245,652 research outputs found

    Algorithms and almost tight results for 3-colorability of small diameter graphs.

    Get PDF
    The 3-coloring problem is well known to be NP-complete. It is also well known that it remains NP-complete when the input is restricted to graphs with diameter 4. Moreover, assuming the Exponential Time Hypothesis (ETH), 3-coloring cannot be solved in time 2o(n) on graphs with n vertices and diameter at most 4. In spite of extensive studies of the 3-coloring problem with respect to several basic parameters, the complexity status of this problem on graphs with small diameter, i.e. with diameter at most 2, or at most 3, has been an open problem. In this paper we investigate graphs with small diameter. For graphs with diameter at most 2, we provide the first subexponential algorithm for 3-coloring, with complexity 2O(nlogn√). Furthermore we extend the notion of an articulation vertex to that of an articulation neighborhood, and we provide a polynomial algorithm for 3-coloring on graphs with diameter 2 that have at least one articulation neighborhood. For graphs with diameter at most 3, we establish the complexity of 3-coloring by proving for every ε∈[0,1) that 3-coloring is NP-complete on triangle-free graphs of diameter 3 and radius 2 with n vertices and minimum degree δ=Θ(nε). Moreover, assuming ETH, we use three different amplification techniques of our hardness results, in order to obtain for every ε∈[0,1) subexponential asymptotic lower bounds for the complexity of 3-coloring on triangle-free graphs with diameter 3 and minimum degree δ=Θ(nε). Finally, we provide a 3-coloring algorithm with running time 2O(min{δΔ, nδlogδ}) for arbitrary graphs with diameter 3, where n is the number of vertices and δ (resp. Δ) is the minimum (resp. maximum) degree of the input graph. To the best of our knowledge, this is the first subexponential algorithm for graphs with δ=ω(1) and for graphs with δ=O(1) and Δ=o(n). Due to the above lower bounds of the complexity of 3-coloring, the running time of this algorithm is asymptotically almost tight when the minimum degree of the input graph is δ=Θ(nε), where ε∈[12,1), as its time complexity is 2O(nδlogδ)=2O(n1−εlogn) and the corresponding lower bound states that there is no 2o(n1−ε)-time algorithm

    On graphs of defect at most 2

    Get PDF
    In this paper we consider the degree/diameter problem, namely, given natural numbers {\Delta} \geq 2 and D \geq 1, find the maximum number N({\Delta},D) of vertices in a graph of maximum degree {\Delta} and diameter D. In this context, the Moore bound M({\Delta},D) represents an upper bound for N({\Delta},D). Graphs of maximum degree {\Delta}, diameter D and order M({\Delta},D), called Moore graphs, turned out to be very rare. Therefore, it is very interesting to investigate graphs of maximum degree {\Delta} \geq 2, diameter D \geq 1 and order M({\Delta},D) - {\epsilon} with small {\epsilon} > 0, that is, ({\Delta},D,-{\epsilon})-graphs. The parameter {\epsilon} is called the defect. Graphs of defect 1 exist only for {\Delta} = 2. When {\epsilon} > 1, ({\Delta},D,-{\epsilon})-graphs represent a wide unexplored area. This paper focuses on graphs of defect 2. Building on the approaches developed in [11] we obtain several new important results on this family of graphs. First, we prove that the girth of a ({\Delta},D,-2)-graph with {\Delta} \geq 4 and D \geq 4 is 2D. Second, and most important, we prove the non-existence of ({\Delta},D,-2)-graphs with even {\Delta} \geq 4 and D \geq 4; this outcome, together with a proof on the non-existence of (4, 3,-2)-graphs (also provided in the paper), allows us to complete the catalogue of (4,D,-{\epsilon})-graphs with D \geq 2 and 0 \leq {\epsilon} \leq 2. Such a catalogue is only the second census of ({\Delta},D,-2)-graphs known at present, the first being the one of (3,D,-{\epsilon})-graphs with D \geq 2 and 0 \leq {\epsilon} \leq 2 [14]. Other results of this paper include necessary conditions for the existence of ({\Delta},D,-2)-graphs with odd {\Delta} \geq 5 and D \geq 4, and the non-existence of ({\Delta},D,-2)-graphs with odd {\Delta} \geq 5 and D \geq 5 such that {\Delta} \equiv 0, 2 (mod D).Comment: 22 pages, 11 Postscript figure

    Large Networks of Diameter Two Based on Cayley Graphs

    Full text link
    In this contribution we present a construction of large networks of diameter two and of order 12d2\frac{1}{2}d^2 for every degree d≥8d\geq 8, based on Cayley graphs with surprisingly simple underlying groups. For several small degrees we construct Cayley graphs of diameter two and of order greater than 23\frac23 of Moore bound and we show that Cayley graphs of degrees d∈{16,17,18,23,24,31,…,35}d\in\{16,17,18,23,24,31,\dots,35\} constructed in this paper are the largest currently known vertex-transitive graphs of diameter two.Comment: 9 pages, Published in Cybernetics and Mathematics Applications in Intelligent System

