system complexity, imaging time, or spatial resolution. 

 

A long-standing conundrum is why photoacoustic tomography (PAT) possesses the 

unique ability to produce images devoid of speckle artifacts while all other coherent 

imaging technologies do not. We explain the reason and systematically study PAT 

speckles in Chapter 4. 
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Chapter 2 

 

Quantitative PAT 

 

2.1 Quantification of Optical Absorption 

Coefficient from Acoustic Spectra 

 

We propose a method to quantify optical absorption coefficients from the acoustic 

spectra of multi-wavelength PA signals. The advantages include: 1) this method does 

not need fluence compensation, because the acoustic spectral profiles are independent 

of the absolute local optical fluence; 2) the same ultrasonic detector is employed for 

multiple optical wavelength measurements, and the acoustic properties of the tissue that 

lies between the target and the detector also remain unchanged. Therefore, the effects 

of the system bandwidth and the acoustic attenuation are eliminated. 

 

Mathematically, the acoustic spectrum measured at wavelength λ  of the received PA 

signal can be written, based on the linearity assumption, as [47] 

( , ) ( ) ( , ) ( ) ( )S F O a Hω λ λ ω λ ω ω= , (2.1) 

where ω  is the acoustic angular frequency and λ  is the optical wavelength. ( )F λ  is the 

local optical fluence. ( , )O ω λ  is the ‘real’ object spectrum measured with unit fluence, 

which is related to the target object’s shape, size, optical properties, and fluence incident 

directions. ( )a ω  is the acoustic attenuation, which is related to the acoustic properties 

of the tissue that lies between the target objects and the detector. ( )H ω  is the system 
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transfer function of the ultrasonic transducer, which is the Fourier transform of the PA 

signal from an ideal point absorber measured with this system. The last two terms 

remain unchanged when samples are measured with the same system under the same 

condition, and therefore are usually cancellable. Here the same condition means the 

acoustic properties of the tissue between the sample and the detectors are the same. An 

obvious example is where various optical wavelengths are used to excite one blood 

vessel. Therefore, simply dividing the PA acoustic spectrum measured at one optical 

wavelength by the spectrum measured at another wavelength, we can eliminate the 

system dependent effects and the acoustic attenuation effect:  

1 1 1 1 1

2 2 2 2 2

( , ) ( ) ( , ) ( ) ( ) ( ) ( , )
( , ) ( ) ( , ) ( ) ( ) ( ) ( , )

S F O a H F O
S F O a H F O
ω λ λ ω λ ω ω λ ω λ
ω λ λ ω λ ω ω λ ω λ

= = . (2.2) 

The absolute values of 1( )aμ λ  and 2( )aμ λ  as well as the ratio of 1( )F λ  to 2( )F λ are 

derived by fitting the ratio of the spectra. As such, the absolute value of aμ  can be 

quantified with this method even though ( )F λ  varies with the optical wavelength. By 

contrast, previous methods [4, 12, 14, 15, 48, 49] can quantify only the relative value of 

aμ . 

 

With the knowledge of 1( )aμ λ  and 2( )aμ λ , sO2 levels are calculated [7] by solving the 

following equation for multiple values of λ : 

2HbR HbO 2( , ) ( )[HbR]( ) ( )[HbO ]( )a r r rμ λ ε λ ε λ= + , (2.3) 

where HbR ( )ε λ  and 
2HbO ( )ε λ  are the known molar extinction coefficients (m–1M–1) of 

deoxyhemoglobin HbR and oxyhemoglobin HbO2 at wavelength λ . 

 

2.2 Quantification in the Optical Ballistic 

Regime 
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2.2.1 Quantification Model 

 

As the first feasibility study, we validated this idea using one form of PA imaging, 

optical resolution photoacoustic microscopy (OR-PAM) [50], where the object 

spectrum ( , )O ω λ  can be relatively easily modeled. 

 

 
 

Figure 2.1 Schematic of the OR-PAM system and experimental setup. (a) A dye 

laser pumped by a Nd:YLF laser is used as the irradiation source. The laser beam from 

the dye laser is spatially filtered by a pinhole and then focused by an objective lens. 

Ultrasonic focusing is achieved through a plano-concave lens. The optical objective lens 

and 50 MHz ultrasonic transducer are confocally configured. Volumetric images are 

generated through a combination of time-resolved detection of the PA waves with a 

two-dimensional raster scanning in the transverse plane. (b) The optical focus is much 

smaller than the targeted blood vessel, whose top surface within the optical focal 

diameter can therefore be approximated as a plane. The optical fluence within the blood 

vessel decays exponentially with depth at a rate of the optical absorption coefficient. 

 

In OR-PAM, PA A-scan signals are acquired through time-resolved ultrasonic 

detection, and three-dimensional images were formed by raster scanning the ultrasonic 

transducer along the transverse plane [Fig. 2.1(a)]. The axial resolution of the system 

depended on the ultrasonic transducer bandwidth (centered at 50 MHz with 80% 

bandwidth), while the lateral resolution relied on optical focusing, which can reach the 
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theoretical optical diffraction limit. For the system we used, the axial and lateral 

resolutions were quantified to be 15 μm and 5 μm, respectively. Therefore, the surface 

of blood vessels with >30 μm diameter can be roughly treated as a flat surface. In this 

case, the acoustic spectrum of the generated PA signal is only related to the optical 

penetration depth. If we use 0F  to denote the incident fluence on the surface of the 

blood vessel, the fluence inside the blood vessel obeys Beer’s law and can be written as 

0( ) exp( )aF z F zμ= −  [Fig. 2.1(b)]. Here the reduced scattering coefficient is neglected, 

since 'sμ  is much smaller than aμ  in blood in the optical spectral region typically used. 

 

The PA signal generated by the object 

( , ) exp[ ( ) ]a aO t ctλ μ μ λ= − , (2.4) 

where c  is the speed of sound in the biological tissue. Fourier transformation of Eq. 

(2.4) leads to 

( )2 2

1( , )
/ a

O
c

ω λ
ω μ

=
+

. (2.5) 

If the PA signals of the blood vessel are measured at two optical wavelengths, the ratio 

of the spectra of the PA signals can be written as 

[ ]
[ ]

2 2
1 21 1 1

2 22 2 2 2 1

( ) / ( )( , ) ( ) ( , ) ( ) ( )
( , ) ( ) ( , ) ( ) ( ) ( ) / ( )

a

a

F cS F O H a
S F O H a F c

λ ω μ λω λ λ ω λ ω ω
ω λ λ ω λ ω ω λ ω μ λ

+
= =

+
. (2.6) 

By fitting this ratio we can derive the absolute values of 1( )aμ λ , 2( )aμ λ , and 

1 2( ) / ( )F Fλ λ . 

 

2.2.2 Phantom Validations 

 

In a phantom study, the original black ink was diluted with water in six ratios ranging 

from 1:1 to 1:6. The original and diluted ink samples were sequentially placed in a 

container, sealed with plastic membrane, and then the container was placed in a water 
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tank. PA A-line signals were acquired from these samples, and the acoustic spectra of 

the PA signals are shown in Fig. 2.2(a). Compared with the spectrum of the PA signal 

from the original ink sample, the spectra of the PA signals from the diluted ink samples 

are “shifted” to lower frequencies. Light penetrated deeper in lower concentration ink 

samples, and the corresponding PA signals decay more slowly in the time domain. 

Therefore, the spectra contain more low-frequency components. 

 

 
 

Figure 2.2 Quantification of the optical absorption coefficients of ink phantoms. 

(a) Acoustic spectra of PA signals from original and diluted black ink samples. (b) Ratio 

of the acoustic spectrum amplitudes of PA signals from two samples and fitting with 

the theoretical formula. (c) Fitting result with 7 phantoms (without the covered layer) 

and 3 samples (with the covered layer). (d) The effect of acoustic attenuation was 

observed by covering one sample with ~1.5 mm layer of Agar gel mixed with 0.1% 

Intralipid and 1% black ink. 
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By dividing the measured spectra of any two ink samples frequency-by-frequency [Fig. 

2.2(b)], we can find the absorption coefficients of both samples by fitting the resultant 

ratio curve with Eq. (2.6). Because parts of the spectra (grey bands) are unreliable due to 

the limited bandwidth detection, they are not used for the fitting. By pairing the 

spectrum from the 1:1 diluted ink sample with the spectra from other six samples, we 

quantified the absorption coefficients of all seven samples. The quantified values and 

their theoretical predictions are plotted in Fig. 2.2(c). The error bars indicate the fitting 

standard deviations. 

 

To demonstrate that the recovered absorption coefficients are independent of acoustic 

attenuation and optical fluence, we covered three of the ink samples with an identical 

layer of optical phantom (~1.5 mm 2% Agar, 0.1% intralipid, 1% black ink). The 

spectra of the PA signals from one ink sample with and without this layer are shown in 

Fig. 2.2(d). The spectral profiles differ because of the acoustic attenuation, while the 

spectral magnitudes differ owing to the optical fluence attenuation. Since the acoustic 

properties of the layer added between the samples and the detector are the same for the 

three ink samples, the acoustic attenuation can be cancelled by taking the ratio of the 

acoustic spectra of PA signals from any two covered ink samples. The quantified 

absorption coefficients of these samples agree with the expected values as shown in Fig. 

2.2(c). 

 

2.2.3 In Vivo Studies 

 

In an in vivo experiment, we imaged a 1-mm-by-1-mm region in a nude mouse ear with 

two optical wavelengths (561 nm and 570 nm). Figure 3 (a) shows the PA maximum 

amplitude projection (MAP) image acquired with an optical wavelength of 570 nm, an 

oxygen insensitive absorption wavelength of hemoglobin. Each point in the MAP image 

records the maximum value of a Hilbert transformed PA A-scan. Two vessels marked 

with V1 and V2 in Fig. 2.3 (a) were selected for quantitative study. The A-scans acquired 

within these two vessels were properly aligned and then averaged. For each vessel, we 
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divide point by point the acoustic spectrum measured at 561 nm by the acoustic 

spectrum measured at 570 nm, and the absorption coefficients are acquired by fitting 

the ratio with Eq. (2.6) [Fig. 2.3 (b)]. The [HbT], [HbO2], and [HbR], together with the 

sO2 values were calculated based on the quantified optical absorption coefficients at the 

two optical wavelengths (Table 2.1). According to the sO2 values, V1 and V2 were 

identified to be an arteriole-venule pair. The incident fluence ratio at the two optical 

wavelengths 1 2( ) / ( )F Fλ λ  was also quantified for both vessels. In this special case, the 

two vessels are embedded at a similar depth, and the optical and the acoustic properties 

of the overlying tissue are comparable. Here, the quantified fluence ratios turned out to 

be the same for V1 and V2. If we ignore the wavelength-dependent fluence variations by 

simply assuming 1 2( ) / ( ) 1F Fλ λ = , the quantified sO2 values become inaccurate by 

approximately 8% and 11% for the artery and the vein, respectively (Table 2.1). 

 

 

 

Figure 2.3 Structural imaging and functional analysis with OR-PAM in a nude 

mouse. (a) Structural image acquired at 570 nm. (b) Ratios of the acoustic spectrum 

amplitudes of PA signals measured with two optical wavelengths (570 nm and 561 nm) 

from arteries and veins. 
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Table 2.1 Quantified properties of blood vessels 

 
 

Moreover, because ( )H ω  is dependent on only the imaging system and ( )a ω  is also 

roughly the same for both vessels, the optical absorption coefficients of both vessels 

can be quantified with a single optical wavelength (561 nm) measurement. We divide the 

acoustic spectrum measured from V1 by the acoustic spectrum measured from V2 at 561 

nm point by point and fit the ratio for the aμ  values of both blood vessels [Fig. 2.3 (b)]. 

The fitted aμ  values are 143±4 cm–1 and 159±4 cm–1 for V1 and V2, which agree with 

the values in Table 2.1. 

