14 research outputs found

    Long geodesics in subgraphs of the cube

    Full text link
    A path in the hypercube QnQ_n is said to be a geodesic if no two of its edges are in the same direction. Let GG be a subgraph of QnQ_n with average degree dd. How long a geodesic must GG contain? We show that GG must contain a geodesic of length dd. This result, which is best possible, strengthens a theorem of Feder and Subi. It is also related to the `antipodal colourings' conjecture of Norine.Comment: 8 page

    A collection of open problems in celebration of Imre Leader's 60th birthday

    Full text link
    One of the great pleasures of working with Imre Leader is to experience his infectious delight on encountering a compelling combinatorial problem. This collection of open problems in combinatorics has been put together by a subset of his former PhD students and students-of-students for the occasion of his 60th birthday. All of the contributors have been influenced (directly or indirectly) by Imre: his personality, enthusiasm and his approach to mathematics. The problems included cover many of the areas of combinatorial mathematics that Imre is most associated with: including extremal problems on graphs, set systems and permutations, and Ramsey theory. This is a personal selection of problems which we find intriguing and deserving of being better known. It is not intended to be systematic, or to consist of the most significant or difficult questions in any area. Rather, our main aim is to celebrate Imre and his mathematics and to hope that these problems will make him smile. We also hope this collection will be a useful resource for researchers in combinatorics and will stimulate some enjoyable collaborations and beautiful mathematics

    On the Central Levels Problem

    Get PDF

    On the central levels problem

    Get PDF
    The \emph{central levels problem} asserts that the subgraph of the (2m+1)(2m+1)-dimensional hypercube induced by all bitstrings with at least m+1m+1-\ell many 1s and at most m+m+\ell many 1s, i.e., the vertices in the middle 22\ell levels, has a Hamilton cycle for any m1m\geq 1 and 1m+11\le \ell\le m+1. This problem was raised independently by Buck and Wiedemann, Savage, Gregor and {\v{S}}krekovski, and by Shen and Williams, and it is a common generalization of the well-known \emph{middle levels problem}, namely the case =1\ell=1, and classical binary Gray codes, namely the case =m+1\ell=m+1. In this paper we present a general constructive solution of the central levels problem. Our results also imply the existence of optimal cycles through any sequence of \ell consecutive levels in the nn-dimensional hypercube for any n1n\ge 1 and 1n+11\le \ell \le n+1. Moreover, extending an earlier construction by Streib and Trotter, we construct a Hamilton cycle through the nn-dimensional hypercube, n2n\geq 2, that contains the symmetric chain decomposition constructed by Greene and Kleitman in the 1970s, and we provide a loopless algorithm for computing the corresponding Gray code

    Games on graphs, visibility representations, and graph colorings

    Get PDF
    In this thesis we study combinatorial games on graphs and some graph parameters whose consideration was inspired by an interest in the symmetry of hypercubes. A capacity function f on a graph G assigns a nonnegative integer to each vertex of V(G). An f-matching in G is a set M ⊆ E(G) such that the number of edges of M incident to v is at most f(v) for all v ⊆ V(G). In the f-matching game on a graph G, denoted (G,f), players Max and Min alternately choose edges of G to build an f-matching; the game ends when the chosen edges form a maximal f-matching. Max wants the final f-matching to be large; Min wants it to be small. The f-matching number is the size of the final f-matching under optimal play. We extend to the f-matching game a lower bound due to Cranston et al. on the game matching number. We also consider a directed version of the f-matching game on a graph G. Peg Solitaire is a game on connected graphs introduced by Beeler and Hoilman. In the game, pegs are placed on all but one vertex. If x, y, and z form a 3-vertex path and x and y each have a peg but z does not, then we can remove the pegs at x and y and place a peg at z; this is called a jump. The goal of the Peg Solitaire game on graphs is to find jumps that reduce the number of pegs on the graph to 1. Beeler and Rodriguez proposed a variant where we want to maximize the number of pegs remaining when no more jumps can be made. Maximizing over all initial locations of a single hole, the maximum number of pegs left on a graph G when no jumps remain is the Fool's Solitaire number F(G). We determine the Fool's Solitaire number for the join of any graphs G and H. For the cartesian product, we determine F(G ◻ K_k) when k ≥ 3 and G is connected. Finally, we give conditions on graphs G and H that imply F(G ◻ H) ≥ F(G) F(H). A t-bar visibility representation of a graph G assigns each vertex a set that is the union of at most t horizontal segments ("bars") in the plane so that vertices are adjacent if and only if there is an unobstructed vertical line of sight (having positive width) joining the sets assigned to them. The visibility number of a graph G, written b(G), is the least t such that G has a t-bar visibility representation. Let Q_n denote the n-dimensional hypercube. A simple application of Euler's Formula yields b(Q_n) ≥ ⌈(n+1)/4⌉. To prove that equality holds, we decompose Q_{4k-1} explicitly into k spanning subgraphs whose components have the form C_4 ◻ P_{2^l}. The visibility number b(D) of a digraph D is the least t such that D can be represented by assigning each vertex at most t horizontal bars in the plane so that uv ∈ E(D) if and only if there is an unobstructed vertical line of sight (with positive width) joining some bar for u to some higher bar for v. It is known that b(D) ≤ 2 for every outerplanar digraph. We give a characterization of outerplanar digraphs with b(D)=1. A proper vertex coloring of a graph G is r-dynamic if for each v ∈ V (G), at least min{r, d(v)} colors appear in N_G(v). We investigate r-dynamic versions of coloring and list coloring. We give upper bounds on the minimum number of colors needed for any r in terms of the genus of the graph. Two vertices of Q_n are antipodal if they differ in every coordinate. Two edges uv and xy are antipodal if u is antipodal to x and v is antipodal to y. An antipodal edge-coloring of Q_n is a 2-coloring of the edges in which antipodal edges have different colors. DeVos and Norine conjectured that for n ≥ 2, in every antipodal edge-coloring of Q_n there is a pair of antipodal vertices connected by a monochromatic path. Previously this was shown for n ≤ 5. Here we extend this result to n = 6. Hovey introduced A-cordial labelings as a simultaneous generalization of cordial and harmonious labelings. If S is an abelian group, then a labeling f: V(G) → A of the vertices of a graph G induces an edge-labeling on G; the edge uv receives the label f(u) + f(v). A graph G isA-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most 1, and (2) the induced edge label classes differ in size by at most 1. The smallest non-cyclic group is V_4 (also known as Z_2×Z_2). We investigate V_4-cordiality of many families of graphs, namely complete bipartite graphs, paths, cycles, ladders, prisms, and hypercubes. Finally, we introduce a generalization of A-cordiality involving digraphs and quasigroups, and we show that there are infinitely many Q-cordial digraphs for every quasigroup Q

