13,597 research outputs found

    Decentralised delay-dependent static output feedback variable structure control

    Get PDF
    In this paper, an output feedback stabilisation problem is considered for a class of large scale interconnected time delay systems with uncertainties. The uncertainties appear in both isolated subsystems and interconnections. The bounds on the uncertainties are nonlinear and time delayed. It is not required that either the known interconnections or the uncertain interconnections are matched. Then, a decentralised delay-dependant static output feedback variable structure control is synthesised to stabilise the system globally uniformly asymptotically using the Lyapunov Razumikhin approach. A case study relating to a river pollution control problem is presented to illustrate the proposed approach

    Distributed Design for Decentralized Control using Chordal Decomposition and ADMM

    Full text link
    We propose a distributed design method for decentralized control by exploiting the underlying sparsity properties of the problem. Our method is based on chordal decomposition of sparse block matrices and the alternating direction method of multipliers (ADMM). We first apply a classical parameterization technique to restrict the optimal decentralized control into a convex problem that inherits the sparsity pattern of the original problem. The parameterization relies on a notion of strongly decentralized stabilization, and sufficient conditions are discussed to guarantee this notion. Then, chordal decomposition allows us to decompose the convex restriction into a problem with partially coupled constraints, and the framework of ADMM enables us to solve the decomposed problem in a distributed fashion. Consequently, the subsystems only need to share their model data with their direct neighbours, not needing a central computation. Numerical experiments demonstrate the effectiveness of the proposed method.Comment: 11 pages, 8 figures. Accepted for publication in the IEEE Transactions on Control of Network System

    Some notions of decentralization and coordination in large-scale dynamic systems

    Get PDF
    Some notions of decentralization and coordination in the control of large-scale dynamic systems are discussed. Decentralization and coordination have always been important concepts in the study of large systems. Roughly speaking decentralization is the process of dividing a large problem into subproblems so that it can be handled more easily. Coordination is the manipulation of the subproblem so that the original problem is solved. The various types of decentralization and coordination that have been used to control dynamic systems are discussed. The emphasis was to distinguish between on-line and off-line operations to understand the results available by indicating the aspects of the problem which are decentralized

    Decentralized control with input saturation: a first step toward design

    Get PDF
    This article summarizes important observations about control of decentralized systems with input saturation and provides a few examples that give insight into the structure of such systems

    Static Output Feedback: On Essential Feasible Information Patterns

    Full text link
    In this paper, for linear time-invariant plants, where a collection of possible inputs and outputs are known a priori, we address the problem of determining the communication between outputs and inputs, i.e., information patterns, such that desired control objectives of the closed-loop system (for instance, stabilizability) through static output feedback may be ensured. We address this problem in the structural system theoretic context. To this end, given a specified structural pattern (locations of zeros/non-zeros) of the plant matrices, we introduce the concept of essential information patterns, i.e., communication patterns between outputs and inputs that satisfy the following conditions: (i) ensure arbitrary spectrum assignment of the closed-loop system, using static output feedback constrained to the information pattern, for almost all possible plant instances with the specified structural pattern; and (ii) any communication failure precludes the resulting information pattern from attaining the pole placement objective in (i). Subsequently, we study the problem of determining essential information patterns. First, we provide several necessary and sufficient conditions to verify whether a specified information pattern is essential or not. Further, we show that such conditions can be verified by resorting to algorithms with polynomial complexity (in the dimensions of the state, input and output). Although such verification can be performed efficiently, it is shown that the problem of determining essential information patterns is in general NP-hard. The main results of the paper are illustrated through examples

    Time Complexity of Decentralized Fixed-Mode Verification

    Get PDF
    Given an interconnected system, this note is concerned with the time complexity of verifying whether an unrepeated mode of the system is a decentralized fixed mode (DFM). It is shown that checking the decentralized fixedness of any distinct mode is tantamount to testing the strong connectivity of a digraph formed based on the system. It is subsequently proved that the time complexity of this decision problem using the proposed approach is the same as the complexity of matrix multiplication. This work concludes that the identification of distinct DFMs (by means of a deterministic algorithm, rather than a randomized one) is computationally very easy, although the existing algorithms for solving this problem would wrongly imply that it is cumbersome. This note provides not only a complexity analysis, but also an efficient algorithm for tackling the underlying problem

    Delay-independent decentralised output feedback control for large-scale systems with nonlinear interconnections

    Get PDF
    In this paper, a stabilisation problem for a class of large-scale systems with nonlinear interconnections is considered. All the uncertainties are nonlinear and are subject to the effects of time delay. A decentralised static output feedback variable structure control is synthesised and the stability of the corresponding closed-loop system is analysed based on the Lyapunov Razumikhin approach. A set of conditions is developed to guarantee that the large-scale interconnected system is stabilised uniformly asymptotically. Further study shows that the conservatism can be reduced by employing additive controllers if the known interconnections are separated into matched and mismatched parts. It is not required that the subsystems are square. The designed controller is independent of time delay and thus it does not require memory. Simulation results show the effectiveness of the proposed approach
    corecore