 

2.2.4 Discussions 

 

To ensure the accuracy of this method, it is important to choose an ultrasonic 

transducer with an appropriate bandwidth. According to the sensitivity analysis (see 

Supplementary material), this method can achieve better sensitivity at higher acoustic 

frequencies. However, other factors need to be considered as well. First, the acoustic 

spectrum of the PA signal is related to the light penetration depth. Therefore, the 

central frequency of the transducer needs to match the penetration depth to achieve the 

best signal to noise ratio (SNR). Moreover, SNR is usually low at high acoustic 

frequencies due to acoustic attenuation. ( , )O ω λ , ( )H ω  and ( )a ω  are all band-limited, 

and ( )H ω  should be chosen to match ( , )O ω λ  and ( )a ω . Second, the PA method is 

usually sensitive to boundaries of absorbing objects [51], and this method uses only the 

top boundaries of the blood vessels. Therefore, it requires that the top and bottom 

boundaries of the blood vessel to be resolvable. Accordingly, the blood vessel diameter 

must be greater than two times of the axial resolution, which is closely related to the 
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transducer bandwidth. This requirement usually can be relaxed, because of the limited 

light penetration depth in blood (~30 μm in Q-band). The axial resolution of our OR-

PAM is 15 μm, and thus this method can work well when imaging blood vessels with 

diameters greater than 30 μm with our system. 

 

In summary, we demonstrated the feasibility of using the acoustic spectrum information 

to quantify optical absorption in vivo with OR-PAM. To the best of our knowledge, this 

is the first time acoustic spectrum information was used for PA quantitative study. This 

method is self-calibrating and thus is insensitive to absolute optical fluence. By taking 

advantage of the cancellation effect, the acoustic attenuation and system limited 

bandwidth can be corrected with multi-wavelength measurements. Moreover, this 

method can quantify the absolute value of aμ , which can be used to quantify 

hemoglobin concentrations in absolute units. 

 

2.3 Quantification in the Optical Diffusive 

Regime 

 

2.3.1 Quantification Model 

We applied this idea to acoustic-resolution PA microscopy (AR-PAM) [10]. Figure 

2.4(a) shows the AR-PAM system. A dye laser pumped by a Nd:YLF laser served as the 

irradiation source. At each location, a focused ultrasonic transducer was employed to 

record the PA wave, which was converted into a one-dimensional (1D) depth-resolved 

image (A-scan or A-line). A three-dimensional (3D) image was achieved by raster 

scanning in the x–y plane. The lateral resolution of the AR-PAM, determined by the 

focal diameter of the ultrasonic transducer, was ~45 µm for the 50 MHz transducer. 
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Figure 2.4 Schematic of the AR-PAM system and phantom experiment setups. 

(a) The schematic of the AR-PAM system. A dye laser pumped by a Nd:YLF laser was 

the irradiation source. The laser beam from the dye laser was delivered through an 

optical fiber and passes through a conical lens to provide a ring-shaped area of 

illumination. A focused ultrasonic transducer was employed to detect PA waves. (b) Use 

AR-PAM to image a blood-filled tube inserted 1.5 mm deep in the optical scattering 

medium. 

 

With AR-PAM, however, several assumptions can simplify the modeling of ( , )O t λ . 

First, the surface of blood vessels with sufficiently large diameters (e.g., greater than 300 

μm for the 45 μm lateral resolution) may be treated approximately as a flat surface 

locally. Second, when imaging blood vessels at depths greater than one transport mean 

free path ( 'tl ~1 mm in biological tissue), we can assume that the light is completely 

diffused and can be considered as isotropic point sources [Fig. 2.4(b)]. The fluence in 

the blood vessel can be expressed as 

[ ]( , ) ( ) exp ( )
2a
dF z F rλ λ μ λ
πΩ

Ω
= −∫ , (2.7) 

where z  is the depth of the target layer in the blood vessel, r  is the distance between 

the isotropic point source and one point in the layer at the depth of z , and ( )F λ  is the 

incident fluence on the blood vessel. sind d dθ θ ϕΩ =  is the unit solid angle in the 

spherical coordinates, and the integration ranges of the polar angle θ  and the azimuthal 
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angle ϕ  are [ ]0, / 2π  and [ ]0, 2π , respectively. Here, '( )sμ λ  is much less than ( )aμ λ , 

because the anisotropy factor ( g ) is so close to 1 in blood in the optical spectral region 

we used (around 585 nm) [52]; therefore it is neglected. Equation (2.7) can be further 

simplified to 

[ ]
1

0
( , ) ( ) exp ( ) /aF z F z u duλ λ μ λ= −∫ , (2.8) 

where u  is a dimensionless scaling factor defined by /u z r= . Equation (2.8) was 

validated by Monte Carlo simulations [53] (see Appendix B). The original PA signal 

from the target object induced by unit incident optical fluence is expressed as 

[ ]
1

0
( , ) ( ) ( , ) / ( ) ( ) exp ( ) /a i a aO t F z F ct u duλ μ λ λ λ μ λ μ λ= Γ = Γ −∫ , 

where z  is converted to time t  through the speed of sound c : /t z c= . 

Similar to the case of OR-PAM [47], the effects of both the system-dependent 

response ( )H ω  and the tissue related acoustic attenuation ( )a ω  are canceled by 

dividing, at each acoustic frequency, the acoustic spectra measured at two optical 

wavelengths as  

1 1 1 1 1

2 2 2 2 2

( , ) ( ) ( , ) ( ) ( ) ( ) ( , )
( , ) ( ) ( , ) ( ) ( ) ( ) ( , )

S F O a H F O
S F O a H F O
ω λ λ ω λ ω ω λ ω λ
ω λ λ ω λ ω ω λ ω λ

= = . (2.9) 

Fitting the above spectral ratio yields the absolute values of 1( )aμ λ  and 2( )aμ λ  as well 

as the ratio of 1( )F λ  to 2( )F λ . 

 

2.3.2 Phantom Validations 

 

In a phantom study, we used AR-PAM to image a fully oxygenated bovine blood 

phantom with four wavelengths (560, 565, 570, and 575 nm), where the absorption 

coefficients monochromatically increase [ (560) (565) (570) (575)a a a aμ μ μ μ< < < ]. 

The blood phantom was in a 1 mm diameter tube, which was located 1.5 mm deep in 

the optical scattering medium (10% gelatin, 1% intralipid, 5% CuCl2) and parallel to its 

surface [Fig. 2.4(b)]. 
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Figure 2.5 Quantification of the optical absorption coefficients of oxygenated 

bovine blood phantom. (a) PA time domain A-scan signals of the oxygenated-bovine-

blood-filled tube phantom buried in the scattering medium. (b) Acoustic spectra of the 

PA A-scan signals. (c) Acoustic spectral ratios and fittings with the theoretical formula. 

(d) Comparison of the optical absorption coefficients quantified with the acoustic 

spectral method and measured by spectrophotometry. (e) Relative incident fluence 

quantified with the acoustic spectral method. (f) Comparison of the relative optical 

absorption coefficients quantified from the PA signal amplitudes with and without the 

fluence compensation and measured by spectrophotometry. Amp.: the amplitude 

method with and without the fluence compensation. 

 

In the phantom study, PA A-line signals at four wavelengths were acquired from the 

samples [Fig. 2.5(a)] and were normalized to the peak of the PA signal measured at 570 

nm. The corresponding acoustic spectra of the PA signals [ ( , )S ω λ ] were calculated 

[Fig. 2.5(b)]. Light penetrated deeper at longer wavelengths, and the corresponding PA 

signals decayed more slowly in the time domain. As the wavelengths increased, the 

fluence decayed faster in the tube, and the produced PA signals were sharper with time. 



 

  19 
 

Therefore, the acoustic spectra acquired at longer optical wavelengths contained more 

high-frequency components. By dividing the measured spectra from any two 

wavelengths, frequency by frequency [Fig. 2.5(c)], we found the absorption coefficients 

at both wavelengths as well as the relative incident fluence by fitting the resultant 

spectral ratio curve. In comparison to the gold-standard—spectrophotometry, the 

acoustic spectral method quantified the absorption coefficients with relative errors of 

1%, 3%, 1.2%, and 1.5% at the optical wavelengths of 560, 565, 570, and 575 nm, 

respectively [Fig. 2.5(d)], where the error bars indicate the fitting standard errors. From 

the quantified incident fluence ratios at all the wavelength pairs, we obtained the relative 

incident fluence at each of the four wavelengths by normalizing to the maximum 

incident fluence at 570 nm [Fig. 2.5(e)]. Normalizing the PA signal amplitude at each 

wavelength by the corresponding relative incident fluence yields the relative optical 

absorption coefficient [Fig. 2.5(f)]. This normalization process is referred to as fluence 

compensation, because it calibrates the wavelength-dependent fluence attenuation. In 

contrast, quantifying the absorption coefficients from the PA signal amplitudes without 

the fluence compensation is inaccurate [Fig. 2.5(f)]. 

 

2.3.3 In Vivo Studies 

 

In an in vivo experiment, we imaged an 8 mm by 8 mm region of the back of a nude 

mouse with two optical wavelengths (571 nm and 564 nm). Next, an optical phantom 

layer (~1.5 mm of 10% gelatin, 1% intralipid, 5% CuCl2) was used to cover the back of 

the nude mouse, and the same region was imaged again. 

 

Figures 2.6(a) and 2.6(b) show the PA maximum amplitude projection (MAP) images, in 

which each point corresponds to the maximum value of a Hilbert transformed PA A-

scan. Since these blood vessels are shallow [~150 μm deep, as shown in Fig. 2.6(c)], the 

effect of wavelength-dependent fluence attenuation is negligible. We obtained the sO2 

and [HbT] control images [Figs. 2.6(d) and 2.6(e)] based on Eq. (2.3) from the PA signal 

amplitudes. From the sO2 image, the arteries and the veins can be clearly identified [Fig. 
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2.6(d)]. Figures 2.6(f) and 2.6(g) show the PA MAP images of the same region with the 

optical phantom layer, where the blood vessels are ~1.6 mm deep [Fig. 2.6(h)]. In this 

case, if we ignored the wavelength-dependent fluence variations induced by the optical 

phantom layer, the sO2 quantified from the amplitudes of the PA signals [Fig. 2.6(i)] 

became inaccurate by approximately 32%. The average quantification error of the 

relative [HbT] [Fig. 2.6(j)], however, was only 5%, because the blood vessels in the FOV 

was located approximately at the same depth [Fig. 2.6(h)]; thus, the fluence attenuation 

effect was eliminated by the normalization process. Nevertheless, the amplitude method 

provides only relative quantifications. 

 

Since the light was completely diffused by the optical phantom layer and the blood 

vessel diameters were much larger than the imaging resolution, the assumptions in our 

acoustic spectral method were valid. For each scanning position, we divided, frequency 

by frequency, the acoustic spectrum measured at 564 nm by the acoustic spectrum 

measured at 571 nm. The optical absorption coefficients [Figs. 2.6(k) and 2.6(l)] as well 

as the relative incident fluence [Fig. 2.6(m)] were acquired by fitting the spectral ratios 

defined by Eq. (2.9). Then the sO2 and [HbT] images [Figs. 2.6(n) and 2.6(o)] were 

quantified from the absolute optical absorption coefficients. By comparing the 

quantification results to the control images, we found the acoustic spectral method 

achieved average errors of 7% and 6% in quantifying sO2 and [HbT], respectively. Here, 

we normalized [HbT] by the maximum to make a fair comparison. Normalizing the 

amplitudes of the MAP PA images at two wavelengths by the corresponding relative 

incident fluences yields the relative optical absorption coefficients. Specifically, the PA 

MAP image at 571 nm [Fig. 2.6(f)] is divided by 1, while the PA MAP image at 564 nm 

[Fig. 2.6(g)] is divided, point by point, by the relative incident fluence [Fig. 2.6(m)]. 

