90 research outputs found

    Cognitive and Autonomous Software-Defined Open Optical Networks

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Architecture and algorithm for reliable 5G network design

    Get PDF
    This Ph.D. thesis investigates the resilient and cost-efficient design of both C-RAN and Xhaul architectures. Minimization of network resources as well as reuse of already deployed infrastructure, either based on fiber, wavelength, bandwidth or Processing Units (PU), is investigated and shown to be effective to reduce the overall cost. Moreover, the design of a survivable network against a single node (Baseband Unit hotel (BBU), Centralized/Distributed Unit (CU/DU) or link failure proposed. The novel function location algorithm, which adopts dynamic function chaining in relation to the evolution of the traffic estimation also proposed and showed remarkable improvement in terms of bandwidth saving and multiplexing gain with respect to conventional C-RAN. Finally, the adoption of Ethernet-based fronthaul and the introduction of hybrid switches is pursued to further decrease network cost by increasing optical resource usage

    Design And Analysis Of Effective Routing And Channel Scheduling For Wavelength Division Multiplexing Optical Networks

    Get PDF
    Optical networking, employing wavelength division multiplexing (WDM), is seen as the technology of the future for the Internet. This dissertation investigates several important problems affecting optical circuit switching (OCS) and optical burst switching (OBS) networks. Novel algorithms and new approaches to improve the performance of these networks through effective routing and channel scheduling are presented. Extensive simulations and analytical modeling have both been used to evaluate the effectiveness of the proposed algorithms in achieving lower blocking probability, better fairness as well as faster switching. The simulation tests were performed over a variety of optical network topologies including the ring and mesh topologies, the U.S. Long-Haul topology, the Abilene high-speed optical network used in Internet 2, the Toronto Metropolitan topology and the European Optical topology. Optical routing protocols previously published in the literature have largely ignored the noise and timing jitter accumulation caused by cascading several wavelength conversions along the lightpath of the data burst. This dissertation has identified and evaluated a new constraint, called the wavelength conversion cascading constraint. According to this constraint, the deployment of wavelength converters in future optical networks will be constrained by a bound on the number of wavelength conversions that a signal can go through when it is switched all-optically from the source to the destination. Extensive simulation results have conclusively demonstrated that the presence of this constraint causes significant performance deterioration in existing routing and wavelength assignment (RWA) algorithms. Higher blocking probability and/or worse fairness have been observed for existing RWA algorithms when the cascading constraint is not ignored. To counteract the negative side effect of the cascading constraint, two constraint-aware routing algorithms are proposed for OCS networks: the desirable greedy algorithm and the weighted adaptive algorithm. The two algorithms perform source routing using link connectivity and the global state information of each wavelength. Extensive comparative simulation results have illustrated that by limiting the negative cascading impact to the minimum extent practicable, the proposed approaches can dramatically decrease the blocking probability for a variety of optical network topologies. The dissertation has developed a suite of three fairness-improving adaptive routing algorithms in OBS networks. The adaptive routing schemes consider the transient link congestion at the moment when bursts arrive and use this information to reduce the overall burst loss probability. The proposed schemes also resolve the intrinsic unfairness defect of existing popular signaling protocols. The extensive simulation results have shown that the proposed schemes generally outperform the popular shortest path routing algorithm and the improvement could be substantial. A two-dimensional Markov chain analytical model has also been developed and used to analyze the burst loss probabilities for symmetrical ring networks. The accuracy of the model has been validated by simulation. Effective proactive routing and preemptive channel scheduling have also been proposed to address the conversion cascading constraint in OBS environments. The proactive routing adapts the fairness-improving adaptive routing mentioned earlier to the environment of cascaded wavelength conversions. On the other hand, the preemptive channel scheduling approach uses a dynamic priority for each burst based on the constraint threshold and the current number of performed wavelength conversions. Empirical results have proved that when the cascading constraint is present, both approaches would not only decrease the burst loss rates greatly, but also improve the transmission fairness among bursts with different hop counts to a large extent

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Evaluating the energy consumption and the energy savings potential in ICT backbone networks

    Get PDF

    Mapping multiplexing technique (MMT): a novel intensity modulated transmission format for high-speed optical communication systems

