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Abstract
In this paper, we present enumeration algorithms to list all preferred extensions of an argumentation
framework. This task is equivalent to enumerating all maximal semikernels of a directed graph. For
directed graphs on n vertices, all preferred extensions can be enumerated in O∗(3n/3) time and there
are directed graphs with Ω(3n/3) preferred extensions. We give faster enumeration algorithms for
directed graphs with at most 0.8004 · n vertices occurring in 2-cycles. In particular, for oriented
graphs (digraphs with no 2-cycles) one of our algorithms runs in time O(1.2321n), and we show that
there are oriented graphs with Ω(3n/6) > Ω(1.2009n) preferred extensions.

A combination of three algorithms leads to the fastest enumeration times for various proportions
of the number of vertices in 2-cycles. The most innovative one is a new 2-stage sampling algorithm,
combined with a new parameterized enumeration algorithm, analyzed with a combination of the
recent monotone local search technique (STOC 2016) and an extension thereof (ICALP 2017).
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1 Introduction

In Dung’s theory of abstract argumentation [15], an argumentation framework (AF) is a
digraph G = (V,E), where each vertex represents an argument, and an arc (u, v) ∈ E

denotes that argument u attacks argument v. There are various semantics that express
what properties a set of arguments should have for a rational agent to stand by that set of
arguments. One of the most central semantics is the preferred semantics that was already
proposed by Dung in his foundational paper [15]. Let S ⊆ V be a subset of vertices (also
called extension) of a digraph G = (V,E). The set S is conflict-free if no arc has both
endpoints in S. A vertex v ∈ V is acceptable with respect to S if for each arc (u, v) ∈ E
there is an arc (w, u) ∈ E with w ∈ S. In other words, for each argument u that attacks v,
there is an argument w in S that attacks u. We say in this case that w defends v against u.
The set S is admissible if it is conflict-free and each argument in S is acceptable with respect
to S. The set S is preferred if it is an inclusion-wise maximal admissible set.
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While we will use the language of abstract argumentation, we remark that such vertex
sets have also been studied in graph theory. Neumann-Lara [27] (see also [21]) defined the
notion of semikernels. Maximal semikernels are equal to the preferred extensions in the
directed graph where all arcs are reversed. The related notion of kernels [32] has the same
correspondence with stable extensions in abstract argumentation, and was introduced as an
abstract solution concept in cooperative game theory, but has been extensively studied in
the theory of directed graphs. In particular, various issues around the enumeration of kernels
and semikernels have been considered in previous work [2, 5, 20, 29].

Motivation. A central problem in abstract argumentation is the enumeration of extensions
prescribed by a given semantics. The enumeration of preferred extensions is of particular
interest, firstly for its own sake, but also in the study of other semantics as it forms the
basis of several other semantics refining this set. A number of existing algorithms and
implementations enumerate all preferred extensions of a digraph (see, e.g., [6, 7, 9, 10,
11, 12, 14, 25, 28, 30, 31]). The enumeration of preferred extensions is also a part of the
biennial International Competition on Computational Models of Argumentation (ICCMA).
Computational problems where the enumeration of extensions are used involve answering the
questions: is a given argument in some / all preferred extensions and what is the number of
preferred extensions containing a given argument / in total. Upper bounds on the number of
extensions under various semantics have also been proposed as fundamental characteristics
to compare various semantics in abstract argumentation [3, 16].

We study the enumeration of preferred extensions in digraphs with no, or relatively few,
2-cycles (i.e., bidirectional arcs). Our aim is to determine how much the presence of 2-cycles
affects the number of preferred extensions of an AF. Mutually attacking arguments play a
special role in abstract argumentation [24], but this conflict is often resolved rather easily if
the strength of the two attacks can be evaluated [4], or the user’s preference between the two
arguments can be elicited [26, 1]. These methods of resolving conflicts motivate the study of
problems, and in particular enumeration problems, for AFs with no or few 2-cycles.

Our results. Define the resolution order of a digraph G = (V,E), denoted r(G), as the
number of vertices that belong to a 2-cycle in G. We study enumeration algorithms and
combinatorial upper bounds on the number of preferred extensions in oriented graphs
(digraphs without 2-cycles) and digraphs that have small resolution order.

