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Abstract

For an ordered set W = {w1, w2, · · · , wk} of vertices and a vertex

v in a connected graph G, the representation of v with respect to

W is the ordered k-tuple r(v|W ) = (d(v, w1), d(v, w2), · · · , d(v, wk))

where d(x, y) represents the distance between the vertices x and y.

The set W is called a resolving set for G if every two vertices of G

have distinct representations. A resolving set containing a minimum

number of vertices is called a basis for G. The dimension of G,

denoted by dim(G), is the number of vertices in a basis of G. In this

paper, we determine the dimensions of some corona graphs G¯K1,

G ¯ Km, for any graph G and m ≥ 2, and a graph with pendant

edges more general than corona graphs G¯Km.

1 Introduction

In this paper we consider finite, simple, and connected graphs. The vertex
and edge sets of a graph G are denoted by V (G) and E(G), respectively. We
refer the general graph theory notations and terminologies are not described
in this paper to the book Graphs and Digraphs [6].

The distance d(u, v) between two vertices u and v in a connected graph
G is the length of a shortest u − v path in G. For an ordered set W =
{w1, w2, · · · , wk} ⊆ V (G) of vertices, we refer to the ordered k-tuple
r(v|W ) = (d(v, w1), d(v, w2), · · · , d(v, wk)) as the (metric) representation
of v with respect to W. The set W is called a resolving set for G if r(u|W ) =
r(v|W ) implies that u = v, for all u, v ∈ G. A resolving set of minimum
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cardinality for a graph G is called a minimum resolving set or a basis for
G. The metric dimension dim(G) is the number of vertices in a basis for
G.

The beginning papers for the idea of a resolving set (and of a minimum
resolving set) were written by Slater in [10] and [11]. Slater introduced the
concept of a resolving set for a connected graph G under the term location
set. He called the cardinality of a minimum resolving set the location
number of G. Independently, Harary and Melter [8] introduced the same
concept but used the term metric dimension, rather than location number.

Chartrand et. al. [5] determined the bounds of the metric dimensions
for any connected graphs and determined the metric dimensions of some
well known families of graphs such as trees, paths, and complete graphs.
Buczkowski et. al. [1] stated the existence of a graph G with dim(G) = k
or a k-dimensional graph, for every integer k ≥ 2. They also determined
dimensions of wheels. Chappell et. al. [4] considered relationships between
metric dimension with other parameters in a graph. Another researchers
in [2, 7] determined the metric dimension of cartesian products of graphs
and Cayley digraphs. In the following, we present some known results.

Theorem A ([2, 7]). Let G be a connected graph of order n ≥ 2.

(i.) dim(G) = 1 if and only if G = Pn

(ii.) dim(G) = n− 1 if and only if G = Kn

(iii.) For n ≥ 3, dim(Cn) = 2

(iv.) For n ≥ 4, dim(G) = n − 2 if and only if G = Kr,s, (r, s ≥ 1),
G = Kr + Ks, (r ≥ 1, s ≥ 2), or G = Kr + (K1 ∪Ks), (r, s ≥ 1)

(v.) If T is a tree that is not a path, then dim(T ) = σ(T )− ex(T ), where
σ(T ) denotes the sum of the terminal degrees of the major vertices of
T , and ex(T ) denotes the number of the exterior major vertices of T .

Let G and H be two given graphs with G having n vertices, the corona
product G¯H is defined as a graph with

V (G¯H) = V (G) ∪
⋃

i∈V (G)

V (Hi),

E(G¯H) = E(G) ∪
⋃

i∈V (G)

(E(Hi) ∪ {iui|ui ∈ V (Hi)}),
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where Hi
∼= H, for all i ∈ V (G). If H ∼= Km, G¯H is equal to the graph

produced by adding n pendant edges to every vertex of G. Especially, if
H ∼= K1, G ¯ H is equal to the graph produced by adding one pendant
edge to every vertex of G. Buczkowski et. al. in [1] proved that if G′ is a
graph obtained by adding a pendant edge to a nontrivial connected graph
G, then

dim(G) ≤ dim(G′) ≤ dim(G) + 1.
Therefore, for G¯K1 we have:

dim(G) ≤ dim(G¯K1).
If G ∼= K1 and H ∼= Cn, G¯H is equal to wheel Wn = K1 +Cn. If G ∼= K1

and H ∼= Pn, G ¯ H is equal to fan Fn = K1 + Pn. Buczkowski et. al.
and Caceres et. al. in [1, 3], determined the dimensions of wheels and fans,
namely: dim(Wn) = b 2n+2