After the fluence compensation, the sO2 [Fig. 2.6(p)] and the relative [HbT] [Fig. 2.6(q)] 

were quantified from the calibrated PA amplitudes with average errors of 9% and 5%. 
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Figure 2.6 Quantification of the sO2 and [HbT] of blood vessels in the back of a 

nude mouse in vivo. MAP image acquired at (a) 571 nm and (b) 564 nm. (c) Depth-

encoded image of blood vessels.  (d) Control images of sO2 and (e) [HbT]. MAP image 

acquired with an optical phantom layer at (f) 571 nm and (g) 564 nm. (h) Depth-
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encoded image of blood vessels below the optical phantom layer. (i) sO2 and (j) [HbT] 

quantified from the amplitude method. Absolute optical absorption coefficients at (k) 

571 nm and (l) 564 nm and (m) relative incident fluence quantified with the acoustic 

spectral method. (n) sO2 and (o) [HbT] quantified from the absolute optical absorption 

coefficients. (p) sO2 and (q) [HbT] quantified from amplitude method with the fluence 

compensation. Amp.: the amplitude method with and without the fluence 

compensation. A.S.: the acoustic spectral method. Ctrl.: the control image. 

 

2.3.4 Discussion 

 

We have proposed a method to quantify [HbT] and sO2 in vivo using acoustic spectra of 

PA signals from multiple optical wavelength measurements. The optical and acoustic 

effects that affect the quantification accuracy have been eliminated. Using AR-PAM, we 

first demonstrated this method with phantom experiments and then quantified the 

[HbT] and sO2 in a live mouse. The acoustic spectral method provides greater 

quantification accuracy than the conventional amplitude method in the optical diffusive 

regime. This method can potentially be applied to all other reflection- or transmission-

mode PAT setups. 
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Chapter 3 

 

Compressed Sensing in PAT 

 

3.1 Under-sampling in PAT 

 

Reliable image reconstruction with sparse sampling of the detecting aperture is 

desirable. In practical PAT systems, it is recommended [27, 36] to set the discrete spatial 

sampling period to be two to five times smaller than the sensing aperture of the 

detector. For a scanning PAT system, it may require hundreds or even thousands of 

scanning steps to acquire an image, depending on the sizes of both the detector and the 

detecting aperture. Such scanning usually takes several minutes to complete. To reach 

real-time imaging, PAT is implemented with an array of ultrasonic transducers, where all 

or groups of the array elements can detect photoacoustic signals simultaneously. 

However, the data acquisition speed is still limited by the number of parallel data 

acquisition (DAQ) channels, and employing a large number of DAQ channels greatly 

increases the system cost. For example, for a fast 512-element ring array PAT system 

with a 64 channel data acquisition module [37], it takes 8 laser shots to collect data from 

all 512 elements. For direct 3-D reconstruction PAT applications [38, 39], the data from 

a 2-D ultrasonic array is usually an extremely sparse sampling of the detecting aperture. 

Moreover, channel crosstalk is also related to the space between neighboring elements 

(kerf), and an extensive spatial sampling may increase the crosstalk. 
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Imaging an object in PAT can be understood as sensing the object in a certain domain. 

For example, with the ‘Fourier-shell identity’ [54], PAT can also be seen as detecting the 

spatial frequencies of the object (sensing in the Fourier domain). Sparse spatial sampling 

of the detection aperture implies that the spatial frequencies cannot be exactly 

determined. Traditional backprojection (BP) reconstruction methods [55] reconstructs 

the image of “minimal energy” under the observation constraints. An improved 

reconstruction algorithm should be able to “guess” these undetermined frequency 

components. However, interpolation in the Fourier domain is a critical issue, and 

usually creates artifacts in reconstructed images [56]. The recently developed 

compressed sensing (CS) theory [57] enables us to recover these unobserved 

components under certain conditions. The theory has been successfully applied in MRI 

[58], where MRI images were able to be reconstructed from significantly undersampled 

K-space measurements. Paper [59] introduced the CS theory into the field of PAT, and 

the idea was tested in phantoms using a circular scanning PAT system. In this chapter, 

we improve the speed of the reconstruction algorithm by adopting a non-linear 

conjugate gradient descent method, and demonstrate the algorithm with both phantom 

and animal data, using various detecting geometries.  

 

3.2 Application of the Compressed Sensing 

Theory in PAT 

 

3.2.1 The Forward and the Inverse Problems in PAT 

 

In PAT, pulsed laser irradiation creates pressure rises as a result of thermoelastic 

expansion. These initial pressure rises propagate as photoacoustic waves, which can be 

detected by ultrasonic sensors. Based on the pressure measurements ( , )p r t  at the 

detecting aperture, PAT reconstructs the image of the initial pressure rise distribution 
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0 ( )p r . The forward and inverse problems in PAT express the reciprocal relationship 

between 0 ( )p r  and ( , )p r t . By solving the wave equation, the forward problem, which 

predicts ( , )p r t  by 0 ( )p r , can be derived as (assuming a delta pulse heating): 

( )03

'1( , ) ' '
4

r r
p r t dr p r t

t c t c
δ

π
⎡ ⎤⎛ − ⎞∂

= −⎢ ⎥⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎣ ⎦
∫ , (3.1) 

where c  is the speed of ultrasound and r  is the position of the ultrasonic sensor [6]. 

Sometimes the velocity potential 
0

( , ) ( , ') '
t

r t p r t dtϕ = ∫  is employed to simplify Eq. 

(3.1): 

( )03

'1( , ) ' '
4

r r
r t dr p r t

c t c
ϕ δ

π
⎛ − ⎞

= −⎜ ⎟
⎝ ⎠

∫ . 

The analytical inversion of Eq. (3.1) describes the inverse problem, which reconstructs 

0 ( )p r  with ( , )p r t :  

[ ]
00

0 0 0 0 0( ) 2 ( , ) 2 ( , ) / /t r rS
p r p r t t p r t t d= −= − ∂ ∂ Ω Ω∫ , (3.2) 

where t ct= , 0S is the detecting aperture, and 0 0/dΩ Ω  is the solid-angle weighting 

factor. 

 

To numerically model the forward and inverse problems, we need to properly discretize 

Eqs. (3.1) and (3.2). We use a vector x  to represent 0 ( )p r , where each element of x  is 

the average value of initial pressure per unit volume. The size of x  ( x y zN N N× × ) 

depends on the field of view (FOV) and the desired spatial resolution of the 

reconstructed image. We use a vector y  to denote the velocity potential ( , )r tϕ  

measured by all elements of the sensor array as a function of time. The size of y  is the 

number of detecting positions ( L ) times the number of temporal samples at each 

position ( M ). Then, the forward problem can be described as y x= Φ , where matrix 

Φ  is the projection matrix. Similarly, the inverse problem can be written as 1x y−= Φ , 

where 1−Φ  represents the inverse process and x  is the reconstructed image. 
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Φ  and 1−Φ  are usually extremely large matrices (each containing x y zN N N L M× × × ×  

data points), even for 2-D reconstruction problems. For example, when reconstructing 

a 256 256×  image with measurements from 512 detecting positions, where each 

position has 1024 time points, both Φ  and 1−Φ  contain 103.436 10×  data points (~256 

GB if each point is expressed in double-precision), which makes direct matrix 

operations computationally impractical. Paper [60] tried to solve this problem by saving 

only non-zero elements of metrics Φ  and 1−Φ . For each detecting element i  
( 1,2i L= ), the forward and inverse operations are performed using a matrix of the 

same size as x . Each element in this matrix stores an index of the temporal sample 

( 1, 2k M= ) of measurement i , and this index indicates where the corresponding 

element of x  should be projected. As a result, the storage space for both the forward 

and inverse operations for all elements is reduced to x y zN N N L× × ×  (~256 MB for 

the above example). To fully take advantage of parallel computing capability, the 

responses of all the elements can be calculated simultaneously. 

 

3.2.2 Sparsity and Incoherence 

 

If the measurement is incomplete, matrix Φ  is ill-conditioned, and 1−Φ  is obviously not 

an exact inversion of Φ . Intuitively, an incomplete dataset usually leads to uncertainties 

in the recovery of the signals. In the case of PAT reconstruction with insufficient 

measurements, the BP method usually generates streaking artifacts or grating lobes. 

However, these uncertainties can be eliminated by incorporating prior information, such 

as sparsity constraints. The CS theory was rigorously formulated to reconstruct images 

from incomplete datasets. To make this possible, the CS theory relies on two principles: 

sparsity, which pertains to the object of interest, and incoherence, which pertains to the 

sensing modality. Moreover, a non-linear reconstruction is used to enforce both sparsity 

of the image representation and consistency with the acquired data.  
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Unlike ultrasound imaging and all other coherent imaging technologies, PAT is devoid 

of speckle artifacts and sensitive to boundaries because of its optical absorption contrast 

[51]. Therefore, computing the Finite Difference (FD) of PAT images in the spatial 

domain sometimes directly results in a sparse representation. When imaging objects 

with rich absorbing structures such as blood vessels in the mouse brain cortex, however, 

PAT images may not be sparse in the spatial domain. In these cases, we need to project 

the images onto an appropriate basis set, such as the wavelet basis. Mathematically 

speaking, if we use a vector nx R∈  to represent an n -pixel image and Ψ  to denote the 

wavelet basis set, then x  can be expanded as 
1

n

i i
i

x aψ
=

=∑ , where ,i ia x ψ=  is the 

coefficient sequence of x . Even when most of the image pixels have nonzero values, 

the wavelet coefficients may provide a concise representation of the original image: 

most coefficients are small, and the relatively few large coefficients capture most of the 

information. The speckle-free nature [51] of PAT images further reduces the number of 

significant transform coefficients. 

 

Since the object x  can be visually losslessly reconstructed with only a few large 

transform coefficients, the problem of sensing x  is equivalent to capturing these large 

coefficients in the representation domain Ψ . The forward problem of PAT can be seen 

as projecting the object x  to the sensing basis set Φ , and the measurements are the 

resulting coefficients. The CS theory requires the two basis sets Ψ  and Φ  to be 

incoherent, i.e., the sensing waveforms should have a dense representation in Ψ . In 

other words, the undersampled sensing basis Φ  should only induce incoherent artifacts 

that spread out and appear as random noise in Ψ . 

 

It is difficult to mathematically demonstrate that a physical system satisfies the 

incoherence condition. The Transform Point Spread Function (TPSF) [58, 59] was 

introduced to measure incoherence. Figure 3.1 illustrates the definition of TPSF in 

PAT. A wavelet transform is adopted as the sparsifying transform Ψ , and we assume 

that a circular detecting aperture is uniformly sampled by multiple ultrasonic point 
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sensors. The i th transform coefficient ie  in the domain Ψ  [Fig. 3.1(a)] is transformed 

to the image space [Fig. 3.1(b)] by the inverse discrete wavelet transform (IDWT). Then 

the measurements are generated with the forward operator Φ , and transformed back to 

the image space [Fig. 3.1(c)] with the inverse operator 1−Φ . Finally the reconstructed 

image is again transformed to the sparse domain Ψ  [Fig. 3.1(d)] with the forward 

discrete wavelet transform (FDWT). 

 

 
 

Figure 3.1 Illustration of the wavelet TPSF.  (a) A wavelet coefficient of unit 

intensity; (b) IDWT of (a) in the image domain; (c) Sensing (b) with 16 ultrasonic 

sensors and reconstructed with the BP method; (d) FDWT of (c). 

 

TPSF can be mathematically described as * 1 *( , ) j iTPSF i j e e−= ΨΦ ΦΨ , and it measures 

the leakage of energy away from the i th coefficient to other coefficients. The CS theory 

requires us to properly choose Φ  and Ψ  so that these interferences can be minimized 
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and spread out in Ψ . Readers are referred to paper [59] for a quantitative comparison 

of the TPSF maps for various Ψ  in PAT. 

 

3.2.3 Reconstruction Method 

 

If it satisfies the above two conditions, a sparse signal can be accurately recovered from 

highly incomplete datasets by solving a non-linear convex optimization problem. We 

now describe in more detail the CS reconstruction method for PAT. In the CS theory, 

the reconstruction of image x  is obtained by solving the following constrained 

optimization problem: 

1 2
min  s.t. 

x
x x y εΨ Φ − < . (3.3) 

Here Ψ  and Φ  are defined as above, y  is the measured data, and ε  is the parameter 

that controls the fidelity of the reconstruction to y . The parameter ε  is usually set 

based on the expected noise level. The object function in Eq. (3.3) is the 1l  norm 

(defined as 
1 ix x=∑ ). The 1l  norm is used here instead of the 2l  norm (defined as 

2

2 ix x= ∑ ), because the 2l  norm penalizes large coefficients heavily, and leads to 

non-sparsity. In the 1l  norm, many small coefficients tend to carry a much larger penalty 

than a few large coefficients, therefore small coefficients are suppressed and solutions 

are often sparse. In Eq. (3.3), minimizing the 1l  norm of xΨ  promotes sparsity, and the 

constraint enforces data consistency. 

