1,180,766 research outputs found

    Separating weak lensing and intrinsic alignments using radio observations

    Full text link
    We discuss methods for performing weak lensing using radio observations to recover information about the intrinsic structural properties of the source galaxies. Radio surveys provide unique information that can benefit weak lensing studies, such as HI emission, which may be used to construct galaxy velocity maps, and polarized synchrotron radiation; both of which provide information about the unlensed galaxy and can be used to reduce galaxy shape noise and the contribution of intrinsic alignments. Using a proxy for the intrinsic position angle of an observed galaxy, we develop techniques for cleanly separating weak gravitational lensing signals from intrinsic alignment contamination in forthcoming radio surveys. Random errors on the intrinsic orientation estimates introduce biases into the shear and intrinsic alignment estimates. However, we show that these biases can be corrected for if the error distribution is accurately known. We demonstrate our methods using simulations, where we reconstruct the shear and intrinsic alignment auto and cross-power spectra in three overlapping redshift bins. We find that the intrinsic position angle information can be used to successfully reconstruct both the lensing and intrinsic alignment power spectra with negligible residual bias.Comment: 17 pages, 10 figures, submitted to MNRA

    Modes of Information Flow

    Get PDF
    Information flow between components of a system takes many forms and is key to understanding the organization and functioning of large-scale, complex systems. We demonstrate three modalities of information flow from time series X to time series Y. Intrinsic information flow exists when the past of X is individually predictive of the present of Y, independent of Y's past; this is most commonly considered information flow. Shared information flow exists when X's past is predictive of Y's present in the same manner as Y's past; this occurs due to synchronization or common driving, for example. Finally, synergistic information flow occurs when neither X's nor Y's pasts are predictive of Y's present on their own, but taken together they are. The two most broadly-employed information-theoretic methods of quantifying information flow---time-delayed mutual information and transfer entropy---are both sensitive to a pair of these modalities: time-delayed mutual information to both intrinsic and shared flow, and transfer entropy to both intrinsic and synergistic flow. To quantify each mode individually we introduce our cryptographic flow ansatz, positing that intrinsic flow is synonymous with secret key agreement between X and Y. Based on this, we employ an easily-computed secret-key-agreement bound---intrinsic mutual information&mdashto quantify the three flow modalities in a variety of systems including asymmetric flows and financial markets.Comment: 11 pages; 10 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/ite.ht

    Drivers of organizational creativity

    Get PDF
    A path model of organizational creativity was presented; it conceptualized the influences of information sharing, learning culture, motivation, and networking on creative climate. A structural equation model was fitted to data from the pharmaceutical industry to test the proposed model. The model accounted for 86% of the variance in the creative climate dependent variable. Information sharing had a positive effect on learning culture, which in turn had a positive effect on creative climate, while there were negative direct effects of information sharing on creative climate and on intrinsic motivation. This study suggests that information sharing and intrinsic motivation are important drivers for organizational creativity in a complex R&D environment in the pharmaceutical industry. Implications of the model are discussed

    Dimension Estimation Using Random Connection Models

    Get PDF
    Information about intrinsic dimension is crucial to perform dimensionality reduction, compress information, design efficient algorithms, and do statistical adaptation. In this paper we propose an estimator for the intrinsic dimension of a data set. The estimator is based on binary neighbourhood information about the observations in the form of two adjacency matrices, and does not require any explicit distance information. The underlying graph is modelled according to a subset of a specific random connection model, sometimes referred to as the Poisson blob model. Computationally the estimator scales like n log n, and we specify its asymptotic distribution and rate of convergence. A simulation study on both real and simulated data shows that our approach compares favourably with some competing methods from the literature, including approaches that rely on distance information

    CNN based Learning using Reflection and Retinex Models for Intrinsic Image Decomposition