5 c, for n /∈ {3, 6}, and dim(Fn) = b 2n+2
5 c, for

n /∈ {1, 2, 3, 6}.
Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs. The Cartesian

products G1 × G2 is the new graph whose vertex set is V1 × V2 and two
vertices (x1, x2) and (y1, y2) being adjacent in G1×G2 if and only if either
x1 = y1 and x2y2 ∈ E2 or x2 = y2 and x1y1 ∈ E1. K1 or P1 is a unit
with respect to the Cartesian product. In other words, H × G = G and
G × H = G for any graph G, with H = K1 or P1. Caceres et. al. [3]
determined the metric dimension of some cartesian product graphs, namely:
dim(Pm × Pn) = 2, dim(Pm ×Kn) = n− 1, for n ≥ 3, and

dim(Pm × Cn) =
{

2, if n odd;
3, if n even (m 6= 1).

In this paper, we determine the dimensions of some corona graphs in
G ¯K1 and G ¯Km, for any graph G and m ≥ 2. We also consider the
dimension of a graph with pendant edges more general than corona graphs
G ¯ Km obtained from graph G by adding a (not necessarily the same)
number of pendant edges to every vertex of G.

2 Results

In Theorem 1, we will determine the metric dimension of Cn¯K1. This class
of graph is known as the sun graphs Sun(n). Let B = {w1, w2, · · · , wk}
is a basis of Sun(n), v is a vertex in G and u is a pendant vertex of v
in Sun(n). If the representation of vertex v ∈ Sun(n) by B is r(v|B) =
(d(v, w1), d(v, w2), · · · , d(v, wk)), then r(u|B) = (d(v, w1) + 1, d(v, w2) +
1, · · · , d(v, wk) + 1), for u /∈ B. It is easy to show that dim(Sun(3)) =
dim(Sun(4)) = dim(Sun(5)) = 2, and dim(Sun(6)) = 3. For n ≥ 7, the
dimension of Sun(n) is 2 for odd n and 3 for even n.
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Theorem 1. For n ≥ 7,

dim(Sun(n)) =
{

2, n is odd,
3, n is even.

Proof Let Sun(n) = Cn ¯K1, where Cn : v1, v2, · · · , vn, and let ui is a
pendant vertex of vi, for n ≥ 7.

Case 1 n = 2l + 1 for some integer l ≥ 3. First, we show dim(Sun(n))
≤ 2 by constructing a resolving set in Sun(n) with 2 vertices. Choose a
resolving set B = {u1, ul}. The representation of vertices v′s by B are

r(vk|B) = (k, l − k + 1), for 1 ≤ k ≤ l,
r(vl+1|B) = (l + 1, 2),
r(vk|B) = (n− k + 2, k − l + 1), for l + 2 ≤ k ≤ n− 1,
r(vn|B) = (2, l + 1).

By inspection directly, for every pair u and v ∈ V (Sun(n)) −B, and u 6= v,
r(u|B) 6= r(v|B). So, B is a resolving set. Then, by using Theorem A (i),
dim(Sun(n)) = 2.

Case 2 n = 2l for some integer l ≥ 4. We will show that dim(Sun(n)) ≥
3. By Theorem A (i), we only need show that dim(Sun(n)) 6= 2. Suppose
that dim(Sun(n)) = 2. Let B = {x, y} is a resolving set of Sun(n).

Subcase 2.1 x, y ∈ {v1, v2, · · · , vn}. By symmetry, we can assume that
(x = v1 and y = vl+1) or (x = v1 and y = vk, with 2 ≤ k ≤ l). If x = v1

and y = vl+1 then r(v2|B) = (1, l−1) = r(vn|B), a contradiction. If x = v1

and y = vk, 2 ≤ k ≤ l, then r(uk|B) = (k, 1) = r(vk+1|B), a contradiction.

Subcase 2.2 x, y ∈ {u1, u2, · · · , un}. Again by symmetry, if x = u1 and
y = uk, with 2 ≤ k ≤ l − 1, then r(uk+1|B) = (k + 2, 3) = r(vk+2|B), a
contradiction. If x = u1 and y = ul then r(ul−1|B) = (l, 3) = r(vl+2|B), a
contradiction. If x = u1 and y = ul+1 then r(v2|B) = (2, l) = r(vn|B), a
contradiction.

Subcase 2.3 x ∈ {u1, u2, · · · , un} and y ∈ {v1, v2, · · · , vn} or reverse. Let
be the previous one. If x = u1 and y = v1 then r(v2|B) = (2, 1) = r(vn|B),
a contradiction. If x = u1 and y = vk, with 2 ≤ k ≤ l, then r(uk|B) =
(k + 1, 1) = r(vk+1|B), a contradiction. If x = u1 and y = vl+1, then
r(v2|B) = (2, l − 1) = r(vn|B), a contradiction.