Our main result is an algorithm that, for any ε > 0, enumerates all preferred extensions
of a digraph G on n vertices in time

O∗

min

ϕ2r · ϕ1−r,

((
1 + 2 1

4 − 1√
2

)r
·
(

2− 1√
2

)1−r
)1+ε

, 31/3

n
≤ O∗

((
min

(
1.5180r · 1.23211−r, 1.4822r · 1.29291−r, 1.4423

))n)
,

where r = r(G)/n, and ϕ ≈ 1.2321 is the positive root of 1− x−1 − x−8. The O∗ notation
hides factors that are polynomial in the input size. See Figure 1, which plots the base α
of the running time expressed as O∗(αn) for r varying from 0 to 1. For r = 1, this is best
possible and follows from the work in [16, 26]. At the other end of the spectrum, i.e., for
oriented graphs where r = 0, the upper bound is O∗(ϕn) ≤ O(1.2321n) and is obtained
via a carefully constructed branching algorithm and running time analysis. We also give a
lower bound on the largest number of preferred extensions an oriented graph on n vertices
may have of Ω(3n/6) ≥ Ω(1.2009n). A construction, which we call the Oriented Translation,
reducing an arbitrary digraph G = (V,E) to an oriented graph with |V | + r(G) vertices,
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Figure 1 The graph depicts the base of the exponential running times O∗(αn) of the three
enumeration algorithms, according to r = r(G)/n. When r < 0.6684, our branching algorithm for
oriented graphs together with the Oriented Translation (dark green) gives the fastest algorithm.
For r > 0.8005, the algorithm based on previous work [16, 26] (orange) is fastest. In the middle
range, the combination of the 2-phase monotone local search with the parameterized enumeration
algorithm (blue) is fastest. Our lower bound on the largest number of preferred extensions is drawn
with a dashed red line.

such that there is a bijection between their preferred extensions, allows us to generalize
these upper and lower bounds to O∗

(
ϕ2·r(G) · ϕn−r(G)) ≤ O(1.5180r(G) · 1.2321n−r(G)) and

Ω(3r(G)/3 · 3(n−r(G))/6) ≥ Ω(1.4422r(G) · 1.2009n−r(G)), respectively.
Our main technical contribution is the third algorithm. It relies on a parameterized

enumeration algorithm and extensions of the recent monotone local search framework [17].
The parameterized enumeration algorithm has as input a digraph G = (V,E), a set of
arguments S, and a non-negative integer k, and it enumerates all maximal admissible
extensions T ⊆ S of G within distance k of S. Its running time can be upper bounded
by O∗(2k/2+r(G[S])/4). This is optimal, since there are instances for which the solution
consists of Ω(2k/2+r(G[S])/4) preferred extensions at distance at most k from S. Furthermore,
under the Strong Exponential Time Hypothesis, the corresponding decision problem has no
O∗(2(1−ε)(k/2+r(G[S])/4)) time solution for any ε > 0. We use this parameterized enumeration
algorithm in a new 2-phase monotone local search procedure, where we separately sample
vertices from B, the set of vertices in at least one 2-cycle, and V \ B and then apply the
parameterized enumeration algorithm. The running time analysis is a new combination of the
results in [17] for the first sampling phase and [23] for the second sampling phase, combined
with the parameterized subroutine. From a technical point of view, this is the most innovative
part of this paper. (From a conceptual point of view, the most innovative contribution is
probably the synergy between modern enumeration algorithmics and the theory of abstract
argumentation.) This results in an algorithm enumerating all preferred extensions of a given
digraph G in time O∗

((
1 + 21/4 − 2−1/2)(1+ε)·r(G) ·

(
2− 2−1/2)(1+ε)·(n−r(G))).

Interpretation of results. Figure 1 indicates we have narrowed the gap between best known
lower and upper bounds for a wide range of r and improved algorithms and combinatorial
upper bounds whenever r ≤ 0.8004. The result for r = 0 shows that for oriented graphs, our
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new algorithm allows to handle instances with 75% more arguments, compared with the
previous best O(3n/3) upper bound. (We have that log1.2321(31/3) ≈ 1.7545.)

Outline. Sections 3 and 4 describe our monotone local search algorithm. Section 5 describes
our branching algorithm for oriented graphs.

First we introduce the parameterized enumeration problem that will form the subroutine
of our Monotone Local Search.

Maximal Admissible Subset Enumeration (MASE)
Input: Graph G, set S ⊆ V (G), integer k
Parameter: k

Output: Enumerate all maximal admissible sets T ⊆ S such that |S \ T | ≤ k.

There is a subtlety here with how we define maximal. We say T is a maximal admissible
subset of S if there does not exist an admissible set U such that T ( U ⊆ S. Notably T is
not necessarily a preferred extension (though T is if S = V (G)).

In Section 3, we present an algorithm for MASE, parameterized by k and r(G[S]), the
resolution order of the subgraph of G induced by S.