    Get PDF
    Most of the traditional work on intrinsic image decomposition rely on deriving priors about scene characteristics. On the other hand, recent research use deep learning models as in-and-out black box and do not consider the well-established, traditional image formation process as the basis of their intrinsic learning process. As a consequence, although current deep learning approaches show superior performance when considering quantitative benchmark results, traditional approaches are still dominant in achieving high qualitative results. In this paper, the aim is to exploit the best of the two worlds. A method is proposed that (1) is empowered by deep learning capabilities, (2) considers a physics-based reflection model to steer the learning process, and (3) exploits the traditional approach to obtain intrinsic images by exploiting reflectance and shading gradient information. The proposed model is fast to compute and allows for the integration of all intrinsic components. To train the new model, an object centered large-scale datasets with intrinsic ground-truth images are created. The evaluation results demonstrate that the new model outperforms existing methods. Visual inspection shows that the image formation loss function augments color reproduction and the use of gradient information produces sharper edges. Datasets, models and higher resolution images are available at https://ivi.fnwi.uva.nl/cv/retinet.Comment: CVPR 201

    Simultaneous measurement of cosmology and intrinsic alignments using joint cosmic shear and galaxy number density correlations

    Full text link
    Cosmic shear is a powerful method to constrain cosmology, provided that any systematic effects are under control. The intrinsic alignment of galaxies is expected to severely bias parameter estimates if not taken into account. We explore the potential of a joint analysis of tomographic galaxy ellipticity, galaxy number density, and ellipticity-number density cross-correlations to simultaneously constrain cosmology and self-calibrate unknown intrinsic alignment and galaxy bias contributions. We treat intrinsic alignments and galaxy biasing as free functions of scale and redshift and marginalise over the resulting parameter sets. Constraints on cosmology are calculated by combining the likelihoods from all two-point correlations between galaxy ellipticity and galaxy number density. The information required for these calculations is already available in a standard cosmic shear dataset. We include contributions to these functions from cosmic shear, intrinsic alignments, galaxy clustering and magnification effects. In a Fisher matrix analysis we compare our constraints with those from cosmic shear alone in the absence of intrinsic alignments. For a potential future large area survey, such as Euclid, the extra information from the additional correlation functions can make up for the additional free parameters in the intrinsic alignment and galaxy bias terms, depending on the flexibility in the models. For example, the Dark Energy Task Force figure of merit is recovered even when more than 100 free parameters are marginalised over. We find that the redshift quality requirements are similar to those calculated in the absence of intrinsic alignments.Comment: 22 pages, 10 figures; extended discussion, otherwise minor changes to match accepted version; published in Astronomy and Astrophysic

    The Impact of Intrinsic Alignments: Cosmological Constraints from a Joint Analysis of Cosmic Shear and Galaxy Survey Data

    Full text link
    Constraints on cosmology from recent cosmic shear observations are becoming increasingly sophisticated in their treatment of potential systematic effects. Here we present cosmological constraints which include modelling of intrinsic alignments. We demonstrate how the results are changed for three different intrinsic alignment models, and for two different models of the cosmic shear galaxy population. We find that intrinsic alignments can either reduce or increase measurements of the fluctuation amplitude parameter sigma_8 depending on these decisions, and depending on the cosmic shear survey properties. This is due to the interplay between the two types of intrinsic alignment, II and GI. It has been shown that future surveys must make a careful treatment of intrinsic alignments to avoid significant biases, and that simultaneous constraints from shear-shear and shear-position correlation functions can mitigate the effects. For the first time we here combine constraints from cosmic shear surveys (shear-shear correlations) with those from "GI" intrinsic alignment data sets (shear-position correlations). We produce updated constraints on cosmology marginalised over two free parameters in the halo model for intrinsic alignments. We find that the additional freedom is well compensated by the additional information, in that the constraints are very similar indeed to those obtained when intrinsic alignments are ignored, both in terms of best fit values and uncertainties.Comment: 16 pages, 11 figure
    • …
    corecore