Therefore, dim(Sun(n)) ≥ 3. Next, we will show that dim(Sun(n)) ≤ 3.
Choose a resolving set B = {u1, u2, ul}, then the representation of vertices
v ∈ Cn by B are

r(v1|B) = (1, 2, l),
r(vk|B) = (k, k − 1, l − k + 1) , for 2 ≤ k ≤ l,
r(vl+1|B) = (l + 1, l, 2),
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r(vk|B) = (n− k + 2, n− k + 3, k − l + 1), for l + 2 ≤ k ≤ n.
By inspection directly, for every pair u and v ∈ V (Sun(n))−B and u 6= v,
r(u|B) 6= r(v|B). Therefore, B is a resolving set, and so dim(Sun(n)) = 3.
¥

In the next theorem, the dimension of (Pn×Pm)¯K1 will be discussed.
For small numbering n and m, we have dim((P1 × P1) ¯ K1) = dim(P2)
= 1, dim((P2 × P1) ¯ K1) = dim(P2) = 1, and dim((P2 × P2) ¯ K1) =
dim(Sun(n)) = 2.

Theorem 2. For n ≥ 3 and 1 ≤ m ≤ 2, dim((Pn × Pm)¯K1) = 2.

Proof Let vij = (vi, vj) be the vertices of Pn × Pm ⊆ (Pn × Pm) ¯K1,
where vi ∈ Pn, vj ∈ Pm, 1 ≤ i ≤ n, and 1 ≤ j ≤ m. Let uij be the pendant
vertex of vij .

Case 1. m = 1. By using Theorem A (i), we only need to show that
dim((Pn × P1)¯K1) ≤ 2. Choose a resolving set B = {v11, vn1} in (Pn ×
P1)¯K1. The representation of vertices v ∈ (Pn × P1)¯K1 by B are

r(vi1|B) = (i− 1, n− i), for 2 ≤ i ≤ n− 1,
r(ui1|B) = (d(v11, vi1) + 1, d(vn1, vi1) + 1), for 1 ≤ i ≤ n.

All of those representation are distinct. Therefore, dim((Pn×P1)¯K1) = 2.

Case 2. m = 2. Again, by Theorem A (i), we only need to show that
dim((Pn × P2)¯K1) ≤ 2. Choose a resolving set B = {u11, u12} in (Pn ×
P2)¯K1. The representation of vertices v ∈ (Pn × P2)¯K1 by B are

r(vi1|B) = (i, i + 1) and r(vi2|B) = (i + 1, i), for 1 ≤ i ≤ n,
r(ui1|B) = (d(vi1, u11) + 1, d(vi1, u12) + 1)
and r(ui2|B) = (d(vi2, u11) + 1, d(vi2, u12) + 1), for 2 ≤ i ≤ n.

All of those representation are distinct. Therefore, dim((Pn×P2)¯K1) =
2. ¥

Open problem 1. Find the dimension of (Pn ×Pm)¯K1, for n ≥ 3 and
m ≥ 3.

Theorem 3. For n ≥ 3 and 1 ≤ m ≤ 2

dim((Kn × P2)¯K1) =
{

n− 1, m = 1,
n, m = 2.

Proof Let vij = (vi, vj) is a vertex in Kn × P2, where vi ∈ Kn, vj ∈ P2,
1 ≤ i ≤ n, and 1 ≤ j ≤ 2. Let uij is a pendant vertex of vij .

Case 1. m = 1. By a contradiction, we show dim((Kn × P1) ¯ K1) ≥
n − 1. Suppose that B is a basis of (Kn × P1) ¯ K1 with |B| < n − 1.
There are two vertices v and w ∈ Kn × P1 such that r(v|B) = r(w|B), a
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contradiction. Now, we show dim(Kn ¯K1) ≤ n− 1 by choose a resolving
set B = {v1, v2, · · · , vn−1} ⊆ Kn×P1 in (Kn×P1)¯K1. The representation
of vertices v ∈ (Kn × P1)¯K1 by B are

r(vn1|B) = (1, 1, · · · , 1),
r(un1|B) = (2, 2, · · · , 2),
r(ui1|B) = (· · · , 2, 1, 2, · · · ), for 1 ≤ i ≤ n− 1,

vertex ui1 is adjacent with vi and has distance 2 from all other vertices of B.
All of those representations are distinct. Therefore, dim(Kn×P1)¯K1) =
n− 1.