I Theorem 1. For an instance I = (G,S, k) of MASE, let µ(I) := k
2 + r(G[S])

4 . Then MASE
can be solved in O∗(2µ(I)) time. Furthermore, there are at most 2µ(I) maximal admissible
subsets of S within distance k of S. Hence, there are at most 2µ(I) preferred extensions that
are subsets of S with size ≥ |S| − k.

Our algorithm is a standard parameterized branching algorithm. Compared to the enumera-
tion of independent sets, the primary additional tool we have is a powerful simplification
rule, (Undefendable), for vertices with in-degree 0.

In Section 4, we extend our parameterized algorithm into a general enumeration algorithm
through a novel 2-phase application of Monotone Local Search. Since 2-cycles increase the
run time of our MASE subroutine, we modify Monotone Local Search to sample separately
between a set of “bad vertices” (ones contained in a 2-cycle) and “good vertices” (ones not
contained in any 2-cycle). This presents a speed up compared to a more direct application of
the Monotone Local Search framework. We believe this may be useful for other problems.

Separately, Section 5 presents a branching algorithm for oriented graphs. Again, (Un-
defendable) plays a critical role. By carefully setting up the state we also have a simplifica-
tion rule for vertices with out-degree 0. We tailor our branching rules to take full advantage
of these two simplification rules. This is combined with a lot of careful case analysis and
ad-hoc methods (including a graph classification theorem for Case 4).

Each of our algorithms also provide a corresponding combinatorial upper bound on the
number of preferred extensions. The various enumeration algorithms and bounds are collected
in Section 6. To extend the results from Section 5 to general graphs we require the following
result which we call the Oriented Translation.

I Theorem 2. There is a linear time algorithm that transforms any AF G into an oriented
AF G′ with |V (G′)| = |V (G)|+ r(G) + 3 such that there is a bijection between the preferred
extensions of G and the preferred extensions of G′ that can be applied in linear time.

The basic idea of the construction is carefully converting 2-cycles into 4-cycles by duplicating
vertices contained in at least one 2-cycle. The construction can be found in the full version.

In the full version we include all omitted proofs (including, in particular, the case analysis
of our branching algorithms) and a few extra results:
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We apply Theorem 2 to derive complexity results on oriented graphs by extending
constructions for directed graphs. We show that:

Unless P=NP, no algorithm enumerates the admissible or preferred extensions of an AF
in output-polynomial time, even when the AF is an oriented graph.
Assuming the Strong Exponential Time Hypothesis, our algorithm for the decision variant
of MASE is optimal.
The enumeration bound in Theorem 1 is tight (i.e: there exist instances with 2µ(I)

maximal admissible subsets within distance k).

We also briefly justify the choice of the measure µ we use for our MASE algorithm by
comparing it against similar measures.

Notation. An oriented graph is a digraph with no 2-cycles.
We will use the notation N(v) to denote the set of vertices adjacent to v and N [v] to

denote N(v) ∪ {v}.
We will assume throughout that AFs have no self loops. In the full version we present

the Loopless Translation which, with a (small) constant overhead, transforms any AF into a
loopless AF with the same lattice of admissible extensions (under inclusion).

2 Background on Analysis of Branching Algorithms

All results here can be found in standard textbooks. We mostly follow Fomin & Kratsch [19].
To analyze our branching algorithms we use Measure & Conquer [18]. A measure is a

function assigning a non-negative number to each instance I.
We define the following standard terminology (e.g: see [19, 13]).

I Definition 3 (Branching Vector and Number [19]). Let µ be a measure. Let b be a branching
rule that for any input instance, say I, branches into r instances with measures µ(I) −
t1, µ(I) − t2, . . . , µ(I) − tr such that for all i, ti > 0. Then we call b = (t1, t2, . . . , tr) the
branching vector of branching rule b.

Let α be the unique positive real root of xn − xn−t1 − xn−t2 − . . .− xn−tr .
We call α the branching number of the branching vector b.

The following lemma from [22] forms the basis for the analysis of our branching algorithms.

I Lemma 4 (Combine Analysis Lemma [22]). Let A be an algorithm for a problem which for
each instance, say I, either directly solves the instance in O∗(αµ(I)

0 ) time or after polynomial
time, applies one of r branching rules bi, the i-th of which has branching number αi. Then A
has running time O∗(αµ(I)) where α = max0≤i≤r(αi).

The following lemma forms the basis of our enumeration bounds. The search tree of a
branching algorithm is the tree formed by the recursive calls, with the leaves being cases
that can be solved directly. In all our applications the number of leaves is an upper bound
on the number of objects being enumerated.