 

The algorithm is implemented with a non-linear conjugate gradient descent method 

[61], as detailed in the Appendix C. On a laptop with a dual-core 2-GHz CPU and 3-GB 

memory, the calculations usually take less than 10 minutes using Matlab 2008a. 
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3.3 Results and Discussions 

 

We first demonstrate the CS method using a tissue mimicking phantom experiment. 

Tissue phantoms were imaged by scanning a virtual point detector in a setup similar to 

that of [62]. The PA source contained three black human hair crosses glued on top of 

optical fibers, with an interval between the hair crosses of about 10 mm. Laser pulses 

with a repetition rate of 10 Hz were diverged by a ground glass to achieve a relatively 

uniform illumination. The virtual point detectors evenly scanned the object along a 

horizontal circle, stopping at 240 points, and the signals were averaged over 20 times at 

each stop. The total data acquisition time was 8 minutes. 

 

Figure 3.2 shows the reconstruction results with the BP [Figs. 3.2(a)–3.2(d)], the CS 

[Figs. 3.2(e)–3.2(h)], and the traditional iterative [60] (IR) [Figs. 3.2(i)–3.2(l)] methods, 

with 240, 120, 80, and 60 tomographic angles. The images are reconstructed with a 

FOV of 30 mm×15 mm. We can observe that the CS method is clearly superior to the 

BP and the IR methods. This can be shown by extracting and comparing lines from the 

reconstructed images [Fig. 3.2(m)]. The interference level has been reduced significantly 

with the CS reconstruction. Moreover, as predicted by the theory, the CS scheme is 

robust to inaccurate measurements, so the noise level has also been suppressed. We 

took Fig. 3.2(e) as the gold standard, and calculated the mean square errors (MSE) of all 

other images from the standard, as shown in Fig. 3.2(n). Using the CS reconstruction 

method, we improved the data acquisition time in the circular scanning geometry by 

fourfold. 
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Figure 3.2 Tissue phantom imaging with a virtual point detector. (a)–(d) Images 

reconstructed using the BP method with 240, 120, 80, and 60 tomographic angles; (e)–

(h) Images reconstructed using the CS method with 240, 120, 80, and 60 tomographic 

angles; (i)–(l) Images reconstructed using the traditional iterative reconstruction method 

with 240, 120, 80, and 60 tomographic angles; (m) Lines extracted from (a), (d), (h), and 

(l); (n) Comparison of the mean square errors of the three reconstruction methods. 

 

The first in vivo experiment was based on a custom designed 512-element photoacoustic 

tomography array system [37]. The 5 MHz piezocomposite transducer array was formed 

into a complete circular aperture. With a 64-channel data acquisition module, the system 

could provide full tomographic imaging at up to 8 frames/second. We used this system 

to image mouse cortical blood vessels.  
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Figure 3.3 In vivo imaging of the mouse cortex with a circular ultrasonic array. 

(a) – (d) Images reconstructed using the BP method with 512, 256, 171, and 128 

detecting elements; (e) – (h) Images reconstructed using the CS method with 512, 256, 

171, and 128 detecting elements; (i) Images reconstructed using the CS method with 128 

detecting elements and with only the TV regularization; (j) Images reconstructed using 

the CS method with 128 detecting elements and with only the wavelet regularization. 

 

The images were reconstructed by the BP [Figs. 3.3(a)–3.3(d)] and the CS [Figs. 3.3(e)–

3.3(h)] algorithms, with 512, 256, 171, and 128 detecting elements, respectively. To 

achieve the optimal reconstruction results, we simultaneously used both the total 

variance (TV) and the wavelet as sparsifying transforms in the CS method. The 

undersampling artifacts appear in the outer region in Fig. 3.3(h), which is a natural result 

of the spatial variant PSF in PAT. Figure 3.3(i) shows the images reconstructed with 128 

tomographic angles using only the TV regularization, which promotes sharp boundary 

features and suppresses small variances. Figure 3.3(j) shows the images reconstructed 

using only the wavelet regularization, and the image is “blurred”. Since 128 tomographic 

angles does not contain enough information to capture all the important transform 
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coefficients, the reconstruction artifacts started to appear and some object features 

started to disappear. 

 

 
 

Figure 3.4 In vivo imaging of the upper dorsal region of a rat with a linear array. 

(a), (b) MAP images reconstructed using 48 elements with the BP and the CS methods, 

respectively; (c), (d) typical B-scans extracted from (a), (b); (e), (f) MAP images 

reconstructed using 16 elements with the BP and the CS methods, respectively; (g), (h) 

typical B-scans extracted from (e), (f). 
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The second in vivo experiment demonstrates the capability of the CS method with linear 

array detecting geometry. The 30 MHz broadband linear transducer array has a total of 

48 elements of dimensions 82 μm×2 mm with 100 μm pitch [63]. The linear array is 

focused in the elevation direction to perform cross-sectional (B-scan) imaging, and 3-D 

volume imaging can be achieved by scanning the probe in the third dimension. We 

scanned the upper dorsal region of a rat to image the subcutaneous vasculature, and 

acquired a total of 166 B-scan slices. Each B-scan image was reconstructed with both 

the BP and the CS methods, and the Hilbert transform was taken after the 

reconstruction. After processing all the B-scans, the maximum amplitude projection 

(MAP) images were acquired through projecting the B-scans along the axial direction. 

Figures 3.4(a) and 3.4(b) show MAP images reconstructed with the BP and the CS 

methods, respectively, and one typical B-scan was extracted as shown in Figs. 3.4(c) and 

3.4(d). We observed a significantly reduced noise level with the CS reconstruction. To 

further demonstrate the ability of CS method in reducing the undersampling artifacts, 

we aggressively reconstruct the image with only 16 elements (1/3 of total 48 elements) 

with both the BP and the CS method. The results are shown in Figs. 3.4(e)–3.4(h). With 

the BP reconstructions, the extremely sparse linear array generates significant grating 

lobe artifacts. By comparison, these under-sampling artifacts were effectively reduced 

with the CS reconstruction. 

 

Both the phantom and the in vivo results show that the CS method can effectively reduce 

the undersampling artifacts. By incorporating the CS theory in the PAT reconstruction, 

we can effectively reduce the system cost, or cover a larger FOV with the same number 

of measurements. Although the CS method is only demonstrated here with 2D 

problems, the generalization to 3D reconstructions is straight forward. 
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Chapter 4 

 

Speckles in PAT 

 

4.1 On the Speckle-free Nature of PAT 

 

Speckles have been considered ubiquitous in all scattering-based coherent imaging 

technologies. As a coherent imaging modality based on optical absorption, 

photoacoustic (PA) tomography (PAT) is generally devoid of speckles. In section 4.1, 

we explain the inherent mechanism that suppresses speckle in PAT [64]. 

 

Currently, PAT has been implemented in two major forms [11]. One is focused-

scanning PAT such as photoacoustic microscopy (PAM). One-dimensional depth-

resolved photoacoustic images (A-scans) are collected by scanning a focused ultrasonic 

transducer. A cross-sectional or volumetric image is composed by aligning multiple A-

scans at the corresponding lateral positions. The other form of implementation is 

photoacoustic computed tomography, in which an array of unfocused ultrasonic 

transducers is placed outside the object, and an image is formed using reconstruction 

algorithms. The following discussion in section 4.1 is based on a reflection-mode 

focused-scanning PAT system developed in our laboratory, where a 5 MHz focused 

ultrasonic transducer is employed [65]. However, the linearity of PAT guarantees that 

the principles discussed here hold for all PAT variants. 
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4.1.1 Intuitive Explanation 

 

When researchers analyze the speckle statistics in ultrasound imaging, a scattering 

structure is usually modeled as a collection of randomly distributed sub-resolution 

scatterers. The ultrasonic waves scattered from these scatterers interfere with each 

other, and speckles are formed. 

 

In PAT, an optically absorbing structure can be modeled as a collection of randomly 

distributed sub-resolution absorbers. The absorbers can vary in dimension widely, from 

hemoglobin molecules to red blood cells, as long as they are much smaller than the 

spatial resolution and are randomly distributed in the resolution cell. The axial 

resolution of the 5 MHz PAT system, limited by the transducer bandwidth, is ~144 µm. 

The lateral resolution, determined by the width of the focal spot, is ~560 µm. Because 

an average adult has ~5 million red blood cells (~7.4–9.4 µm in diameter and ~1.6–2.0 

µm in thickness) per microliter of blood, the ultrasonic transducer may receive 

photoacoustic waves from 4~5.8 10×  red blood cells within a resolution cell. The 

photoacoustic signals emitted from these absorbers interfere with each other. Curiously, 

investigators have noticed that photoacoustic methods, despite their coherent nature, 

produce images devoid of speckle artifacts. We found that this salient feature is a direct 

result of the absorption contrast in PAT.  

 

As the first explanation of the speckle-free nature of PAT, we compare a pulse-echo 

ultrasound imaging system with the 5 MHz reflection-mode PAT system. Both systems 

can be described by the same linear model. For a fair comparison without loss of 

generality, the same spatial-temporal system impulse response ( , )h r t  is assumed for 

both systems. In reality, ( , )h r t  in pulse-echo ultrasonography represents a round trip 

response, while ( , )h r t  in PAT represents only one way.  

 

Figure 4.1 shows that a focused ultrasonic transducer detects A-scan signals from a slab 

of tissue. The tissue slab is modeled as a collection of randomly distributed particles (red 
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dots), which can be either acoustic scatterers in ultrasound imaging or optical absorbers 

in PAT. For simplicity, we consider the particles as point targets because they are small 

relative to the spatial resolution. 

 

 
Figure 4.1 Comparison of pulse-echo ultrasound imaging and reflection-mode 

PAT. A focused ultrasonic transducer records the A-scan signal from a slab. ελ: a 

fraction of the central acoustic wavelength λ; c: speed of ultrasound. PA: Photoacoustic; 

US: Ultrasound. 

 

In the ultrasonic A-scan, the received signals from the individual scatterers may either 

maintain (red solid curves) or flip (blue dotted curves) the polarity of ( , )h r t , because 

the acoustic impedance of the scatterers may be either lower or higher than the 

surrounding medium. The photoacoustic A-scan from the absorbers of the same 

geometry is also plotted. Because all initial pressure rises are positive, all received 

photoacoustic waves uphold the polarity of ( , )h r t , which is the major difference 

between PAT and ultrasound imaging. The A-scan signals, plotted in green dashed lines, 

result from the interference among the signals from the individual particles. In the 

middle segment of the A-scan signals in both imaging modalities, we observe random 

fluctuations, because of the cancellation among the positive and negative parts of 
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( , )h r t . Further, the mean of the amplitudes of the fluctuations are zero because ( , )h r t  

does not contain a DC component. In the cases when very wideband acoustic sensors 

that can detect DC component are employed in PAT, we expect to see not only the 

boundary buildups, but also the baselines inside the object. Near both the front and 

back boundaries, however, prominent boundary signals are observed in the 

photoacoustic A-scan, because of the constructive interferences. As a result, the random 

fluctuations in the middle are suppressed by the boundary signals, which we found to be 

the dominant features in photoacoustic images. By contrast, the boundary signals in 

ultrasound images do not stand out because of the existence of both scattering 

polarities. Therefore, speckle appears ubiquitously in ultrasonic A-scans.  

