1,298 research outputs found

    SLT-Resolution for the Well-Founded Semantics

    Full text link
    Global SLS-resolution and SLG-resolution are two representative mechanisms for top-down evaluation of the well-founded semantics of general logic programs. Global SLS-resolution is linear for query evaluation but suffers from infinite loops and redundant computations. In contrast, SLG-resolution resolves infinite loops and redundant computations by means of tabling, but it is not linear. The principal disadvantage of a non-linear approach is that it cannot be implemented using a simple, efficient stack-based memory structure nor can it be easily extended to handle some strictly sequential operators such as cuts in Prolog. In this paper, we present a linear tabling method, called SLT-resolution, for top-down evaluation of the well-founded semantics. SLT-resolution is a substantial extension of SLDNF-resolution with tabling. Its main features include: (1) It resolves infinite loops and redundant computations while preserving the linearity. (2) It is terminating, and sound and complete w.r.t. the well-founded semantics for programs with the bounded-term-size property with non-floundering queries. Its time complexity is comparable with SLG-resolution and polynomial for function-free logic programs. (3) Because of its linearity for query evaluation, SLT-resolution bridges the gap between the well-founded semantics and standard Prolog implementation techniques. It can be implemented by an extension to any existing Prolog abstract machines such as WAM or ATOAM.Comment: Slight modificatio

    Linear Tabulated Resolution Based on Prolog Control Strategy

    Full text link
    Infinite loops and redundant computations are long recognized open problems in Prolog. Two ways have been explored to resolve these problems: loop checking and tabling. Loop checking can cut infinite loops, but it cannot be both sound and complete even for function-free logic programs. Tabling seems to be an effective way to resolve infinite loops and redundant computations. However, existing tabulated resolutions, such as OLDT-resolution, SLG- resolution, and Tabulated SLS-resolution, are non-linear because they rely on the solution-lookup mode in formulating tabling. The principal disadvantage of non-linear resolutions is that they cannot be implemented using a simple stack-based memory structure like that in Prolog. Moreover, some strictly sequential operators such as cuts may not be handled as easily as in Prolog. In this paper, we propose a hybrid method to resolve infinite loops and redundant computations. We combine the ideas of loop checking and tabling to establish a linear tabulated resolution called TP-resolution. TP-resolution has two distinctive features: (1) It makes linear tabulated derivations in the same way as Prolog except that infinite loops are broken and redundant computations are reduced. It handles cuts as effectively as Prolog. (2) It is sound and complete for positive logic programs with the bounded-term-size property. The underlying algorithm can be implemented by an extension to any existing Prolog abstract machines such as WAM or ATOAM.Comment: To appear as the first accepted paper in Theory and Practice of Logic Programming (http://www.cwi.nl/projects/alp/TPLP

    Loop elimination, a sound optimisation technique for PTTP related theorem proving

    Get PDF
    In this paper we present loop elimination, an important optimisation technique for first-order theorem proving based on Prolog technology, such as the Prolog Technology Theorem Prover or the DLog Description Logic Reasoner. Although several loop checking techniques exist for logic programs, to the best of our knowledge, we are the first to examine the interaction of loop checking with ancestor resolution. Our main contribution is a rigorous proof of the soundness of loop elimination

    TOR: modular search with hookable disjunction

    Get PDF
    Horn Clause Programs have a natural exhaustive depth-first procedural semantics. However, for many programs this semantics is ineffective. In order to compute useful solutions, one needs the ability to modify the search method that explores the alternative execution branches. Tor, a well-defined hook into Prolog disjunction, provides this ability. It is light-weight thanks to its library approach and efficient because it is based on program transformation. Tor is general enough to mimic search-modifying predicates like ECLiPSe's search/6. Moreover, Tor supports modular composition of search methods and other hooks. The Tor library is already provided and used as an add-on to SWI-Prolog.publisher: Elsevier articletitle: Tor: Modular search with hookable disjunction journaltitle: Science of Computer Programming articlelink: http://dx.doi.org/10.1016/j.scico.2013.05.008 content_type: article copyright: Copyright © 2013 Elsevier B.V. All rights reserved.status: publishe

    Automated Termination Analysis for Logic Programs with Cut

    Full text link
    Termination is an important and well-studied property for logic programs. However, almost all approaches for automated termination analysis focus on definite logic programs, whereas real-world Prolog programs typically use the cut operator. We introduce a novel pre-processing method which automatically transforms Prolog programs into logic programs without cuts, where termination of the cut-free program implies termination of the original program. Hence after this pre-processing, any technique for proving termination of definite logic programs can be applied. We implemented this pre-processing in our termination prover AProVE and evaluated it successfully with extensive experiments

    Analyzing Catastrophic Backtracking Behavior in Practical Regular Expression Matching

    Full text link
    We develop a formal perspective on how regular expression matching works in Java, a popular representative of the category of regex-directed matching engines. In particular, we define an automata model which captures all the aspects needed to study such matching engines in a formal way. Based on this, we propose two types of static analysis, which take a regular expression and tell whether there exists a family of strings which makes Java-style matching run in exponential time.Comment: In Proceedings AFL 2014, arXiv:1405.527
    • …
    corecore