I Lemma 5 (Combine Analysis Lemma for Enumeration). Let A be an algorithm for a problem
which for each instance, say I, either directly solves the instance with a branching algorithm
that generates at most αµ(I)

0 leaves or applies one of r branching rules bi, the i-th of which
has branching number αi. Then the search tree for applying A to I has at most αµ(I) leaves
where α = maxi(αi).

MFCS 2019
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3 Parameterized Enumeration Problems

Our algorithm for MASE follows a standard template for parameterized branching algorithms
(see Section 2 for notation). We will consider the measure µ(I) = k

2 + b
4 where k is the

number of vertices we are allowed to remove and b := r(G[S]) is the resolution order of
G[S]. We will design a branching algorithm with run time O∗(2µ(I)) which recurses into
subinstances and collates their results to obtain the maximal admissible subsets of S.

However, there is a technical difficulty in the collation step arising from the fact that a
maximal admissible subset of S′ ( S may not be a maximal admissible subset of S. This
gives rise to the following subproblem:

Maximal Subset Collation
Input: Graph G, c pairs (Si, Ci) where for each i, Si ⊆ V (G) and Ci is a set containing

only maximal admissible subsets of Si

Output: A set containing all maximal elements of
⋃c

i=1 Ci

The main result we need is:

I Lemma 6. Maximal Subset Collation can be solved in O(c
∑c
i=1|Ci| · poly(|V |)) time.

An algorithm for Maximal Subset Collation can be found in the full version. It is a
consequence of Lemma 7.

3.1 An O∗(2µ(I)) algorithm for Maximal Admissible Subset
Enumeration

The overall structure of our algorithm is described in Algorithm 1.
The following table lists the branching rules in application order with the first row being

the base case. The second column describes the instances each rule is applicable to. After
applying simplification rules, our branching algorithm will always apply the first rule that is
applicable to the input instance.

Case Requirement to apply Running Time

Base S is conflict-free. Solves in O∗(1) time, returns
≤ 1 set.

1 G[S] is oriented with maximum total degree ≤ 2. Branching vector (1, 1),
branching number 2.

2 There is a 2-cycle in G[S]. Branching vector (1, 1),
branching number 2.

3 G[S] has maximum total degree ≥ 4. Branching vector (2, 1
2 ),

branching number ≈ 1.91.
4 G[S] contains a vertex with total degree 3. Branching vector (1, 3

2 ),
branching number ≈ 1.76.

We note that these requirements are exhaustive, hence there will always be at least one
applicable rule in any instance.

The base case follows trivially from the following more general result:

I Lemma 7. Suppose S ⊆ V (G) induces a DAG in G. Then S has exactly one maximal
admissible subset and it can be found in polynomial time.

The main tool for this is the following Simplification Rule which we will use repeatedly:

I Simplification Rule 1 (Undefendable). Let u ∈ S be a vertex such that there exists a
vertex a ∈ V (G), a attacks u and no vertex in S attacks a. Then there is no admissible
subset of S that contains u so we can safely set S ← S \ {u}.
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Algorithm 1 Structure of MASE branching algorithm.

Ensure: Returns all maximal admissible subsets T ⊆ S such that |S \ T | ≤ k
function MASE(S, k)

if k < 0 then
return ∅

while (Undefendable) applies do
Apply (Undefendable)

if Base Case applies then
Solve the instance directly through the base case subroutine.

else
Let bi be the first branching rule that applies.
Let (S1, k1) . . . (Sr, kr) be the subinstances obtained from applying bi.
Let Ci = MASE(Si, ki), for all 1 ≤ i ≤ r.
return Maximal_Subset_Collation((S1, C1), . . . , (Sr, Cr))

Lemma 7 follows from applying (Undefendable) to S until it is no longer applicable.
Then S is acceptable with respect to S (all vertices in V attacking S are also attacked by
S) and conflict-free (else (Undefendable) would be applicable to any vertex attacked by a
maximal vertex in G[S]). Hence, by definition, S is admissible. It is the unique maximal
admissible subset as (Undefendable) only removes vertices in no admissible subsets of S.

The above results are essentially all well known (see [14, 8] for earlier applications of
(Undefendable)). The full version contains the above argument in more detail.

Proofs of the branching cases can be found in the full version. A few short remarks:
Case 1 follows from noting G[S] must be a family of cycles.
Cases 2 and 3 follow from picking a specific vertex v then applying a 2-way branch, in

one branch enumerating all maximal admissible subsets that include v, in the other branch
enumerating all that do not include v. In case 2 we pick the vertex in the 2-cycle with higher
total degree. In case 3 we pick any vertex with total degree at least 4.

