108 research outputs found

    The Church Synthesis Problem with Parameters

    Full text link
    For a two-variable formula ψ(X,Y) of Monadic Logic of Order (MLO) the Church Synthesis Problem concerns the existence and construction of an operator Y=F(X) such that ψ(X,F(X)) is universally valid over Nat. B\"{u}chi and Landweber proved that the Church synthesis problem is decidable; moreover, they showed that if there is an operator F that solves the Church Synthesis Problem, then it can also be solved by an operator defined by a finite state automaton or equivalently by an MLO formula. We investigate a parameterized version of the Church synthesis problem. In this version ψ might contain as a parameter a unary predicate P. We show that the Church synthesis problem for P is computable if and only if the monadic theory of is decidable. We prove that the B\"{u}chi-Landweber theorem can be extended only to ultimately periodic parameters. However, the MLO-definability part of the B\"{u}chi-Landweber theorem holds for the parameterized version of the Church synthesis problem

    Monadic Second-Order Logic with Arbitrary Monadic Predicates

    Full text link
    We study Monadic Second-Order Logic (MSO) over finite words, extended with (non-uniform arbitrary) monadic predicates. We show that it defines a class of languages that has algebraic, automata-theoretic and machine-independent characterizations. We consider the regularity question: given a language in this class, when is it regular? To answer this, we show a substitution property and the existence of a syntactical predicate. We give three applications. The first two are to give very simple proofs that the Straubing Conjecture holds for all fragments of MSO with monadic predicates, and that the Crane Beach Conjecture holds for MSO with monadic predicates. The third is to show that it is decidable whether a language defined by an MSO formula with morphic predicates is regular.Comment: Conference version: MFCS'14, Mathematical Foundations of Computer Science Journal version: ToCL'17, Transactions on Computational Logi

    Expansions of MSO by cardinality relations

    Full text link
    We study expansions of the Weak Monadic Second Order theory of (N,<) by cardinality relations, which are predicates R(X1,...,Xn) whose truth value depends only on the cardinality of the sets X1, ...,Xn. We first provide a (definable) criterion for definability of a cardinality relation in (N,<), and use it to prove that for every cardinality relation R which is not definable in (N,<), there exists a unary cardinality relation which is definable in (N,<,R) and not in (N,<). These results resemble Muchnik and Michaux-Villemaire theorems for Presburger Arithmetic. We prove then that + and x are definable in (N,<,R) for every cardinality relation R which is not definable in (N,<). This implies undecidability of the WMSO theory of (N,<,R). We also consider the related satisfiability problem for the class of finite orderings, namely the question whether an MSO sentence in the language {<,R} admits a finite model M where < is interpreted as a linear ordering, and R as the restriction of some (fixed) cardinality relation to the domain of M. We prove that this problem is undecidable for every cardinality relation R which is not definable in (N,<).Comment: to appear in LMC

    Infinite and Bi-infinite Words with Decidable Monadic Theories

    Get PDF
    We study word structures of the form (D,<,P)(D,<,P) where DD is either N\mathbb{N} or Z\mathbb{Z}, << is the natural linear ordering on DD and P⊆DP\subseteq D is a predicate on DD. In particular we show: (a) The set of recursive ω\omega-words with decidable monadic second order theories is Σ3\Sigma_3-complete. (b) Known characterisations of the ω\omega-words with decidable monadic second order theories are transfered to the corresponding question for bi-infinite words. (c) We show that such "tame" predicates PP exist in every Turing degree. (d) We determine, for P⊆ZP\subseteq\mathbb{Z}, the number of predicates Q⊆ZQ\subseteq\mathbb{Z} such that (Z,≤,P)(\mathbb{Z},\le,P) and (Z,≤,Q)(\mathbb{Z},\le,Q) are indistinguishable. Through these results we demonstrate similarities and differences between logical properties of infinite and bi-infinite words

    The Church Synthesis Problem with Metric

    Get PDF
    Church\u27s Problem asks for the construction of a procedure which, given a logical specification S(I,O) between input strings I and output strings O, determines whether there exists an operator F that implements the specification in the sense that S(I,F(I)) holds for all inputs I. Buechi and Landweber gave a procedure to solve Church\u27s problem for MSO specifications and operators computable by finite-state automata. We consider extensions of Church\u27s problem in two orthogonal directions: (i) we address the problem in a more general logical setting, where not only the specifications but also the solutions are presented in a logical system; (ii) we consider not only the canonical discrete time domain of the natural numbers, but also the continuous domain of reals. We show that for every fixed bounded length interval of the reals, Church\u27s problem is decidable when specifications and implementations are described in the monadic second-order logics over the reals with order and the +1 function

    On factorisation forests

    Get PDF
    The theorem of factorisation forests shows the existence of nested factorisations -- a la Ramsey -- for finite words. This theorem has important applications in semigroup theory, and beyond. The purpose of this paper is to illustrate the importance of this approach in the context of automata over infinite words and trees. We extend the theorem of factorisation forest in two directions: we show that it is still valid for any word indexed by a linear ordering; and we show that it admits a deterministic variant for words indexed by well-orderings. A byproduct of this work is also an improvement on the known bounds for the original result. We apply the first variant for giving a simplified proof of the closure under complementation of rational sets of words indexed by countable scattered linear orderings. We apply the second variant in the analysis of monadic second-order logic over trees, yielding new results on monadic interpretations over trees. Consequences of it are new caracterisations of prefix-recognizable structures and of the Caucal hierarchy.Comment: 27 page

    Infinite and bi-infinite words with decidable monadic theories

    Get PDF
    We study word structures of the form (D,<,P) where D is either the naturals or the integers with the natural linear order < and P is a predicate on D. In particular we show: The set of recursive infinite words with decidable monadic second order theories is Sigma_3-complete. We characterise those sets P of integers that yield bi-infinite words with decidable monadic second order theories. We show that such "tame" predicates P exist in every Turing degree. We determine, for a set of integers P, the number of indistinguishable biinfinite words. Through these results we demonstrate similarities and differences between logical properties of infinite and bi-infinite words

    Transforming structures by set interpretations

    Get PDF
    We consider a new kind of interpretation over relational structures: finite sets interpretations. Those interpretations are defined by weak monadic second-order (WMSO) formulas with free set variables. They transform a given structure into a structure with a domain consisting of finite sets of elements of the orignal structure. The definition of these interpretations directly implies that they send structures with a decidable WMSO theory to structures with a decidable first-order theory. In this paper, we investigate the expressive power of such interpretations applied to infinite deterministic trees. The results can be used in the study of automatic and tree-automatic structures.Comment: 36 page

    Thin MSO with a Probabilistic Path Quantifier

    Get PDF
    This paper is about a variant of MSO on infinite trees where: - there is a quantifier "zero probability of choosing a path pi in 2^{omega} which makes omega(pi) true"; - the monadic quantifiers range over sets with countable topological closure. We introduce an automaton model, and show that it captures the logic
    • …
    corecore