414 research outputs found

    The ATLAS TRT end-cap detectors

    Get PDF
    Çetin, Serkant Ali (Dogus Author)The ATLAS TRT end-cap is a tracking drift chamber using 245,760 individual tubular drift tubes. It is a part of the TRT tracker which consist of the barrel and two end-caps. The TRT end-caps cover the forward and backward pseudo-rapidity region 1.0 < |η| < 2.0, while the TRT barrel central η region |η| < 1.0. The TRT system provides a combination of continuous tracking with many measurements in individual drift tubes (or straws) and of electron identification based on transition radiation from fibers or foils interleaved between the straws themselves. Along with other two sub-system, namely the Pixel detector and Semi Conductor Tracker (SCT), the TRT constitutes the ATLAS Inner Detector. This paper describes the recently completed and installed TRT end-cap detectors, their design, assembly, integration and the acceptance tests applied during the construction

    Innovative Research in the Food Packaging to Improve Food Quality and Shelf Life

    Get PDF
    Food packaging and shelf life have been the subject of remarkable research in recent years. They are so important because only by understanding a good storage system is it possible to avoid any food waste. Moreover, the best packaging has to prolong the food quality while also reducing the packaging volume or better, become itself biodegradable, and guarantee the nutritional characteristics of food products.In particular, the increasing interest in reducing packaging wastes is becoming a rising problem, just considering that food packaging alone contributes to a huge portion of total packaging wastes in the world. On the other side, consumers judge the food quality based on appearance and freshness, but also using their awareness of the environmental implications of packaging. Nowadays, many technologies can be applied to improve food quality and shelf life, such the application of edible films or coatings, from biodegradable materials or biopolymers, trying to reduce the package barrier requirements, incorporating natural bioactive compounds and lengthening shelf life making then packaging easily compostable

    Automated Fiber Placement: A Review of History, Current Technologies, and Future Paths Forward

    Get PDF
    Automated fiber placement (AFP) is a composite manufacturing technique used to fabricate complex advanced air vehicle structures that are lightweight with superior qualities. The AFP process is intricate and complex with various phases of design, process planning, manufacturing, and inspection. An understanding of each of these phases is necessary to achieve the highest possible manufacturing quality. This literature review aims to summarize the entire AFP process from the design of the structure through inspection of the manufactured part to generate an overall understanding of the lifecycle of AFP manufacturing. The review culminates with highlighting the challenges and future directions for AFP with the goal of achieving a closed loop AFP process

    Cumulative index to NASA Tech Briefs, 1963-1967

    Get PDF
    Cumulative index to NASA survey on technology utilization of aerospace research outpu

    Cumulative Index to NASA Tech Briefs, 1963 - 1966

    Get PDF
    Cumulative index of NASA Tech Briefs dealing with electrical and electronic, physical science and energy sources, materials and chemistry, life science, and mechanical innovation

    Scalable, biofunctional, ultra-stable nano- bio- composite materials containing living cells

    Get PDF
    Three-dimensional encapsulation of cells within nanostructured silica gels or matrices enables applications as diverse as biosensors, microbial fuel cells, artificial organs, and vaccines. It also allows study of individual cell behaviors. Recent progress has improved the performance and flexibility of cellular encapsulation, yet there remains a need for robust scalable processes for large format production of cell-encapsulating materials. Here, we detail two novel techniques, that enable the large-scale production of functional Nano-Bio-Composites (NBCs) containing living cells within ordered 3-D lipid/silica nanostructures: 1) thick-casting and 2) spray drying. Furthermore, we detail a third technique for material scaling in which aqueous, silicate-based gel monoliths encapsulate biofunctional yeast or bacteria. Both dry processes are demonstrated to work with multiple cell types and result in dry powders exhibiting a unique combination of properties including: highly ordered 3-D nanostructure, extended lipid fluidity, tunable macro-morphologies and aerodynamic diameters, and unexpectedly high physical strength. Nanoindentation of the encasing nanostructure revealed Young’s modulus and hardness of 13 and 1.4 GPa respectively, which was unexpected considering the low processing conditions. We hypothesized and confirmed that NBC-encapsulated cells would remain viable for extended periods of time under elevated aging conditions. We attribute this due to the high material strength as observed with nanoindentation, which would prevent cell growth and force bacteria into viable but not culturable (VBNC) states. In concordance with the VBNC state, cellular ATP levels remained elevated even over eight months confirming temperature stable, viable cells. However, their ability to undergo resuscitation and enter growth phase greatly decreased with time in the VBNC state. A quantitative method of determining resuscitation frequencies was developed and showed that, after 36 weeks in an NBC-induced VBNC state, less than 1 in 10,000 cells underwent resuscitation. We verify the VBNC phenotype in gel-encapsulated cells by studying cellular RNA expression levels. These latent behaviors are further demonstrated with an in-vivo immunological study in which mice, immunized with NBCs containing the vaccine Bacillus Calmette-Guérin, were observed to be immunized against a latent form of Tuberculosis. This finding is, in our understanding, the first demonstration of a latent disease-specific live cell immunotherapy. The NBC platform production of industrially scalable quantities of VBNC cells is of interest for research in bacterial persistence and screening of drugs targeting such cells. NBC’s may also enable long-term preservation of living cells for applications in cell-based sensing and the packaging and delivery of live-cell vaccines. Moreover, our methodology represents a novel process for preparing formulations of latent cells in-silico, which could find application in basic cellular research and for the development of a latent-specific vaccine