Case 4 is probably the most instructive. It best showcases the power of (Undefendable).
First we show a vertex v exists with in-degree 1, out-degree 2. Then a 2-way branch is
applied to the vertex attacking v, using (Undefendable) to improve the branch where the
vertex is excluded and v is left with in-degree 0.

3.2 Running Time Analysis
The base case is solvable in polynomial time. Each of our branching rules has branching
number ≤ 2. Hence, if we ignore the calls to Maximal Subset Collation, by the Combine
Analysis Lemma our algorithm has running time O∗(2µ(I)).

Maximal Subset Collation is applied to each admissible subset encountered by the MASE
algorithm (i.e: each leaf in the search tree) at most d times, where d is the maximum depth
of the search tree. By Lemma 6 each application incurs a O(poly(|V |)) cost (c ≤ 2 for our
branching rules). Hence the overall cost incurred by the Maximal Subset Collation step is

O(A · d · poly(|V |))

where A is the total number of admissible subsets encountered by the MASE algorithm
(equivalently, the number of leaves in the search tree). By the Combine Analysis Lemma for
Enumeration, A is O(2µ(I)). The maximum depth d is O(µ(I)) which we may take to be
O(|V |). Hence Maximal Subset Collation incurs an overhead cost of O∗(2µ(I)).

MFCS 2019
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As noted, our algorithm also satisfies the requirements for applying the Combine Analysis
Lemma for Enumeration. We summarize all the above results in the following theorem.

I Theorem 8. Let µ(I) = k
2 + b

4 , where b is the resolution order of G[S]. Then MASE can
be solved in O∗(2µ(I)) time. Furthermore, there are at most 2µ(I) maximal admissible subsets
of S within distance k of S. Hence, there are at most 2µ(I) preferred extensions that are
subsets of S with size ≥ |S| − k.

4 Monotone Local Search

In this section, we apply Monotone Local Search to our O∗(2µ(I)) algorithm for Maximal
Admissible Subset Enumeration. A basic exposition of Monotone Local Search will be
provided here, see [17] for additional background. We adopt the notation of [17].

The framework normally applies to extension problems. However we can just as easily
apply it to removal problems (formally by focusing on the complement of each set, we
can turn any removal problem into an extension problem). Hence, we will freely use the
framework with removal problems instead.

For our application, the instance I is the graph G and the family we are looking to
enumerate, FI , is the set of all preferred extensions of G. We will apply Monotone Local
Search using MASE as our subroutine.

For a MASE instance I ′ = (G,X, k), let FkI,X denote the set of all maximal admissible
sets T ⊆ X such that |X \ T | ≤ k. Hence FkI,X contains all preferred extensions that are
subsets of X within distance k, but may also contain admissible extensions that are not
preferred extensions.

Because of this, our Monotone Local Search will enumerate FI , however, it may also
enumerate some non-maximal admissible extensions. Our result, Theorem 10, will account
for this, however, for simplicity we will just speak of enumerating FI throughout this section.

A naive application of the Monotone Local Search framework with our O∗
(

2 k
2 + b

4

)
algorithm for enumerating FkI,X yields an O∗

(
2 b

4

(
2− 1√

2

)n+o(n)
)
≈ O∗(1.1893b · 1.2929n)

time algorithm that enumerates all preferred extensions of G. To improve this we need a
basic understanding of how Monotone Local Search works.

4.1 Basic Overview of Monotone Local Search
We need the following definition from [17] (slightly modified to account for our preference for
removal problems):

I Definition 9 ([17]). Let U be a universe of size n and let 0 ≤ p ≤ q ≤ n. A family C ⊆
(
U
q

)
is an (n, p, q)-set-containing-family if for every set S ∈

(
U
p

)
, there exists a Y ∈ C such that

S ⊆ Y .

For any fixed s, a value t ≥ s will somehow be chosen. Then, a (n, s, t)-set-containing-
family Cs is constructed. For each set in Cs, its subsets from FI obtained by removing at
most t− s elements are then enumerated using an enumeration subroutine. This enumerates
all elements of FI with size s. Supposing the subroutine has run time O∗(αk) (where k is
the parameter), this step of Monotone Local Search has run time O∗(|Cs| · αt−s).

Repeating this for all s, Monotone Local Search has running time O∗( max
1≤s≤n

|Cs| · αt−s).

With the right choices of t and Cs, [17] shows the running time O∗((2− 1
α )n+o(n)).
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Algorithm 2 Structure of Improved Monotone Local Search algorithm.

