2,796 research outputs found

    A Kleene theorem for Petri automata

    Get PDF
    While studying the equational theory of Kleene Allegories (KAl), we recently proposed two ways of defining sets of graphs [BP15]: from KAl expressions, that is, regular expressions with intersection and converse; and from a new automata model, Petri automata, based on safe Petri nets. To be able to compare the sets of graphs generated by KAl expressions, we explained how to construct Petri automata out of arbitrary KAl expressions. In the present paper, we describe a reverse transformation: recovering an expression from an automaton. This has several consequences. First, it generalises Kleene theorem: the graph languages specified by Petri automata are precisely the languages denoted by KAl expressions. Second, this entails that decidability of the equa-tional theory of Kleene Allegories is equivalent to that of language equivalence for Petri automata. Third, this transformation may be used to reason syntactically about the occurrence nets of a safe Petri net, provided they are parallel series

    Unfolding-Based Process Discovery

    Get PDF
    This paper presents a novel technique for process discovery. In contrast to the current trend, which only considers an event log for discovering a process model, we assume two additional inputs: an independence relation on the set of logged activities, and a collection of negative traces. After deriving an intermediate net unfolding from them, we perform a controlled folding giving rise to a Petri net which contains both the input log and all independence-equivalent traces arising from it. Remarkably, the derived Petri net cannot execute any trace from the negative collection. The entire chain of transformations is fully automated. A tool has been developed and experimental results are provided that witness the significance of the contribution of this paper.Comment: This is the unabridged version of a paper with the same title appearead at the proceedings of ATVA 201

    Event structures for Petri nets with persistence

    Get PDF
    Event structures are a well-accepted model of concurrency. In a seminal paper by Nielsen, Plotkin and Winskel, they are used to establish a bridge between the theory of domains and the approach to concurrency proposed by Petri. A basic role is played by an unfolding construction that maps (safe) Petri nets into a subclass of event structures, called prime event structures, where each event has a uniquely determined set of causes. Prime event structures, in turn, can be identified with their domain of configurations. At a categorical level, this is nicely formalised by Winskel as a chain of coreflections. Contrary to prime event structures, general event structures allow for the presence of disjunctive causes, i.e., events can be enabled by distinct minimal sets of events. In this paper, we extend the connection between Petri nets and event structures in order to include disjunctive causes. In particular, we show that, at the level of nets, disjunctive causes are well accounted for by persistent places. These are places where tokens, once generated, can be used several times without being consumed and where multiple tokens are interpreted collectively, i.e., their histories are inessential. Generalising the work on ordinary nets, Petri nets with persistence are related to a new subclass of general event structures, called locally connected, by means of a chain of coreflections relying on an unfolding construction

    Properties of Distributed Time Arc Petri Nets

    No full text
    In recent work we started a research on a distributed-timed extension of Petri nets where time parameters are associated with tokens and arcs carry constraints that qualify the age of tokens required for enabling. This formalism enables to model e.g. hardware architectures like GALS. We give a formal definition of process semantics for our model and investigate several properties of local versus global timing: expressiveness, reachability and coverability

    A Polynomial Translation of pi-calculus FCPs to Safe Petri Nets

    Full text link
    We develop a polynomial translation from finite control pi-calculus processes to safe low-level Petri nets. To our knowledge, this is the first such translation. It is natural in that there is a close correspondence between the control flows, enjoys a bisimulation result, and is suitable for practical model checking.Comment: To appear in special issue on best papers of CONCUR'12 of Logical Methods in Computer Scienc
    • 

    corecore