    Get PDF
    There is a huge rapid growth in the deployment of data centers, mainly driven from the increasing demand of internet services as video streaming, e-commerce, Internet Of Things (IOT), social media, and cloud computing. This led data centers to experience an expeditious increase in the amount of network traffic that they have to sustain due to requirement of scaling with the processing speed of Complementary metal–oxide–semiconductor (CMOS) technology. On the other side, as more and more data centers and processing cores are on demand, as the power consumption is becoming a challenging issue. Unless novel power efficient methodologies are innovated, the information technology industry will be more liable to a future power crunch. As such, low complex novel transmission formats featuring both power efficiency and low cost are considered the major characteristics enabling large-scale, high performance data transmission environment for short-haul optical interconnects and metropolitan range data networks. In this thesis, a novel high-speed Intensity-Modulated Direct-Detection (IM/DD) transmission format named “Mapping Multiplexing Technique (MMT)” for high-speed optical fiber networks, is proposed and presented. Conceptually, MMT design challenges the high power consumption issue that exists in high-speed short and medium range networks. The proposed novel scheme provides low complex means for increasing the power efficiency of optical transceivers at an impactful tradeoff between power efficiency, spectral efficiency, and cost. The novel scheme has been registered as a patent (Malaysia PI2012700631) that can be employed for applications related but not limited to, short-haul optical interconnects in data centers and Metropolitan Area networks (MAN). A comprehensive mathematical model for N-channel MMT modulation format has been developed. In addition, a signal space model for the N-channel MMT has been presented to serve as a platform for comparison with other transmission formats under optical channel constraints. Especially, comparison with M-PAM, as meanwhile are of practical interest to expand the capacity for optical interconnects deployment which has been recently standardized for Ethernet IEEE 802.3bs 100Gb/s and in today ongoing investigation activities by IEEE 802.3 400Gb/s Ethernet Task Force. Performance metrics have been considered by the derivation of the average electrical and optical power for N-channel MMT symbols in comparison with Pulse Amplitude Modulation (M-PAM) format with respect to the information capacity. Asymptotic power efficiency evaluation in multi-dimensional signal space has been considered. For information capacity of 2, 3 and 4 bits/symbol, 2-channel, 3-channel and 4-channel MMT modulation formats can reduce the power penalty by 1.76 dB, 2.2 dB and 4 dB compared with 4-PAM, 8-PAM and 16-PAM, respectively. This enhancement is equivalent to 53%, 60% and 71% energy per bit reduction to the transmission of 2, 3 and 4 bits per symbol employing 2-, 3- and 4-channel MMT compared with 4-, 8- and 16-PAM format, respectively. One of the major dependable parameters that affect the immunity of a modulation format to fiber non-linearities, is the system baud rate. The propagation of pulses in fiber with bitrates in the order > 10G, is not only limited by the linear fiber impairments, however, it has strong proportionality with fiber intra-channel non-linearities (Self Phase Modulation (SPM), Intra-channel Cross-Phase Modulation (IXPM) and Intra-channel Four-Wave Mixing (IFWM)). Hence, in addition to the potential application of MMT in short-haul networks, the thesis validates the practicality of implementing N-channel MMT system accompanied by dispersion compensation methodologies to extend the reach of error free transmission (BER ≤ 10-12) for Metro-networks. N-Channel MMT has been validated by real environment simulation results to outperform the performance of M-PAM in tolerating fiber non-linearities. By the employment of pre-post compensation to tolerate both residual chromatic dispersion and non-linearity, performance above the error free transmission limit at 40Gb/s bit rate have been attained for 2-, 3- and 4-channel MMT over spans lengths of up to 1200Km, 320 Km and 320 Km, respectively. While, at an aggregated bit rate of 100 Gb/s, error free transmission can be achieved for 2-, 3- and 4-channel MMT over spans lengths of up to 480 Km, 80 Km and 160 Km, respectively. At the same spectral efficiency, 4-channel MMT has realized a single channel maximum error free transmission over span lengths up to 320 Km and 160 Km at 40Gb/s and 100Gb/s, respectively, in contrast with 4-PAM attaining 240 Km and 80 Km at 40Gb/s and 100Gb/s, respectively

    Transparent heterogeneous terrestrial optical communication networks with phase modulated signals

    Get PDF
    This thesis presents a large scale numerical investigation of heterogeneous terrestrial optical communications systems and the upgrade of fourth generation terrestrial core to metro legacy interconnects to fifth generation transmission system technologies. Retrofitting (without changing infrastructure) is considered for commercial applications. ROADM are crucial enabling components for future core network developments however their re-routing ability means signals can be switched mid-link onto sub-optimally configured paths which raises new challenges in network management. System performance is determined by a trade-off between nonlinear impairments and noise, where the nonlinear signal distortions depend critically on deployed dispersion maps. This thesis presents a comprehensive numerical investigation into the implementation of phase modulated signals in transparent reconfigurable wavelength division multiplexed fibre optic communication terrestrial heterogeneous networks. A key issue during system upgrades is whether differential phase encoded modulation formats are compatible with the cost optimised dispersion schemes employed in current 10 Gb/s systems. We explore how robust transmission is to inevitable variations in the dispersion mapping and how large the margins are when suboptimal dispersion management is applied. We show that a DPSK transmission system is not drastically affected by reconfiguration from periodic dispersion management to lumped dispersion mapping. A novel DPSK dispersion map optimisation methodology which reduces drastically the optimisation parameter space and the many ways to deploy dispersion maps is also presented. This alleviates strenuous computing requirements in optimisation calculations. This thesis provides a very efficient and robust way to identify high performing lumped dispersion compensating schemes for use in heterogeneous RZ-DPSK terrestrial meshed networks with ROADMs. A modified search algorithm which further reduces this number of configuration combinations is also presented. The results of an investigation of the feasibility of detouring signals locally in multi-path heterogeneous ring networks is also presented
    • …
    corecore