34 research outputs found

    The Metric Dimension of Graph with Pendant Edges

    Get PDF
    For an ordered set W = {w_1,w_2,...,w_k} of vertices and a vertex v in a connected graph G, the representation of v with respect to W is the ordered k-tuple r(v|W) = (d(v,w_1), d(v,w_2),..., d(v,w_k)) where d(x,y) represents the distance between the vertices x and y. The set W is called a resolving set for G if every two vertices of G have distinct representations. A resolving set containing a minimum number of vertices is called a basis for G. The dimension of G, denoted by dim(G), is the number of vertices in a basis of G. In this paper, we determine the dimensions of some corona graphs G⊙K_1, and G⊙K_m for any graph G and m ≥ 2, and a graph with pendant edges more general than corona graphs G⊙K_m

    Metric Dimension of Amalgamation of Graphs

    Full text link
    A set of vertices SS resolves a graph GG if every vertex is uniquely determined by its vector of distances to the vertices in SS. The metric dimension of GG is the minimum cardinality of a resolving set of GG. Let {G1,G2,,Gn}\{G_1, G_2, \ldots, G_n\} be a finite collection of graphs and each GiG_i has a fixed vertex v0iv_{0_i} or a fixed edge e0ie_{0_i} called a terminal vertex or edge, respectively. The \emph{vertex-amalgamation} of G1,G2,,GnG_1, G_2, \ldots, G_n, denoted by VertexAmal{Gi;v0i}Vertex-Amal\{G_i;v_{0_i}\}, is formed by taking all the GiG_i's and identifying their terminal vertices. Similarly, the \emph{edge-amalgamation} of G1,G2,,GnG_1, G_2, \ldots, G_n, denoted by EdgeAmal{Gi;e0i}Edge-Amal\{G_i;e_{0_i}\}, is formed by taking all the GiG_i's and identifying their terminal edges. Here we study the metric dimensions of vertex-amalgamation and edge-amalgamation for finite collection of arbitrary graphs. We give lower and upper bounds for the dimensions, show that the bounds are tight, and construct infinitely many graphs for each possible value between the bounds.Comment: 9 pages, 2 figures, Seventh Czech-Slovak International Symposium on Graph Theory, Combinatorics, Algorithms and Applications (CSGT2013), revised version 21 December 201

    On the metric dimension of corona product graphs

    Get PDF
    Given a set of vertices S={v1,v2,...,vk}S=\{v_1,v_2,...,v_k\} of a connected graph GG, the metric representation of a vertex vv of GG with respect to SS is the vector r(vS)=(d(v,v1),d(v,v2),...,d(v,vk))r(v|S)=(d(v,v_1),d(v,v_2),...,d(v,v_k)), where d(v,vi)d(v,v_i), i{1,...,k}i\in \{1,...,k\} denotes the distance between vv and viv_i. SS is a resolving set for GG if for every pair of vertices u,vu,v of GG, r(uS)r(vS)r(u|S)\ne r(v|S). The metric dimension of GG, dim(G)dim(G), is the minimum cardinality of any resolving set for GG. Let GG and HH be two graphs of order n1n_1 and n2n_2, respectively. The corona product GHG\odot H is defined as the graph obtained from GG and HH by taking one copy of GG and n1n_1 copies of HH and joining by an edge each vertex from the ithi^{th}-copy of HH with the ithi^{th}-vertex of GG. For any integer k2k\ge 2, we define the graph GkHG\odot^k H recursively from GHG\odot H as GkH=(Gk1H)HG\odot^k H=(G\odot^{k-1} H)\odot H. We give several results on the metric dimension of GkHG\odot^k H. For instance, we show that given two connected graphs GG and HH of order n12n_1\ge 2 and n22n_2\ge 2, respectively, if the diameter of HH is at most two, then dim(GkH)=n1(n2+1)k1dim(H)dim(G\odot^k H)=n_1(n_2+1)^{k-1}dim(H). Moreover, if n27n_2\ge 7 and the diameter of HH is greater than five or HH is a cycle graph, then $dim(G\odot^k H)=n_1(n_2+1)^{k-1}dim(K_1\odot H).

    On Metric Dimension of Functigraphs

    Full text link
    The \emph{metric dimension} of a graph GG, denoted by dim(G)\dim(G), is the minimum number of vertices such that each vertex is uniquely determined by its distances to the chosen vertices. Let G1G_1 and G2G_2 be disjoint copies of a graph GG and let f:V(G1)V(G2)f: V(G_1) \rightarrow V(G_2) be a function. Then a \emph{functigraph} C(G,f)=(V,E)C(G, f)=(V, E) has the vertex set V=V(G1)V(G2)V=V(G_1) \cup V(G_2) and the edge set E=E(G1)E(G2){uvv=f(u)}E=E(G_1) \cup E(G_2) \cup \{uv \mid v=f(u)\}. We study how metric dimension behaves in passing from GG to C(G,f)C(G,f) by first showing that 2dim(C(G,f))2n32 \le \dim(C(G, f)) \le 2n-3, if GG is a connected graph of order n3n \ge 3 and ff is any function. We further investigate the metric dimension of functigraphs on complete graphs and on cycles.Comment: 10 pages, 7 figure
    corecore