17 research outputs found

    Paraconsistent resolution

    Get PDF
    Digraphs provide an alternative syntax for propositional logic, with digraph kernels corresponding to classical models. Semikernels generalize kernels and we identify a subset of well-behaved semikernels that provides nontrivial models for inconsistent theories, specializing to the classical semantics for the consistent ones. Direct (instead of refutational) reasoning with classical resolution is sound and complete for this semantics, when augmented with a specific weakening which, in particular, excludes Ex Falso. Dropping all forms of weakening yields reasoning which also avoids typical fallacies of relevance

    Enumeration of Preferred Extensions in Almost Oriented Digraphs

    Get PDF
    In this paper, we present enumeration algorithms to list all preferred extensions of an argumentation framework. This task is equivalent to enumerating all maximal semikernels of a directed graph. For directed graphs on n vertices, all preferred extensions can be enumerated in O^*(3^{n/3}) time and there are directed graphs with Omega(3^{n/3}) preferred extensions. We give faster enumeration algorithms for directed graphs with at most 0.8004 * n vertices occurring in 2-cycles. In particular, for oriented graphs (digraphs with no 2-cycles) one of our algorithms runs in time O(1.2321^n), and we show that there are oriented graphs with Omega(3^{n/6}) > Omega(1.2009^n) preferred extensions. A combination of three algorithms leads to the fastest enumeration times for various proportions of the number of vertices in 2-cycles. The most innovative one is a new 2-stage sampling algorithm, combined with a new parameterized enumeration algorithm, analyzed with a combination of the recent monotone local search technique (STOC 2016) and an extension thereof (ICALP 2017)

    Kernel perfect and critical kernel imperfect digraphs structure

    Get PDF
    A kernel NN of a digraph DD is an independent set of vertices of DD such that for every w∈V(D)−Nw \in V(D)-N there exists an arc from ww to NN. If every induced subdigraph of DD has a kernel, DD is said to be a kernel perfect digraph. Minimal non-kernel perfect digraph are called critical kernel imperfect digraph. If FF is a set of arcs of DD, a semikernel modulo FF, SS of DD is an independent set of vertices of DD such that for every z∈V(D)−Sz \in V(D)- S for which there exists an Sz−Sz-arc of D−FD-F, there also exists an zS−zS-arc in DD. In this talk some structural results concerning critical kernel imperfect and sufficient conditions for a digraph to be a critical kernel imperfect digraph are presented

    Solving the kernel perfect problem by (simple) forbidden subdigraphs for digraphs in some families of generalized tournaments and generalized bipartite tournaments

    Full text link
    A digraph such that every proper induced subdigraph has a kernel is said to be \emph{kernel perfect} (KP for short) (\emph{critical kernel imperfect} (CKI for short) resp.) if the digraph has a kernel (does not have a kernel resp.). The unique CKI-tournament is C→3\overrightarrow{C}_3 and the unique KP-tournaments are the transitive tournaments, however bipartite tournaments are KP. In this paper we characterize the CKI- and KP-digraphs for the following families of digraphs: locally in-/out-semicomplete, asymmetric arc-locally in-/out-semicomplete, asymmetric 33-quasi-transitive and asymmetric 33-anti-quasi-transitive TT3TT_3-free and we state that the problem of determining whether a digraph of one of these families is CKI is polynomial, giving a solution to a problem closely related to the following conjecture posted by Bang-Jensen in 1998: the kernel problem is polynomially solvable for locally in-semicomplete digraphs.Comment: 13 pages and 5 figure

    On (2-d)-kernels in the cartesian product of graphs

    Get PDF
    In this paper we study the problem of the existence of (2-d)-kernels in the cartesian product of graphs. We give sufficient conditions for the existence of (2-d)-kernels in the cartesian product and also we consider the number of (2-d)-kernels
    corecore