Ensure: Returns a set containing all preferred extensions of G (and possibly some non-
preferred extensions)
function ImprovedMLS(G)

Let FI = ∅.
for b = 1 to |B| do

Let b′ = determine_b′(b).
Let Cb be a (|B|, b, b′)-set-containing-family.
for d = 1 to |D| do

Let d′ = determine_d′(d).
Let Cd be a (|D|, d, d′)-set-containing-family.
for all pairs (S, T ) with S ∈ Cb, T ∈ Cd do

Let FI = FI ∪MASE(S ∪ T, (b′ − b) + (d′ − d)).
return FI

4.2 Improving our Monotone Local Search
We start with some notation. For any digraph G = (V,E), let B be the set of vertices in V
in at least one 2-cycle and let D := V \B. The key idea is we will sample vertices from B

and D separately. The overall structure is described in Algorithm 2. Except for the separate
sampling, it is identical to a standard application of Monotone Local Search.

First, we argue correctness, i.e: that every preferred extension is enumerated at least
once. Fix a preferred extension, say U , and suppose U contains b vertices in B and d vertices
in D. Then, by the definition of set-containing-families, there exists a S ∈ Cb such that
U ∩B ⊆ S and a T ∈ Cd such that U \B ⊆ T . Now we note that S ⊆ B, T ⊆ V \B to get:

|(S t T ) \ U | = |S \ (U ∩B)|+ |T \ (U \B)| = (b′ − b) + (d′ − d)

Hence U is enumerated in the call to MASE(S ∪ T, (b′ − b) + (d′ − d)) as required.
Now we argue the runtime. For a fixed b, d the calls to MASE have total run time

O∗(|Cb| · |Cd| · 2
(b′−b)+(d′−d)

2 + b′
4 ) for some choice of b′, d′. Our overall running time is

O∗
(

max
0≤b≤|B|

max
0≤d≤|D|

|Cb| · |Cd| · 2
(b′−b)+(d′−d)

2 + b′
4

)

We can split this into two terms to get a complexity of O∗
(

max
0≤d≤|D|

|Cd| · 2
(d′−d)

2

)
multiplied

by O∗
(

max
0≤b≤|B|

|Cb| · 2
(b′−b)

2 + b′
4

)
.

We will now analyze the running time with the right choices of b′ and d′.
The first of these two terms can be analyzed using the analysis in [17]. This term is the

complexity one attains for Monotone Local Search with a O∗(2 k
2 ) subroutine. Hence the

analysis in [17] gives a complexity of O∗((2− 1√
2 )|D|+o(|D|)).

We need the extended analysis presented in [23] to analyze the second term. This term
is the complexity one attains for Monotone Local Search with a O∗(2 k

2 + n−|X|
4 ) subroutine

(where k is the parameter, n = |U | the size of the underlying set and X is the set we are
extending). Hence the analysis in [23] gives a complexity of O∗((1 + 2 1

4 − 1√
2 )|B|+o(|B|)).

The papers we have cited also give a corresponding combinatorial upper bound on the
number of preferred extensions. We summarize the above results as follows.

MFCS 2019



74:10 Enumeration of Preferred Extensions in Almost Oriented Digraphs

I Theorem 10. Let G = (V,E) be a digraph. Let r be the proportion of vertices in V that
are in at least one 2-cycle.

Then there exists a O∗(((1+2 1
4 − 1√

2 )r(2− 1√
2 )1−r)|V |+o(|V |)) ≈ O∗((1.4822r1.29291−r)|V |)

time algorithm that enumerates all preferred extensions of G; however it may also enumerate
some non-maximal admissible extensions. Furthermore, there are at most O∗(((1 + 2 1

4 −
1√
2 )r(2− 1√

2 )1−r)|V |) ≈ O∗((1.4822r1.29291−r)|V |) preferred extensions in G.

5 Improved Enumeration Algorithm for Oriented Graphs

Finally, we outline a branching algorithm with a finer analysis for oriented graphs. As with
MASE, we will follow a standard template for branching algorithms. A summary of the
necessary concepts can be found in Section 2. Our algorithm creates a search tree with at
most ϕn leaves where ϕ ≈ 1.2321 is the branching number for branching vector (8, 1).

In Section 6 we will use the Oriented Translation (Theorem 2) to obtain a general
enumeration algorithm parameterized by the number of vertices in at least one 2-cycle.

5.1 Overview
The overall structure of our algorithm is described in Algorithm 3.

The state of the algorithm consists of the subset Und ⊆ V (G) and a queue of vertices
Def (Und for undecided and Def for deferred). Und is the set of vertices we have yet to
make a decision on whether we should include them. Def is a queue of vertices which have
no outgoing arcs to Und. These vertices will be handled in the base case. While branching
we can essentially assume the vertices in Def do not exist.