 

4.1.2 Classic Speckle Theory Explanation 

 

As the second explanation, the classic speckle theory is invoked. As stated above, the 

fully developed speckle is formed by the interference of coherent waves with completely 

randomized phases. Two components contribute to the phase difference between 

waves: the initial phase and the phase delay. When profiling the central part of the 

structure in both photoacoustic and ultrasound imaging, we always receive acoustic 

waves from particles with completely randomized phases, which result from phase-delay 

variations. However, particles close to the boundaries send out waves that reach the 

transducer with approximately equal phase delays. Here, the initial phase plays a key 

role. As the initial photoacoustic pressure rises are always positive, the emitted 

photoacoustic waves add constructively to manifest the boundaries. By contrast, the 

scattered ultrasonic waves can take on both positive and negative initial phases. Hence, 

no boundary buildups are observed. 

 

However, speckles in scattering-based coherent imaging modalities are under-developed 

in some circumstances. For example, if mirror surfaces are imaged by optical coherence 

tomography, or smooth bone surfaces are imaged by ultrasonography, we observe a 

phenomenon referred to as ‘specular reflection’ [44]. Specular reflection is formed by 



 

  39 
 

constructive interference of coherent partial waves that have phases randomized only 

within [0, π] or less. For scattering-based coherent imaging, two conditions must be met 

to ensure specular reflection. First, all scatterers on the surface must have similar 

properties so that the polarity changes to the incident wave due to backscattering are the 

same. Second, the boundary roughness must be less than λ/4—with λ being the center 

wavelength—so that the phase-delay variations due to scatterer spatial distribution 

differences are within π. 

 

In fact, PAT suppresses speckles by building up prominent boundary, referred to as 

“specular emission” here, via a mechanism similar to that of specular reflection. First, 

because the initial PA pressure rise is always positive, the propagated PA wave from any 

finite-sized optical absorber starts with a positive pressure and ends with a negative 

pressure [66]. In addition, because most PAT systems are linear and shift-invariant, the 

changes to the polarities of these partial waves due to imaging systems are the same. As 

a result, these partial waves possess the same initial polarities. Therefore, PAT naturally 

satisfies the first condition for “specular reflection” except that “specular emission” is a 

more accurate description. Second, the optical absorbing targets in biological tissues, 

such as blood vessels, usually have smooth surfaces on the scale of the wavelengths of 

megahertz ultrasonic waves. Thus, the PA partial waves from most surface absorbers 

are generated within a region of λ/2 in thickness at the boundary of the absorbing 

target, yielding phase-delay variations within π. Consequently, the second condition for 

specular emission is also satisfied, and the constructive interference among the partial 

waves from individual absorbers leads to boundary buildups. By contrast, the PA partial 

waves generated from the interior of a sufficiently large absorbing target have phase-

delays randomized over a full range of 2π. Therefore, the second condition for specular 

emission is violated, and speckles are formed from the interior of the absorbing targets. 

 

The second condition for specular emission is violated in rare cases, which will be 

discussed in section 4.2. 
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4.1.3 Mathematical Explanation 

 

As the third explanation, we analyze the condition for building up boundaries in all 

coherent imaging modalities and compare the strengths of the boundaries and of the 

interior speckle in PAT quantitatively. Assume that a total of n  particles (absorber or 

scatterer) are statistically uniformly distributed at positions 1 2, nr r r . We use random 

process ( )ia t  to denote the particle impulse response, which accounts for the properties 

of a single particle. Because PAT is based on the optical absorption contrast, ( )ia t  

depends on the optical absorption, shape, and size of the absorber [67]. As an absorber 

quickly expands on laser excitation, a strong positive initial pressure is always generated. 

Consequently, the early part of ( )ia t  is always positive. In ultrasound imaging, as a 

typical scattering-based imaging modality, ( )ia t  is related to the acoustic properties 

(density and compressibility), shape, and size of the scatterer [68]. In reality, the shape 

of ( )ia t  is relatively random. The amplitude of an A-scan can be written as 

1
( ) ( ) ( , / )

n

i i iti
A t a t h r t r c

=

= ∗ −∑ , (4.1) 

where 
t
∗  denotes convolution in the time domain, and c  denotes the propagation 

velocity of the ultrasonic wave. When Eq. (4.1) is applied to ultrasound imaging, round 

trip delays and multiple scattering are neglected because they are not key factors in our 

discussions. The instantaneous power of an A-scan is 2( ) ( )P t A t= , and the ensemble 

average of ( )P t  becomes (see Appendix D)  

( )2
3 2

0 0( ) ( ) ( , / ) ( ) ( )i i j i jV t
i

P t a t h r t r c dr b t b tρ ρ
≠

= ∗ − +∫ , (4.2) 

where 3( ) ( ) ( , / )i i Vt
b t a t h r t r c dr= ∗ −∫ , ρ  is the particle density, V  is the structure 

volume, 
i
 is averaging over all n  particles, and 

i j≠
 is averaging over all particle 

pairs. 
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The first term in Eq. (4.2) is the sum of the powers of the waves generated from all 

particles. Therefore, it is called the uncorrelated contribution to the total power. It 

represents the power of the random fluctuations—speckle, which is shared in both 

imaging modalities. Speckle in ultrasound imaging has been widely used for tissue 

characterization. 

 

The second term in Eq. (4.2) is responsible for the prominent boundary features in 

photoacoustic images. Because this term represents the correlations among the particles, 

it is responsible for the correlated contribution to the total power. First, the correlated 

power appears only as boundary features, because 3( , / )
V

h r t r c dr−∫ is always zero 

inside the structure (see Appendix E). Second, the correlated power exists in 

photoacoustic images but usually disappears in ultrasound images. As stated above, 

( )ia t  in PAT always starts with a positive value, which produces strong correlations 

among the absorbers. After averaging over all particle pairs, the correlated power shows 

up as strong boundary features in PAT. In ultrasound imaging, however, the polarity of 

( )ia t  is relatively random. After averaging, the correlated power usually becomes 

negligible. 

 

Equation (4.2) can be further simplified by assuming the particles to be point targets. 

The photoacoustic wave from each point target excited by a delta laser pulse becomes 

( ) '( )i ia t a tδ= , where each ia  is a random variable with a positive mean [6]. In 

ultrasound imaging, researchers usually assume ( ) ( )i ia t a tδ= , where each ia  is a zero 

mean random variable because the scattered signal is due to fluctuations in acoustic 

properties relative to the mean [69, 70]. By substituting ( ) '( )i ia t a tδ=  or ( ) ( )i ia t a tδ=  

into Eq. (4.2), we have 

( ) ( ) ( )222 2 3 2 2 3( ) ( , / ) ( , / )C V V
P t C h r t r c dr C h r t r c drσ ρ ρ= + − + −∫ ∫ . (4.3) 

Here, C  and Cσ  are the mean and the standard deviation of the absorbing cross 

section of the unit optical absorber or the backscattering coefficient of the unit 
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scatterer, and ( , )h r t  is the spatiotemporal system impulse response. Since integral 

with '( )tδ  denotes differentiation with respect to time, we have ( , ) '( , )h r t h r t=  in 

PAT and ( , ) ( , )h r t h r t=  in ultrasound imaging. The unit optical absorber is 

characterized by the optical absorbing cross section, which quantifies its photon energy 

absorbing capability, as the amplitude of the PA wave (ultrasonic wave) is proportional 

to the optical energy deposition. In comparison, the unit scatterer is characterized by the 

backscattering coefficient, which represents the changes in both amplitudes and phases 

of the incident wave. For Rayleigh scatterers, the phase change to the backscattered 

wave is either 0 or π; therefore, the backscattering coefficient can be either positive or 

negative. The backscattering coefficient should not be confused with the scattering 

cross section, which indicates the scattering capability to the wave energy and is always 

positive. 

 

From Eq. (4.3), we can quantify the visibility of the interior speckle in PAT, which is 

defined as the ratio of the square root of the average speckle power to the magnitude of 

boundary features, which are composed of both uncorrelated and correlated powers. 

The uncorrelated power is proportional to ρ , while the correlated power is 

proportional to 2ρ . When ρ  is sufficiently large, the correlated power is much stronger 

than the uncorrelated power, and the speckle visibility in PAT is approximately inversely 

proportional to ρ . In this case, the correlated power dominates the photoacoustic 

image.  

 

We should note that Eq. (4.3) explains the differences in contrast mechanisms for PAT 

and US. In PAT, the average absorption cross section is always greater than zero 

( 0C > ), and the correlated power dominates the uncorrelated power for large ρ . As a 

consequence, the PA signal amplitude is approximately proportional to the optical 

absorption coefficient a Cμ ρ=  of the absorbing target. Similarly, when imaging a soft-

tissue–bone interface with US from the soft-tissue side, the average backscattering 

coefficient is always positive ( 0C > ) and the correlated power dominates. When 
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imaging soft tissue structures with US, however, researchers usually assume that the 

average backscattering coefficient is zero ( 0C = ) [70], which is because the scattered 

signals are due to fluctuations in acoustic properties relative to the mean. Substituting 

0C =  into Eq. (1) nullifies the second term on the right-hand side: 

( )22 3( ) ( , / )C V
P t h r t r c drσ ρ= −∫ . (4.4) 

As a result, US clearly relies on speckle contrast when imaging soft tissues. 

 

4.1.4 Simulation Studies 

 

We use simulation to further illustrate our analysis. Our numerical phantom contains a 5 

mm thick tissue structure, whose center is located 5 mm away from the transducer 

surface. It is composed of a large number of absorbers randomly distributed between 

2.5 mm and 7.5 mm along the ultrasonic axis. The transducer is assumed to have 5 MHz 

central frequency with 100% bandwidth. 

 

Figure 4.2 compares the photoacoustic profile with the ultrasound profile, where the 

exact boundary positions are marked as vertical dotted lines. The envelopes represent 

the magnitude of absorption or scattering. Between Figs. 4.2(a) and 4.2(b), the object 

has the same particle density. In the photoacoustic A-scan [Fig. 4.2(a)], we notice two 

prominent semi-deterministic boundaries, which dominate the random speckle 

fluctuations in between. The separation between either maximum profile position and 

the corresponding boundary position is a fraction of the center ultrasonic wavelength. 

In the ultrasonic A-scan [Fig. 4.2(b)], the speckle fluctuations spread across the entire 

imaged object, and no outstanding boundaries are observed.  
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Figure 4.2 Simulated depth profiles of a slab. (a) PAT, absorber density: 1,000/λ; 

(b) Ultrasound imaging, scatterer density: 1,000/λ; (c), PAT, absorber density: 

100,000/λ; (d), Ultrasound imaging, scatterer density: 100,000/λ. λ: the acoustic 

wavelength of 5 MHz ultrasound. PA: Photoacoustic; US: Ultrasound. 

 

In PAT, the visibility of the interior speckle was also found to decrease with increase in 

absorber density, as demonstrated in Figs. 4.2(a) and 4.2(c) and further quantified in Fig. 

4.3(a). The linear fit between the logarithm of the speckle visibility and the absorber 

density has a slope of –0.479±0.003, which is close to the inverse square-root 

dependence as predicted above. By contrast, the speckle visibility stays approximately 

constant in the ultrasound images, as illustrated in Figs. 4.2(b) and 4.2(d) and further 

quantified in Fig. 4.3(b). In both Figs. 4.2(a) and 4.2(c), each middle segment—between 

the two outermost minima of the profile within the two maxima—proves to be a fully 

developed speckle, because the magnitude of the photoacoustic signal follows the 

Rayleigh distribution and the intensity follows the exponential distribution. Therefore, 

the simulation confirms the aforementioned explanations. 
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Figure 4.3 Relationship between the speckle visibility in 

photoacoustic/ultrasound imaging and the absorber/scatterer density. (a) PAT; 

(b) Ultrasound imaging. Error bars: standard errors of the means (circles) based on 10 

realizations of particle distributions; solid lines: linear fits. PA: Photoacoustic; US: 

Ultrasound. 