Case 2. m = 2. By contradiction, we will show that dim((Kn × P2)¯K1)
≥ n. Assume that B is a basis of (Kn × P2) ¯ K1, with |B| < n. If
B ⊆ {v11, v21, · · · , vn1} or B ⊆ {v12, v22, · · · , vn2}, let be the previous one,
then there exist k ∈ {1, 2, · · · , n} such that r(uk1|B) = {2, 2, · · · , 2} =
r(vk2|B), a contradiction. Otherwise, there exist k, l ∈ {1, 2, · · · , n} such
that r(ukj |B) = r(ulj |B), for 1 ≤ j ≤ 2, a contradiction too. We will
show that dim((Kn × P2) ¯ K1) ≤ n by choosing a resolving set B =
{u11, u21, · · · , un1}. The representation of vertices v ∈ (Kn × P2)¯K1 by
B are

r(vi1|B) = {· · · , 2, 1, 2, · · · },
vi1 is adjacent with ui1 and have distance 2 with the others vertex in B,

r(vi2|B) = {· · · , 3, 2, 3, · · · },
r(ui2|B) = {· · · , 4, 3, 4, · · · },

It makes all representations of vertices in (Kn × P2)¯K1 are distinct. ¥

Open problem 2. Find the dimension of (Kn×Pm)¯K1, for n ≥ 3 and
m ≥ 3.

Next, we will use the idea of distance similar introduced by Saen-
pholphat and Zhang in [9] to determine the dimension of corona graph
G ¯ Km, for any graph G and m ≥ 2. Two vertices u and v of a con-
nected graph G are defined to be distance similar if d(u, x) = d(v, x) for all
x ∈ V (G)− {u, v}. Some of their properties can be found in the following
observations.

Observation 1 ([9]). Two vertices u and v of a connected graph G are
distance similar if and only if (1) uv /∈ E(G) and N(u) = N(v) or (2)
uv ∈ E(G) and N [u] = N [v].

Observation 2 ([9]). Distance similarity in a connected graph G is an
equivalence relation on V (G).

Observation 3 ([9]). If U is a distance similar equivalence class of a
connected graph G, then U is either independent in G or in G.
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Observation 4 ([9]). If U is a distance similar equivalence class in a
connected graph G with |U | = p ≥ 2, then every resolving set of G contains
at least p− 1 vertices from U .

Theorem 4. If G¯Km, with |G| = n and m ≥ 2, dim(G¯Km) = n(m−1).

Proof Let G ¯ Km, where V (G) = {v1, v2, · · · , vn} and (Km)i : u1i,
u2i,· · · , umi is copy of Km that joining with vi. Let dij be the distance
between two vertices vi and vj in G. For every i ∈ {1, 2, · · · , n}, every pair
vertices u, v ∈ (Km)i holds d(u, x) = d(v, x) for all x ∈ V (G¯Km)−{u, v}.
Further, (Km)i is a distance similar equivalence class of G¯Km. By using
Observation 2, we have dim(G ¯ Km) ≥ n(m − 1). Next, we will show
that dim(G) ≤ n(m−1). Let B = {B1, B2, · · · , Bn}, where Bi is a basis of
K1¯(Km)i. Without loss of generality, let Bi = {u1i, u2i, · · · , u(m−1)i}, for
every i ∈ {1, 2, · · · , n}. The representation of another vertices in G¯Km

are
r(umi|B) = (· · · , 2, 2, · · · , 2︸ ︷︷ ︸

coord. umi by Bi

, · · · ),

r(vi|B) = (· · · , 1, 1, · · · , 1︸ ︷︷ ︸
coord. vi by Bi

, · · · ).

It makes the representation of every vertex v in G by B is unique. Then B
is a resolving set. So, dim(G) ≤ n(m− 1). ¥

For corona product G ¯ H, if G ∼= K1 and H ∼= Km, G ¯ H is equal
to star Star(m) = K1 + Km. For this graph, if we use Theorem 4 then
dim(Star(m)) = m − 1. This is the same result if we use Theorem A (iv)
or Theorem A (v).

Now, we will determine of a graph with pendant edges more general
than corona graphs G¯Km. Let G is a connected graph with order n. Let
every vertex vi of G is joining with mi number of pendant edges, mi ≥ 2
and 1 ≤ i ≤ n.

Theorem 5. For n ≥ 2,

dim(G) =
n∑

i=1

(mi − 1).

Proof Similar prove with Theorem 4. ¥

Open problem 3. Find the dimension of G ¯ Km, with |G| = n and
m ≥ 1.
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