We maintain the following invariants. We outline why they are invariant, it is straight-
forward to verify that each case of our branching algorithm maintains these invariants.
1. Und and Def are disjoint. This holds as vertices are only ever deleted from or moved

between Und and Def, never copied.
2. G[Def] is a DAG where each vertex v ∈ Def only attacks vertices that were added to Def

before v. This is crucial for the base case since a DAG has 1 maximal admissible subset.
This holds as only vertices with out-degree 0 in G[Und] are ever moved to Def.

3. There is no attack from any vertex in Def to any vertex in Und. This holds for the same
reason as Invariant 2.

Our measure is µ = |Und|. For any instance, our algorithm creates a search tree with
at most ϕµ leaves. Hence, calling OrientedEnumeration(V (G), []) will return all preferred
extensions of G by traversing a search tree with at most ϕ|V (G)| leaves.

5.2 Extra Notation
We will say a vertex has degree (a,−) if it has in-degree a, a vertex has degree (−, b) if it
has out-degree b and a vertex has degree (a, b) if it has in-degree a and out-degree b.

5.3 Simplification Rules
Both of these are applicable in polynomial time and decrease µ = |Und|.

I Simplification Rule 2 (Out-degree 0). Let v be a vertex in G[Und] with out-degree 0. Move
v from Und to the end of the queue Def.
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Algorithm 3 Structure of Oriented maximal admissible enumeration algorithm.

Require: Und∩Def = ∅.
Require: G[Def] is a DAG where each v ∈ Def only attacks vertices added to Def before v.
Require: There is no attack from any vertex in Def to any vertex in Und.
Ensure: Returns all maximal admissible subsets of Und∪Def.

function OrientedEnumeration(Und,Def)
while Any simplification rule applies do

Apply said simplification rule
if Base Case applies then

Solve the instance directly through the base case subroutine.
else

Let bi be the first branching rule that applies.
Let (U1, D1) . . . (Ur, Dr) be the subinstances obtained from applying bi.
Let Ci = OrientedEnumeration(Ui, Di), for all 1 ≤ i ≤ r.
return Maximal_Subset_Collation((U1 ∪D1, C1), . . . , (Ur ∪Dr, Cr))

I Simplification Rule 3 (In-degree 0). Let v be any vertex in G[Und] with in-degree 0.
Then by Invariant 3, v has in-degree 0 in G[Und∪Def]. Applying Simplification Rule
(Undefendable) we can set Und← Und \N(v). After that, v has out-degree 0 in G[Und]
and hence we move v from Und to Def.

Our new instance I ′ = (Und′,Def ′) has:
Und′ = Und \N [v].
Def ′ = Def ∪{v}.

Due to these rules, henceforth we may assume each vertex in G[Und] has in-degree ≥ 1,
out-degree ≥ 1 and (total) degree ≥ 2.

5.4 Branching Rules
Our algorithm will apply the first rule applicable to the instance:

Case Requirement to apply Worst case branching number

Base Und = ∅. Solves in O∗(1), returns 1 set.
1 ∃v ∈ G[Und] with total degree ≥ 7. Branching vector (8, 1),

branching number ϕ ≈ 1.2321.
2 ∃v ∈ G[Und] with degree (1,−). Branching vector (4, 3),

branching number ≈ 1.221.
3 ∃v ∈ G[Und] with in-degree 6= out-degree. Branching vector (6, 5, 5),

branching number ≈ 1.2298.
4 G[Und] has a weakly connected component where

every vertex has degree (2, 2).
Branching vector (6, 5, 5),
branching number ≈ 1.2298.

5 G[Und] has a weakly connected component where
every vertex has degree (3, 3).

Branching vector (7, 7, 7, 7),
branching number ≈ 1.219.

6 There is a weakly connected component in G[Und]
where every vertex has in-degree = out-degree.

Branching vector (7, 5, 5),
branching number ≈ 1.218.

We note the base case and cases 3 and 6 cover all possible inputs. Hence there will always
be at least one applicable rule.
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Our primary strategy is to pick a specific vertex v and do a 2-way branch, separately
enumerating the maximal admissible subsets that include v and the ones that exclude v.

In the branch where we include v we must exclude v’s neighbors. Hence we create a new
instance I ′ = (Und′,Def) where Und′ = Und \N(v).
Now v is isolated in G[Und′] so by Simplification Rule 2 we may move v from Und′ to
Def ′. Hence in our new instance we finally have:

Und′ = Und \N [v].
Def ′ = Def ∪{v}.

and hence µ(I ′) = µ(I)− |N [v]| = µ(I)− deg(v)− 1.
As a technical note, not every subset enumerated in this branch contains v, however,
every maximal admissible subset that contains v will be enumerated in this branch.
In the branch where we exclude v our new instance I ′ = (Und′,Def ′) is:

Und′ = Und \{v}.
Def ′ = Def.

and hence µ(I ′) = µ(I)− 1.