 

In Figs. 4.4(a) and 4.4(b) we present simulated photoacoustic and ultrasonic cross-

sectional images (B-scan) of a round tumor, where the exact boundaries of the tumors 

are plotted as dashed lines. The ultrasound spatial-temporal response of the 5 MHz 

focused ultrasonic transducer is calculated by the Field II program. We first simulate the 

case when the absorbing or scattering strength of the particles in the tumor area is 10 

times that of the background particles. For a large tumor with a diameter of 2 mm, 

strong signals at its top and bottom boundaries are observed in the photoacoustic B-

scan [Fig. 4.4(a)]. The side boundaries are missing due to the limited view of the linear 

detection geometry. Figure 4.4(b) shows the corresponding ultrasonic B-scan image, 

where speckle artifacts prevail. The higher scattering strength of the tumor induces a 

stronger speckle in the tumor area, which suppresses the background speckle. In reality, 

a 10:1 scattering strength contrast is usually unavailable in ultrasound imaging. 

Therefore, the background speckle may be more prominent. 
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Figure 4.4 Simulated cross-sectional photoacoustic and ultrasonic images of 

round tumors. Photoacoustic/ultrasonic B-scans of tumors with 2 mm diameter 

[(a)/(b)] and  100 μm diameter [(c)/(d)]. Absorber/scatterer density: 5 million/μL. 

Absorbing/scattering strength contrast: 10:1. 

 

In Figs. 4.4(c) and 4.4(d), respectively, the photoacoustic and ultrasonic B-scans of a 

sub-resolution-sized tumor with a diameter of 100 μm are shown. In Fig. 4.4(c), the 

small tumor appears in the photoacoustic B-scan image as a solid area without distinct 

front and back boundaries. In Fig. 4.4(d), the tumor cannot be identified in the 

ultrasonic B-scan image. As expected, the interior speckle is further suppressed in the 

photoacoustic image, whereas the visibility of speckle remains unchanged in the 

ultrasound image. 
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4.2 PAT Speckle Dependence on Boundary 

Roughness 

 

As we discussed in the previous section 4.1, for scattering-based coherent imaging, two 

conditions must be met to ensure specular reflection. First, all scatterers on the surface 

must have similar properties so that the polarity changes to the incident wave due to 

backscattering are the same. Second, the boundary roughness must be less than λ/4—

with λ being the center wavelength—so that the phase-delay variations due to scatterer 

spatial distribution differences are within π.  

 

PAT naturally satisfies the first condition for “specular emission”. However, the second 

condition might be violated in rare cases. A natural question is whether the boundary 

signals in PAT can become fully developed speckles if the absorbing target has 

sufficiently rough boundaries, which is addressed in section 4.2. 

 

To analyze the effect of boundary roughness on PAT speckles, we simulate PAT of 

absorbing objects with boundaries having various degrees of roughness, which is 

quantified by the root-mean-squared (RMS) value (δ ) and the correlation length ( ξ ) of 

the boundary height [71]. Our numerical phantoms are composed of a large number of 

absorbers, which are statistically independently and homogeneously distributed inside 

and outside the absorbing objects. The absorbers inside the absorbing objects have 5 

times the average cross sections of those in the background. The boundary-profile 

functions of the absorbing objects are assumed to follow a stationary Gaussian 

stochastic process. The mean and the standard deviation of the stochastic process 

represent the mean boundary location and the standard deviation of the surface height 

(the RMS value δ ), respectively. The correlation function of the stochastic process is 

( )2 2( ') exp ' /G r r r r ξ− = − − , where r  and 'r  represent two position vectors on the 

mean boundary plane. Numerically, a boundary profile function is generated by 
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convolving a zero-mean Gaussian distribution of random numbers for the surface 

height with the Gaussian correlation function [71]. 
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Figure 4.5 Simulated PAT of absorbing targets with boundaries having various 

degrees of roughness at a spatial resolution of 180 µm. The boundary roughness is 

quantified by the RMS value (δ) and the correlation length (ξ) of the boundary height. 

(a) PAT of absorbing targets with smooth boundaries. (b)–(j) PAT of absorbing targets 

with rough boundaries. In each cell, the simulated absorber distribution is plotted in the 

top row, and the corresponding PAT image is shown in the bottom row. Segments of 

the boundaries from both plots are plotted as surface height versus lateral position 

(solid curves). The correlation coefficient (χ) between the true and the reconstructed 

boundaries as well as the speckle visibility (V) is computed. 

 

The PAT simulation parameters are set to the same values as those of a custom-

designed 512-element ring-array PAT system [72]. Each ultrasonic transducer element is 

cylindrically focused in the elevational direction; therefore, an in-plane two-dimensional 

(2D) image can be reconstructed. The simulated mechanical-electrical impulse response 

(EIR) has a center frequency of 5 MHz (100% bandwidth). Using the Field II program 

[69, 70], we calculate the spatiotemporal response of every ultrasonic transducer element 

due to all the absorbers in the imaging region. The PAT image is then reconstructed 

from these spatiotemporal responses [30]. The in-plane spatial resolution, i.e., the full-

width-at-half-maximum (FWHM) of the point spread function (PSF), is ~180 µm. 

 

The simulation results are tabulated by the RMS height δ  and the correlation length ξ  

in Fig. 4.5. As the RMS height δ  increases, the boundary height fluctuates more; as the 

correlation length ξ  decreases, the position of each point on the boundary becomes less 

correlated with that of its neighbors; if δ 0=  or ξ→∞ , the boundary becomes 

perfectly smooth [Fig. 4.5(a)]. Each cell of the table shows the true absorber distribution 

at the top and the corresponding reconstructed PAT image at the bottom. Segments of 

the boundaries of the absorbing objects within the dashed frames are extracted and 

shown as solid curves with a horizontal magnification of two times. The reconstructed 

PAT images show observable boundary buildups as well as interior speckles. In Fig. 

4.5(a) (ξ→∞ ), and Figs. 4.5(b), 4.5(e), and 4.5(h) (ξ 360 μm= , which equals twice the 
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in-plane resolution), the reconstructed and true boundaries agree well (correlation 

coefficient χ 0.92 0.95= − ) while the visibility of interior speckles ( V ) decreases 

slightly with increasing δ. In Figs. 4.5(c), 4.5(f), and 4.5(i) (ξ 180 μm= , which equals the 

in-plane resolution), some of the features of the true boundaries cannot be recovered by 

the reconstructed boundaries ( χ 0.73 0.77= − ). In Figs. 4.5(d), 4.5(g), and 4.5(j) 

( ξ 30 μm= , which equals 1/6 of the in-plane resolution), the height fluctuations of the 

reconstructed and true boundaries become less correlated ( χ 0.26 0.27= − ). Moreover, 

the amplitude of the reconstructed boundary vanishes with increasing δ, increasing the 

visibility of interior speckles. In all the cases, however, the average powers of the 

interior speckles without normalization to the boundary signals are equal. Therefore, the 

variations in speckle visibilities are due to the changes in the amplitudes of the 

reconstructed boundaries 
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Figure 4.6 Effects of the RMS height (δ) and the correlation length (ξ) on PA 

image boundaries. Effects of (a) the correlation length (ξ) and (b) the RMS height (δ) 

on the correlation coefficient (χ) between the real and the reconstructed boundaries. 

Effects of (c) the correlation (ξ) length and (d) the RMS height (δ) on the speckle 

visibility (V). 

 

In Figs. 4.6(a) and 4.6(b), the correlation coefficient ( χ ) between the reconstructed and 

the true boundary profiles is quantified as functions of the correlation length ξ  and the 

RMS height δ . We found that χ  depends solely on ξ  because the correlation 

coefficient between χ  and δ  is 0.08. If ξ 180 μm>  (the in-plane resolution), all the 

boundary features can be resolved, and thus the reconstructed boundaries agree with 

the true boundaries. Conversely, if ξ 180 μm<  (the in-plane resolution), features are 

too fine to be resolved. Therefore, even when the boundary fluctuations are small 

(δ 30 μm= ), the reconstructed boundaries do not agree with the true boundaries. 

 

In Figs. 4.6(c) and 4.6(d), the speckle visibility ( V ) is plotted as functions of the 

correlation length ξ  and the RMS height δ . Because the interior speckle amplitudes 

follow Gaussian distribution, we define boundary features as the reconstructed image 

regions that have magnitudes more than three time of the standard deviation of the 

interior speckle amplitudes. We found that V  depends on both ξ  and δ . In Fig. 4.6(c), 

V  decreases as ξ  increases when ξ 180 μm<  (the in-plane resolution). If the 

correlation lengths are smaller than the in-plane resolution, shorter correlation lengths 

usually introduce more randomized phase-delay variations, especially when the RMS 

heights are larger than the in-plane resolution so that effective roughness presents. An 

extreme example is that if ξ 180 μm<<  and δ 180 μm>>  the reconstructed 

boundaries become fully developed speckles and the speckle visibility V 1→ . As ξ  

increases further, the speckle visibilities V  at various δ  gradually converge to the value 

of V  for the smooth boundary, because ξ→∞  indicates smooth boundaries 

regardless of δ . In Fig. 4.6(d), if ξ 180 μm< , V  increases as δ  increases, which 
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introduces more randomized phase-delay variations. If ξ 180 μm≥ , however, some 

reconstructed boundary segments [e.g., the paired arrows in Fig. 4.5(f)] have higher 

signal strengths than the reconstructed smooth flat boundaries. The geometric shapes of 

these features match the ring-shaped ultrasonic detection aperture, and therefore the 

phase variations of the PA partial waves from the surface absorbers are smaller than 

those from the smooth flat boundaries. As a result, the average boundary strengths of 

these boundaries are slightly higher than those of smooth boundaries, and thus the 

speckle visibilities are slightly lower. 

 

The analysis above indicates that PAT speckles may appear in rare cases. For example, 

we may observe speckles when imaging melanoma, if the melanoma has rough 

boundaries whose correlation length is much smaller than and the RMS value is much 

greater than the imaging resolution. In contrast, when imaging blood vessels with most 

of the PAT systems (center frequencies ranging from 1 MHz to 75 MHz), we observe 

only the boundary signals. The blood vessel walls or red blood cells are considered 

smooth on the scale of the acoustic wavelengths, and the interior speckles are 

suppressed by the prominent boundary signals. 

 

4.3 Experimental Validations 

 

We used the same ring-array based PAT system [72, 73] to experimentally study the 

statistics of PAT speckles. The illumination source was a tunable pulsed laser system 

based on an optical parametric oscillator (OPO; Vibrant HE 315I, Opotek, Inc.). The 

laser pulse had a repetition rate of 10 Hz and a pulse width of 5 ns. After collimation, 

the laser beam was homogenized through a ground glass before it reached the top 

surface of the tissue phantom. The absorbing objects were made of gelatin (10% gelatin 

by weight) mixed with graphite particles in various concentrations. 
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Figure 4.7 Phantom experiments. Photographs of gelatin phantoms with smooth 

boundaries and with (a) high, (b) medium, and (c) low graphite particle concentrations. 

(d) Photograph of a gelatin phantom with rough boundaries and with medium graphite 

particle concentration. (e)–(h) Corresponding PAT images obtained with a ring-array 

PAT system. (i)–(k) Interior PAT speckle patterns. 

 

Photographs of the phantoms with high, medium, and low graphite particle 

concentrations and with smooth boundaries are shown in Figs. 4.7(a)–4.7(c). The 

corresponding PAT images are shown in Figs. 4.7(e)–4.7(g). As predicted in our 

previous study, we observed strong boundary buildups, which suppress the internal 

speckle patterns [Fig. 4.7(i)]. Also, the boundary features are most prominent at the 

highest particle concentration [Fig. 4.7(e)], and interior speckles become noticeable at 

the medium particle concentration [Fig. 4.7(f)] and become apparent at the lowest 

particle concentration [Fig. 4.7(g)]. The phantom with low particle concentration was 

imaged 10 times and 100 times, and the averaged reconstructed interior textures are 

shown in Figs. 4.7(j) and 4.7(k). Because both the phantom and the imaging system are 
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stationary in each experiment, such averaging does not diminish the speckles but does 

reduce random noises. The similarity between the two interior images, with a correlation 

coefficient of 0.996, confirms that the interior texture is due to speckles rather than 

random noises. For comparison, a phantom with medium particle concentration and 

rough boundaries [Fig. 4.7(d)] was studied, where both the correlation length ξ and the 

RMS height δ of the boundary profile are ~60 μm. In the PAT images of the phantoms, 

the rough boundaries [Fig. 4.7(h)] produced 2.8 times weaker boundary amplitudes than 

the smooth boundaries at the same particle concentration [Fig. 4.7(f)]. 