    Proceedings of the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures

    Get PDF
    This publication contains the fifty-two technical papers presented at the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures. The symposium, hosted by the FAA Center of Excellence for Computational Modeling of Aircraft Structures at Georgia Institute of Technology, was held to disseminate information on recent developments in advanced technologies to extend the life of high-time aircraft and design longer-life aircraft. Affiliations of the participants included 33% from government agencies and laboratories, 19% from academia, and 48% from industry; in all 240 people were in attendance. Technical papers were selected for presentation at the symposium, after a review of extended abstracts received by the Organizing Committee from a general call for papers

    Optical Methods in Sensing and Imaging for Medical and Biological Applications

    Get PDF
    The recent advances in optical sources and detectors have opened up new opportunities for sensing and imaging techniques which can be successfully used in biomedical and healthcare applications. This book, entitled ‘Optical Methods in Sensing and Imaging for Medical and Biological Applications’, focuses on various aspects of the research and development related to these areas. The book will be a valuable source of information presenting the recent advances in optical methods and novel techniques, as well as their applications in the fields of biomedicine and healthcare, to anyone interested in this subject

    Zinc based composite coatings as an alternative to electrodeposited cadmium

    Get PDF
    Cadmium coatings are currently applied to steel fasteners used in aerospace applications. At present there are growing concerns, based on cadmium's toxicity and carcinogenicity, which may lead to its eventual banning. The aim of this research, therefore, was to find a possible replacement to electrodeposited cadmium for use on aerospace fasteners. Any replacement coating system should have all of the relevant properties that make cadmium so attractive, but without its obvious shortcomings. These beneficial properties include excellent corrosion resistance in chloride containing media (such as seawater), the ability to offer sacrificial protection to steel, excellent galvanic compatibility with most aluminium alloys and an inherent lubricity. Alternatives proposed and produced in this research are electrodeposited composite coatings containing PTFE particles, based on zinc or zinc alloys. Extensive analysis was carried out in order to characterise the coatings. Composition was determined by a number of methods; gravimetric analysis was used to determine the percentage of codeposited PTFE, while X-ray and X-ray wavelength energy dispersive analysis were used to determine the percentage of alloy element present in these coatings. Coating morphology was investigated by scanning electron microscopy. The sacrificial corrosion performance of each coating in relation to steel was studied using neutral salt-spray tests, while linear polarisation resistance tests gave an indication of their barrier corrosion properties. Galvanic compatibility of the coatings with aerospace grade aluminium alloys was investigated using a zero resistance ammeter. Two different tribological tests, an inclined plane test and a reciprocating wear test, were used to determine the coefficient of friction for the coatings. Finally, linear sweep voltammetry was used to compare the kinetics of electrodeposition from dilute solutions and corrosion in aqueous media for each of the coating systems. The composite coatings were found to offer either similar or slightly reduced corrosion performance to conventional zinc and zinc alloy coatings, but were inferior to commercially electrodeposited cadmium. However, the tribological properties of these coatings demonstrated a marked improvement over cadmium

    Friction Force Microscopy of Deep Drawing Made Surfaces

    Get PDF
    Aim of this paper is to contribute to micro-tribology understanding and friction in micro-scale interpretation in case of metal beverage production, particularly the deep drawing process of cans. In order to bridging the gap between engineering and trial-and-error principles, an experimental AFM-based micro-tribological approach is adopted. For that purpose, the can’s surfaces are imaged with atomic force microscopy (AFM) and the frictional force signal is measured with frictional force microscopy (FFM). In both techniques, the sample surface is scanned with a stylus attached to a cantilever. Vertical motion of the cantilever is recorded in AFM and horizontal motion is recorded in FFM. The presented work evaluates friction over a micro-scale on various samples gathered from cylindrical, bottom and round parts of cans, made of same the material but with different deep drawing process parameters. The main idea is to link the experimental observation with the manufacturing process. Results presented here can advance the knowledge in order to comprehend the tribological phenomena at the contact scales, too small for conventional tribology
    corecore