Hence our branching vector is (deg(v) + 1, 1). However, often our choice of v allows us to
immediately apply our simplification rules to improve the branch where v is excluded.

Full proofs of each case can be found in the full version. A few short remarks:
In the base case, by Invariant 2, G[Und∪Def] is a DAG. The base case then follows

trivially from Lemma 7.
Case 2 is a good example of the strategy of picking a specific v to apply a 2-way branch

on. We will pick a v that allows us to apply our simplification rules in the branch where v is
excluded. However, the choice of v will depend on some case analysis on degrees of vertices.

Case 3 is similar to Case 2, a specific v is chosen on which we apply a 2-way branch.
Case 4 is done through a graph classification theorem. We classify the family of oriented

graphs where each vertex has in-degree 2, out-degree 2 and both in-neighbors adjacent (if
there is a vertex with independent in-neighbors then we instead apply a 3-way branch on
that vertex and its in-neighbors).

Case 5 is just a 4-way branch on any vertex v and its 3 in-neighbors.
For Case 6, we first show there is a vertex with degree (3, 3) attacking a vertex with

degree (2, 2), say b. Then we apply a 3-way branch on b and its 2 in-neighbors.

5.5 Summary of results
In our base case we enumerate 1 extension in polynomial time.

Otherwise, we apply a branching rule with branching number ≤ ϕ.
As in MASE, the Maximal Subset Collation subroutine does not incur additional overhead

as the search tree’s depth is bounded by |V (G)| (see Subsection 3.2 for the argument which
we can apply verbatim).

Applying the Combine Analysis Lemma and Combine Analysis Lemma for Enumeration
we obtain:

I Theorem 11. Let G = (V,E) be an oriented graph. Then there is an algorithm that
enumerates all preferred extensions of G with running time O∗(ϕ|V |) where ϕ is the unique
positive root of 1− x−1 − x−8 = 0, ϕ ≈ 1.23205 < 1.2321.

Furthermore, G has at most ϕ|V | preferred extensions.
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6 Bounds on number of preferred extensions

In this section, we collect our results bounding the number of preferred extensions.

6.1 Bounds on general directed graphs

A tight upper bound is O(3
|V |

3 ) [16]. This bound is easily attainable since preferred extensions
coincide with maximal independent sets(MIS) in graphs where every edge is in a 2-cycle.

We can also enumerate them in O∗(3
|V |

3 ). We note each MIS has a single maximal
admissible subset. We then take a branching algorithm for MIS[22], allowing us to apply
the Maximal Subset Collation subroutine to remove the non preferred extensions without
additional overhead. Hence, all preferred extensions can be enumerated in O∗(3

|V |
3 ).

6.2 Parameterizing by Resolution Order

We will give bounds based on r, the proportion of vertices that are in at least one 2-cycle.

6.2.1 Lower Bound

An undirected 3-cycle has 3 preferred extensions. Hence, applying the Oriented Translation
to it, we obtain an oriented structure with 6 vertices and 3 preferred extensions.

Our construction for lower bounding will be to include as many undirected 3-cycles as
possible and then include as many oriented translations of 3-cycles as possible. We can
include r|V |

3 undirected 3-cycles and (1−r)|V |
6 oriented translations, obtaining an AF with

Ω((3 r
3 3 1−r

6 )|V |) ≈ ((1.44r1.21−r)|V |) preferred extensions.

6.2.2 Upper Bound

There are 3 different upper bounds that are all optimal in a different range. See also Figure 1.

(ϕ2rϕ1−r)|V | ≈ O((1.5180r1.23211−r)|V |) where ϕ is the unique positive root of 1−x−1−
x−8. This bound is obtained from using the Oriented Translation along with Theorem 11.
This is best for r up to around 0.6684.

O∗(((1 + 2 1
4 − 1√

2 )r(2− 1√
2 )1−r)|V |) ≈ O∗((1.4822r1.29291−r)|V |), the bound from our

2-phase Monotone Local Search. This is best for a small range where 0.6685 ≤ r ≤ 0.8004.

3
|V |

3 . This is best for r ≥ 0.8005.

7 Conclusion

We again note that the concept of an admissible (resp. preferred) extension has also been
studied as a semikernel[27] (resp. maximal semikernel) in graph theory. Hence our result
may be interpreted as a combinatorial upper bound on the number of maximal semikernels,
parameterized by the proportion of vertices in at least one 2-cycle.
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