 

 
 

Figure 4.8 Experimental PAT speckle statistics. (a) First-order speckle statistics. 

(b) Dependence of the square root of the average powers of both the boundaries (red 

solid line) and the interiors (blue solid line) in the PAT images on the absorber density. 

(c) Dependence of the PA speckle visibility on the absorber density. (d) Second-order 

speckle statistics. (e) Auto-correlation of the system PSF. (f) One-dimensional radial 

plots of the auto-correlation of the speckles and the auto-correlation of the system PSF. 

 

We quantified the first order statistic of the PA speckles by plotting the histogram of 

the interior speckle amplitude (without the envelope detection) [Fig. 4.8(a)]. Since the 

coherent interference of ultrasonic waves can be described as a random walk process, 
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the amplitude of the PA speckles follows a Gaussian distribution. The mean of the 

speckle amplitude is zero, because the PSF does not contain DC. The standard 

deviation of the Gaussian distribution (σ ) which represents the square root of the 

average speckle power, is proportional to the product of the average particle absorption 

cross section C  and the square root of the particle concentration ( ρ ). In Fig. 4.8(b), 

we show that σ  is proportional to ρ , while the boundary magnitude is proportional 

to ρ . As a consequence, the speckle visibility ( V ) is inversely proportional to the 

square root of the particle density ρ  [51] for smooth boundary targets [Fig. 4.8(c)]. 

 

The second-order statistic of the speckles is shown in Fig. 4.8(d). In the classic speckle 

theory, the autocorrelation of the fully developed speckle pattern carries only the 

information of the system PSF rather than that of the target texture. The 

autocorrelation of the system PSF is shown in Fig. 4.8(e), which agrees with the 

autocorrelation of the speckle patterns [Fig. 4.8(f)]. 

 

4.4 Discussions and Conclusions 

 

We should clarify the definition of absorbers. In our model, unit absorbers must be 1) 

much smaller than the resolution cell and 2) statistically independently and 

homogenously distributed in locations within a resolution cell. For example, when 

imaging blood vessels with a 5 MHz PAT system (~180 µm in resolution), we treat red 

blood cells (RBCs, ~8 µm in diameter and ~2 µm in thickness) as unit absorbers. 

Hemoglobin molecules, however, should not be treated as unit absorbers because their 

aggregation in RBCs differentiates their spatial distributions inside and outside RBCs 

and violates condition 2. When imaging water with megahertz PAT systems, individual 

water molecules can be defined as unit absorbers. We can also group every K  water 

molecules to form sparser super unit absorbers with a number density of /Sup Kρ ρ=  

as long as the dimension of the super unit absorber is much less than the resolution. 
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The absorption cross section of the super unit absorber SupC  is the sum of the 

absorption cross sections (C ) of the K  unit absorbers: 

SupC KC= . (4.5) 

The location of the super unit absorber is the centroid of the locations of the unit 

absorbers. The super unit absorbers give rise to approximately the same image. 

Substituting Eq. (4.5) into Eq. (4.3), we have ( ) ( )2 2 2 2
SupSup C Sup CC Cσ ρ σ ρ+ = +  for the 

speckle term and 
2 2 2 2 2

Sup Sup aC Cρ ρ μ= =  for the boundary term. Therefore, the 

grouping leads to statistically equivalent results without violating our theory. 

 

In conclusion, PAT suppresses speckles by building up prominent boundary signals, via 

a mechanism similar to that of specular reflection. When imaging smooth boundary 

absorbing targets, the speckle visibility in PAT, which is defined as the ratio of the 

square root of the average power of speckles to that of boundaries, is inversely 

proportional to the square root of the absorber density. If the surfaces of the absorbing 

targets have uncorrelated height fluctuations, however, the boundary features may 

become fully developed speckles. The findings were validated by simulations and 

experiments. The first- and second-order statistics of PAT speckles were also studied 

experimentally. While the amplitude of the speckles follows a Gaussian distribution, the 

autocorrelation of the speckle patterns tracks that of the system point spread function. 
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Chapter 5 

 

Conclusions 

 

5.1 Summary of the Work Done 

 

The work presented in this dissertation can be divided into three parts. The first part 

focused on quantitative PAT. The second part focused on applying the compressed 

sensing theory to PAT reconstruction. The third part focused on the PAT speckle 

theory.  

 

Quantitative PAT: We demonstrated the feasibility of using the acoustic spectrum 

information to quantify optical absorption in vivo with OR-PAM in the optical ballistic 

regime and with AR-PAM in the optical diffusive regime. To the best of our knowledge, 

this is the first time acoustic spectrum information was used for PA quantitative study. 

This method is self-calibrating and thus is insensitive to absolute optical fluence. By 

taking advantage of the cancellation effect, the acoustic attenuation and system limited 

bandwidth can be corrected with multi-wavelength measurements. Moreover, this 

method can quantify the absolute value of aμ , which can be used to quantify 

hemoglobin concentrations in absolute units. 

 

Compressed sensing in PAT: By incorporating the compressed sensing theory in the 

PAT reconstruction, we can effectively reduce the number of DAQ channels. Both the 

phantom and the in vivo results show that the compressed sensing method can 
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effectively reduce the undersampling artifacts. By incorporating the compressed sensing 

theory in the PAT reconstruction, we can effectively reduce the system cost, or cover a 

larger FOV with the same number of measurements. 

 

PAT speckles: We found that speckle artifacts in PAT are suppressed by prominent 

boundary buildups. The theory has been explained from three aspects and validated by 

both simulation and experiments. The initial all-positive photoacoustic pressure rises 

provide strong correlation among the absorbers, which gives rise to strong boundary 

buildups. While images from ultrasound imaging and all other scattering-based imaging 

modalities are dominated by uncorrelated power, photoacoustic images are dominated 

by correlated power. We have also discussed the effect of boundary roughness on PAT 

speckles. The correlation coefficient (χ) and the speckle visibility (V) were quantified as 

functions of the boundary correlation length (ξ) and the boundary RMS height (δ). Our 

analysis hold for all PAT implementations considering the linearity of the PA imaging 

process, the conclusions  

 

5.2 Directions for Future Work 

 

For Quantitative PAT: Quantification of optical absorption coefficients from the 

acoustic spectra can be applied to other reflection-mode PAT system setups, such as 

PAT array systems [74], for sO2 and [HBT] quantifications.  

 

For Compressed sensing in PAT: To further improve the reconstruction, the 

ultrasonic transducer mechanical-electrical impulse response (EIR) as well as the spatial 

impulse response (SIR) should be included in the model [75]. 

 

For PAT speckles: The speckle contrast can be used to quantify the absorber density. 

Moreover, the standard deviation of speckles is proportional to the absorption cross 

section of absorbers and thus can be used to quantify the absorption cross section of 
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the nano particles. The proposed method is sensitive only to optical absorption [76] and 

does not require calibrations. PAT speckles can also be used in tissue characterization. 

The speckles may also be useful for skull aberration correction [77]. 
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Appendix A 

 

Relative Sensitivity of  DOT to Optical 

Absorption Coefficient 

 

We estimate the relative sensitivity of DOT ( _DOT aS ) to optical absorption coefficient 

( aμ ) based on the frequency domain DOT systems. The formulas used here can be 

found in Chapter 11 of Biomedical Optics: Principles and Imaging written by L. V. Wang and 

H. Wu (Wiley, Hoboken, NJ, 2007). 

 

We use ( )ja rμ  and ( )' js rμ  to denote the aμ  and 'sμ  at location jr , and the 

diffusion coefficient ( ) ( ) ( )( )1/ 3 'j j ja sD r r rμ μ⎡ ⎤= +⎣ ⎦ . The background aμ  and 'sμ  

are expressed as 0aμ  and 0 'sμ , and the background diffusion coefficient 

( )0 0 01/ 3 'a sD μ μ⎡ ⎤= +⎣ ⎦ . We use ( )ja rδμ , ( )' js rδμ , and ( )jD rδ  to denote the 

heterogeneities relative to 0aμ , 0sμ , and 0D , respectively [i.e., ( ) ( )0j ja a ar rμ μ δμ= + , 

( ) ( )0' ' 'j js s sr rμ μ δμ= + , ( ) ( )0j jD r D D rδ= + ]. To simplify the problem, we 

assume that the Born approximation is valid, which means the heterogeneities are weak 

relative to the background.  

 

DOT measures a quantity directly related to the AC photon density ( ),d sACU r r , where 

dr  and sr  are the locations of the detector and the source, respectively. For the 
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detector-source pair located at ( ),d sr r , the differential AC photon density wave 

( ),d sACU r rδ  due to the heterogeneity ( )ja rδμ  can be expressed as 

( ) ( ),,d s jAC a j aU r r W rδ δμ= , (A.1) 

where 

( ) ( ) ( )0, , ,d s d s d sAC ACU r r U r r U r rδ = − , (A.2) 

( ) ( ) 0j ja a ar rδμ μ μ= − , (A.3) 

and 
( ) ( )0 0

,
0

, ,d j j s

a j

G r r U r r x y z
W

D

Δ Δ Δ
= − . (A.4) 

Here, ( )0 ,d jG r r  denotes the Green function associated with the diffusion equation 

and ( )0 , sU r r  denotes the AC photon density, and both are for a homogeneous 

medium that has the background optical properties. xΔ , yΔ , and zΔ  represent the 

sizes of the grid elements along the x , y , z  directions, respectively. 

 

A small perturbation on the object ( )ja rμ  causes a change to the measurement 

quantity ( ),d sACU r r . _DOT aS  is defined as the fractional change of ( ),d sACU r r  

divided by the fractional change of ( )ja rμ  as 

( )
( )

( )
( )_

,
/

,

d s jAC a
DOT a

d s jAC a

U r r r
S

U r r r

μ

μ

Δ Δ
= . (A.5) 

Taking the derivatives on both sides of Eqs. (A.1), (A.2), and (A.3) yields 

( ) ( ),,d s jAC a j aU r r W rδ δμΔ = Δ , (A.6) 

( ) ( ), ,d s d sAC ACU r r U r rδΔ = Δ , (A.7) 

and ( ) ( )j ja ar rδμ μΔ = Δ . (A.8) 

Substituting Eqs. (A.7) and (A.8) into Eq. (A.6) yields 



 

  62 
 

( ) ( ),,d s jAC a j aU r r W rμΔ = Δ . (A.9) 

Substituting Eq. (A.9) into Eq. (A.5) yields 

( )
( )

,
_ ,

ja a j
DOT a

d sAC

r W
S

U r r

μ
= . (A.10) 

Substituting Eq. (A.4) and ( ) ( )0, ,d s d sACU r r U r r≈  (Born Approximation) into Eq. 

(A.10) yields 

( ) ( ) ( )
( )

0 0
_

0 0

, ,

,

j d j j sa
DOT a

d s

r G r r U r r x y z
S

D U r r

μ Δ Δ Δ
= . (A.11) 

To further simply the problem without loss of generality, we use the Green function for 

a point source in an infinite medium, and 

( ) 0
0

exp( )
,

4

d j
d j

d j

ik r r
G r r

r rπ

−
=

−
, (A.12) 

( ) 0
0

0

exp( )
,

4

s
s

s

ik r rBU r r
cD r rπ

−
=

−
. (A.13) 

Here 0k  is the propagation constant of the photon-density wave and c  is the speed of 

light in the medium. B  is the AC source amplitude and ( )exp BB B i tω φ= − −  with 

Bφ  being the phase. Substituting Eqs. (A.12) and (A.13) into Eq. (A.11) yields 

( ) ( )_ 0 0
3 '

4
d s

jDOT a a s a
d j j s

r r
S x y z r

r r r r
μ μ μ

π

−
= Δ Δ Δ +

− −
. (A.14) 

 

From Eq. (A.14), we conclude: 

1) The relative sensitivity _DOT aS  is higher if 
d s

d j j s

r r

r r r r

−

− −
 is larger. If the distances 

from the voxel of interest to both the source ( j sr r− ) and the detector ( d jr r− ) 

are shorter, the relative sensitivity is higher. However, for non-invasive DOT, the 
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source and detector can be placed only outside the tissue, and thus these distances 

are limited by the target depth. In transmission mode, it can be shown that 

1 1 11
d s d s d j

d j j s j s d j d j j s

r r r r r r

r r r r r r r r r r r r

⎛ ⎞− − − −
⎜ ⎟= + ≤ +
⎜ ⎟− − − − − −⎝ ⎠

. 