    Understanding and Enhancing CDCL-based SAT Solvers

    Get PDF
    Modern conflict-driven clause-learning (CDCL) Boolean satisfiability (SAT) solvers routinely solve formulas from industrial domains with millions of variables and clauses, despite the Boolean satisfiability problem being NP-complete and widely regarded as intractable in general. At the same time, very small crafted or randomly generated formulas are often infeasible for CDCL solvers. A commonly proposed explanation is that these solvers somehow exploit the underlying structure inherent in industrial instances. A better understanding of the structure of Boolean formulas not only enables improvements to modern SAT solvers, but also lends insight as to why solvers perform well or poorly on certain types of instances. Even further, examining solvers through the lens of these underlying structures can help to distinguish the behavior of different solving heuristics, both in theory and practice. The first issue we address relates to the representation of SAT formulas. A given Boolean satisfiability problem can be represented in arbitrarily many ways, and the type of encoding can have significant effects on SAT solver performance. Further, in some cases, a direct encoding to SAT may not be the best choice. We introduce a new system that integrates SAT solving with computer algebra systems (CAS) to address representation issues for several graph-theoretic problems. We use this system to improve the bounds on several finitely-verified conjectures related to graph-theoretic problems. We demonstrate how our approach is more appropriate for these problems than other off-the-shelf SAT-based tools. For more typical SAT formulas, a better understanding of their underlying structural properties, and how they relate to SAT solving, can deepen our understanding of SAT. We perform a largescale evaluation of many of the popular structural measures of formulas, such as community structure, treewidth, and backdoors. We investigate how these parameters correlate with CDCL solving time, and whether they can effectively be used to distinguish formulas from different domains. We demonstrate how these measures can be used as a means to understand the behavior of solvers during search. A common theme is that the solver exhibits locality during search through the lens of these underlying structures, and that the choice of solving heuristic can greatly influence this locality. We posit that this local behavior of modern SAT solvers is crucial to their performance. The remaining contributions dive deeper into two new measures of SAT formulas. We first consider a simple measure, denoted “mergeability,” which characterizes the proportion of input clauses pairs that can resolve and merge. We develop a formula generator that takes as input a seed formula, and creates a sequence of increasingly more mergeable formulas, while maintaining many of the properties of the original formula. Experiments over randomly-generated industrial-like instances suggest that mergeability strongly negatively correlates with CDCL solving time, i.e., as the mergeability of formulas increases, the solving time decreases, particularly for unsatisfiable instances. Our final contribution considers whether one of the aforementioned measures, namely backdoor size, is influenced by solver heuristics in theory. Starting from the notion of learning-sensitive (LS) backdoors, we consider various extensions of LS backdoors by incorporating different branching heuristics and restart policies. We introduce learning-sensitive with restarts (LSR) backdoors and show that, when backjumping is disallowed, LSR backdoors may be exponentially smaller than LS backdoors. We further demonstrate that the size of LSR backdoors are dependent on the learning scheme used during search. Finally, we present new algorithms to compute upper-bounds on LSR backdoors that intrinsically rely upon restarts, and can be computed with a single run of a SAT solver. We empirically demonstrate that this can often produce smaller backdoors than previous approaches to computing LS backdoors

    On the central levels problem

    Get PDF
    The central levels problem asserts that the subgraph of the (2m+1)-dimensional hypercube induced by all bitstrings with at least m+1-l many 1s and at most m+l many 1s, i.e., the vertices in the middle 2l levels, has a Hamilton cycle for any m>=1 and 1==1 and 1==2, that contains the symmetric chain decomposition constructed by Greene and Kleitman in the 1970s, and we provide a loopless algorithm for computing the corresponding Gray code
    corecore