    On bipartite graphs of defect at most 4

    Get PDF
    We consider the bipartite version of the degree/diameter problem, namely, given natural numbers {\Delta} \geq 2 and D \geq 2, find the maximum number Nb({\Delta},D) of vertices in a bipartite graph of maximum degree {\Delta} and diameter D. In this context, the Moore bipartite bound Mb({\Delta},D) represents an upper bound for Nb({\Delta},D). Bipartite graphs of maximum degree {\Delta}, diameter D and order Mb({\Delta},D), called Moore bipartite graphs, have turned out to be very rare. Therefore, it is very interesting to investigate bipartite graphs of maximum degree {\Delta} \geq 2, diameter D \geq 2 and order Mb({\Delta},D) - \epsilon with small \epsilon > 0, that is, bipartite ({\Delta},D,-\epsilon)-graphs. The parameter \epsilon is called the defect. This paper considers bipartite graphs of defect at most 4, and presents all the known such graphs. Bipartite graphs of defect 2 have been studied in the past; if {\Delta} \geq 3 and D \geq 3, they may only exist for D = 3. However, when \epsilon > 2 bipartite ({\Delta},D,-\epsilon)-graphs represent a wide unexplored area. The main results of the paper include several necessary conditions for the existence of bipartite (Δ,d,−4)(\Delta,d,-4)-graphs; the complete catalogue of bipartite (3,D,-\epsilon)-graphs with D \geq 2 and 0 \leq \epsilon \leq 4; the complete catalogue of bipartite ({\Delta},D,-\epsilon)-graphs with {\Delta} \geq 2, 5 \leq D \leq 187 (D /= 6) and 0 \leq \epsilon \leq 4; and a non-existence proof of all bipartite ({\Delta},D,-4)-graphs with {\Delta} \geq 3 and odd D \geq 7. Finally, we conjecture that there are no bipartite graphs of defect 4 for {\Delta} \geq 3 and D \geq 5, and comment on some implications of our results for upper bounds of Nb({\Delta},D).Comment: 25 pages, 14 Postscript figure

    The degree-diameter problem for sparse graph classes

    Full text link
    The degree-diameter problem asks for the maximum number of vertices in a graph with maximum degree Δ\Delta and diameter kk. For fixed kk, the answer is Θ(Δk)\Theta(\Delta^k). We consider the degree-diameter problem for particular classes of sparse graphs, and establish the following results. For graphs of bounded average degree the answer is Θ(Δk−1)\Theta(\Delta^{k-1}), and for graphs of bounded arboricity the answer is \Theta(\Delta^{\floor{k/2}}), in both cases for fixed kk. For graphs of given treewidth, we determine the the maximum number of vertices up to a constant factor. More precise bounds are given for graphs of given treewidth, graphs embeddable on a given surface, and apex-minor-free graphs

    The degree/diameter problem in maximal planar bipartite graphs

    Get PDF
    The (¿;D) (degree/diameter) problem consists of nding the largest possible number of vertices n among all the graphs with maximum degree ¿ and diameter D. We consider the (¿;D) problem for maximal planar bipartite graphs, that are simple planar graphs in which every face is a quadrangle. We obtain that for the (¿; 2) problem, the number of vertices is n = ¿+2; and for the (¿; 3) problem, n = 3¿¿1 if ¿ is odd and n = 3¿ ¿ 2 if ¿ is even. Then, we study the general case (¿;D) and obtain that an upper bound on n is approximately 3(2D + 1)(¿ ¿ 2)¿D=2¿ and another one is C(¿ ¿ 2)¿D=2¿ if ¿ D and C is a sufficiently large constant. Our upper bound improve for our kind of graphs the one given by Fellows, Hell and Seyffarth for general planar graphs. We also give a lower bound on n for maximal planar bipartite graphs, which is approximately (¿ ¿ 2)k if D = 2k, and 3(¿ ¿ 3)k if D = 2k + 1, for ¿ and D sufficiently large in both cases.Postprint (published version

    Space and Time Efficient Parallel Graph Decomposition, Clustering, and Diameter Approximation

    Full text link
    We develop a novel parallel decomposition strategy for unweighted, undirected graphs, based on growing disjoint connected clusters from batches of centers progressively selected from yet uncovered nodes. With respect to similar previous decompositions, our strategy exercises a tighter control on both the number of clusters and their maximum radius. We present two important applications of our parallel graph decomposition: (1) kk-center clustering approximation; and (2) diameter approximation. In both cases, we obtain algorithms which feature a polylogarithmic approximation factor and are amenable to a distributed implementation that is geared for massive (long-diameter) graphs. The total space needed for the computation is linear in the problem size, and the parallel depth is substantially sublinear in the diameter for graphs with low doubling dimension. To the best of our knowledge, ours are the first parallel approximations for these problems which achieve sub-diameter parallel time, for a relevant class of graphs, using only linear space. Besides the theoretical guarantees, our algorithms allow for a very simple implementation on clustered architectures: we report on extensive experiments which demonstrate their effectiveness and efficiency on large graphs as compared to alternative known approaches.Comment: 14 page

    Quadratic diameter bounds for dual network flow polyhedra

    Full text link
    Both the combinatorial and the circuit diameters of polyhedra are of interest to the theory of linear programming for their intimate connection to a best-case performance of linear programming algorithms. We study the diameters of dual network flow polyhedra associated to bb-flows on directed graphs G=(V,E)G=(V,E) and prove quadratic upper bounds for both of them: the minimum of (∣V∣−1)⋅∣E∣(|V|-1)\cdot |E| and 16∣V∣3\frac{1}{6}|V|^3 for the combinatorial diameter, and ∣V∣⋅(∣V∣−1)2\frac{|V|\cdot (|V|-1)}{2} for the circuit diameter. The latter strengthens the cubic bound implied by a result in [De Loera, Hemmecke, Lee; 2014]. Previously, bounds on these diameters have only been known for bipartite graphs. The situation is much more involved for general graphs. In particular, we construct a family of dual network flow polyhedra with members that violate the circuit diameter bound for bipartite graphs by an arbitrary additive constant. Further, it provides examples of circuit diameter 43∣V∣−4\frac{4}{3}|V| - 4
    • …
    corecore