The equality holds and the maximum sensitivity occurs if and only if sr , dr , and  

jr  are in line, and jr  is between sr  and dr .  

2) The relative sensitivity _DOT aS  is higher if x y zΔ Δ Δ  is larger. For sufficiently large 

uniformly absorbing objects, defining larger imaging voxels yield higher _DOT aS . 

However, when the imaging voxel is defined to be even larger than the absorbing 

object, the absorption coefficient of the object is volume-averaged with the 

background absorption coefficient. 

3) The relative sensitivity _DOT aS  is higher if 0 0 'a sμ μ+  is larger; i.e., the background 

absorption coefficient and reduced scattering coefficient are larger. 

4) The relative sensitivity _DOT aS  is higher if ( )ja rμ  is larger; i.e. the object 

absorption coefficient is larger. 

For practical values of these parameters, 3d sr r− =  cm-1, 1.5d jr r− =  cm-1, 

1.5j sr r− =  cm-1, 5 5 5x y zΔ Δ Δ = × ×  mm3 (voxel size), 0 ' 10sμ =  cm-1, 0 0.1aμ =  cm-1 

(background optical properties), and ( ) 0.11ja rμ =  cm-1 (voxel optical absorption 

coefficient heterogeneity is 10% relative to that of the background) the relative 

sensitivity of DOT to aμ  is _ 0.044DOT aS ≈ .  

 In photoacoustic tomography (PAT), the measurement is directly proportional 

to the optical absorption coefficient. As a consequence, the relative sensitivity to the 

optical absorption coefficient is always 1 in PAT [11]. Therefore, DOT is usually much 

less sensitive to the optical absorption coefficient than PAT. 
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Appendix B 

 

Validation of  Equation (2.8) with Monte 

Carlo Simulations 

 

The analytical solution of the fluence decay in blood [Eq. (2.8)] was validated by 

Monte Carlo simulations. The simulated object was assumed to be composed of two 

layers, while the top layer is the background tissue and the bottom layer is the blood. 

The optical properties of the background tissue are set to be 0.1aμ =  cm-1, 100sμ =  

cm-1 and 0.9g = , while those of the blood are set to be 200aμ =  cm-1, 30sμ =  cm-1, 

and 0.995g =  [52]. Here aμ  is the absorption coefficient, sμ  is the scattering 

coefficient, and g  is the anisotropy factor. The thickness of the background tissue is 0.2 

cm, which is greater than the transport mean free path ( ' 0.1tl = cm). Therefore, the 

photons are almost completely diffused when they reach the blood layer.  

 

In Fig. B. 1, the fluence decay profile in blood is plotted on a log scale, and it matches 

the analytical solution given by Eq. (2.8). 
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Fig. B.1. Comparison of the Monte Carlo simulation result and the analytical solution. 
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Appendix C 

 

Compressed Sensing Reconstruction 

Algorithm 

 

In this section, we describe the reconstruction algorithm for solving the constrained 

optimization problem, which has been proved to be closely related to solving the 

following convex unconstrained optimization problem [78]: 

2 1

1min ( )
2x

f x x y xλ= Φ − + Ψ , (C.1) 

where λ  is a nonnegative regularization parameter, which determines the trade-off 

between the data consistency and the sparsity. In order for these two problems to be 

equivalent,  ε  and λ  must satisfy a special relationship. However, it is difficult to find 

analytical solutions if the matrix *A = ΦΨ  is not orthogonal [78]. Therefore, we solved 

a series of λ  to find a suboptimal solution. The process is described as follows: 

Step 1: Let 0.05 TA yλ
∞

=  [61], and solve the problem (C.1) for x . 

Step 2: Check the condition 
2

x y εΦ − < . If this condition holds, we increase λ  to 

promote the sparsity 
1

xΨ ; otherwise we decrease λ  to enforce the data consistency 

2
x yΦ − .  

Step 3: Problem (C.1) is solved again with the new λ .  Previously solved x  is used as 

the initial guess. By using this warm starting technique [61], the current optimization 

process takes much fewer numbers of iterations than the previous one. 

Step 4: Steps 2) and 3) are repeated for multiple times. 

 



 

  67 
 

The final solution is still only a suboptimal solution. However, problem (C.1) can be 

solved with the conjugate gradient descent method with backtracking line search 

method [58], which is computationally efficient to implement. 

 

The forward problem matrix Φ  is extremely large that direct matrix operation is 

computationally impractical. Therefore, the computations of both Φ  and its transpose 
TΦ  were implemented as sub-modules. 
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Appendix D 

 

Derivation of  the Speckle Visibility 

Equation 

 

1 1

( ) ( / ) ( , ) ( ) ( , / )
n n

i i i i i it ti i

A t a t r c h r t a t h r t r c
= =

= − ∗ = ∗ −∑ ∑  

The instantaneous power of an A-scan is 

2

1 1

( ) ( ) ( ) ( , / ) ( ) ( , / )
n n

i i i j j jt ti j

P t A t a t h r t r c a t h r t r c
= =

⎡ ⎤ ⎡ ⎤= = ∗ − ∗ −⎣ ⎦ ⎣ ⎦∑∑ . 

( )P t  can be separated into two groups of terms:
 2

1

1 1,

( ) ( ) ( , / )

( ) ( , / ) ( ) ( , / )

n

i i iti
n n

i i i j j jt ti j j i

P t a t h r t r c

a t h r t r c a t h r t r c

=

= = ≠

⎡ ⎤= ∗ −⎣ ⎦

⎡ ⎤ ⎡ ⎤+ ∗ − ∗ −⎣ ⎦ ⎣ ⎦

∑

∑ ∑  .
 

The ensemble average of ( )P t  is 

2

1

1 1,

( ) ( ) ( , / )

( ) ( , / ) ( ) ( , / )

n

i i iti

n n

i i i j j jt ti j j i

P t a t h r t r c

a t h r t r c a t h r t r c

=

= = ≠

⎡ ⎤= ∗ −⎣ ⎦

⎡ ⎤ ⎡ ⎤+ ∗ − ∗ −⎣ ⎦ ⎣ ⎦

∑

∑ ∑ .

 

The first group on the left hand side (uncorrelated contribution/speckle term) can be 

simplified as 

2

1
( ) ( , / )

n

i i iti
a t h r t r c

=

⎡ ⎤∗ −⎣ ⎦∑  
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2

1
( ) ( , / )

n

i i iti
a t h r t r c

=

⎡ ⎤= ∗ −⎣ ⎦∑  

2
3

1
( ) ( , / )

n

iV ti
a t h r t r c dr

n
ρ

=

= ∗ −∑∫  

 
(The probability density function of  is ( ) )

0    
ii r

r V
r f r n

r V

ρ⎧ ∈⎪= ⎨
⎪ ∉⎩

 

2

31
( ) ( , / )

n

i ti
V

a t h r t r c
dr

n
ρ =

∗ −
=

∑
∫  

2
3( ) ( , / )iV t

i

a t h r t r c drρ= ∗ −∫  

The second group, responsible for correlated contribution, on the left hand side can be 

simplified as 

1 1,
( ) ( , / ) ( ) ( , / )

n n

i i i j j jt ti j j i
a t h r t r c a t h r t r c

= = ≠

⎡ ⎤ ⎡ ⎤∗ − ∗ −⎣ ⎦ ⎣ ⎦∑ ∑
 

1 1,

( ) ( , / ) ( ) ( , / ) |
n n

i i i j j j j it ti j j i

a t h r t r c a t h r t r c ≠
= = ≠

⎡ ⎤ ⎡ ⎤= ∗ − ∗ −⎣ ⎦ ⎣ ⎦∑ ∑
2

3 3
1 1 2 2 1 2

1 1,
( ) ( , / ) ( ) ( , / )

( 1)

n n

i jV V t ti j j i
a t h r t r c a t h r t r c dr dr

n n
ρ

= = ≠

⎡ ⎤ ⎡ ⎤= ∗ − ∗ −⎣ ⎦ ⎣ ⎦−∑ ∑ ∫ ∫  

2

1 2
, 1 2

1 2

 
(The probability density function of  : ( , ) )( 1)

0            ,
i ji j r r i j

r r V
r r f r r n n

r r V

ρ

≠

⎧
≠ ∈⎪= −⎨

⎪ ∉⎩

 

2
3 3

1 1 1 2 2 2
1 1,

( ) ( , / ) ( ) ( , / )
( 1)

n n

i jV Vt ti j j i
a t h r t r c dr a t h r t r c dr

n n
ρ

= = ≠

⎡ ⎤ ⎡ ⎤= ∗ − ∗ −⎣ ⎦ ⎣ ⎦−∑ ∑ ∫ ∫
3 3

1 1,2

( ) ( , / ) ( ) ( , / )

( 1)

n n

i jV Vt ti j j i
a t h r t r c dr a t h r t r c dr

n n
ρ = = ≠

⎡ ⎤ ⎡ ⎤∗ − ∗ −⎣ ⎦ ⎣ ⎦
=

−

∑ ∑ ∫ ∫
 

2 3 3( ) ( , / ) ( ) ( , / )i jV Vt t i j
a t h r t r c dr a t h r t r c drρ

≠

⎡ ⎤ ⎡ ⎤= ∗ − ∗ −⎣ ⎦ ⎣ ⎦∫ ∫  

Therefore, the ensemble average of ( )P t  can be derived as: 
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2
3

2 3 3

( ) ( ) ( , / )

( ) ( , / ) ( ) ( , / )

iV t
i

i jV Vt t i j

P t a t h r t r c dr

a t h r t r c dr a t h r t r c dr

ρ

ρ
≠

= ∗ −

⎡ ⎤ ⎡ ⎤+ ∗ − ∗ −⎣ ⎦ ⎣ ⎦

∫

∫ ∫
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Appendix E 

 

Explanation of 3( , / ) 0
V

h r t r c dr− =∫  inside 

the structure 
 

The spatial-temporal response ( , )h r t  is separable in the focal zone, and we can assume 

1 2( , ) ( ) ( )h r t h r h t= . For a focused ultrasonic transducer, the extent of the spatial 

response 1( )h r  can be approximated by a cylinder aligned with the focal zone. Within 

the cylinder, 1( )h r  is approximately constant. Therefore, we have 

3 3 3
1 2 2( ) ( , / ) ( ) ( / ) ( / )

CV V V
g t h r t r c dr h r h t r c dr h t r c dr= − = − ∝ −∫ ∫ ∫ , 

where CV  is the volume of the cylinder.  We use 1Z  and 2Z  to denote the axial 

positions of the front and back boundaries of V . Therefore, we have 

2 1

1 2

/3
2 2 2/

( ) ( / ) ( / ) ( )
C

Z t Z c

V Z t Z c
g t h t r c dr h t r c d r h s ds

−

−
∝ − ∝ − =∫ ∫ ∫ . 

 

The transducer does not have a DC component, therefore 20
( ) 0ht h t dt =∫ , where [0, ]ht  

is the duration of the temporal impulse response. When the signals from inside the 

structure ( 1 0 2/ /Z c t t Z c< = < ) are received, we usually have 0 1 / ht Z c t− >> . 

Therefore, 

0 1 0 1

0 2

/ /

0 2 2/ 0
( ) ( ) ( ) 0

t Z c t Z c

t Z c
g t h s ds h s ds

− −

−
∝ = ≈∫ ∫ . 
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However, if the signal is received from the boundaries, 0 1 / ht Z c t− < . The partial 

integration of 2 ( )h s  results in a non-zero value 
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