347 research outputs found

    Diversity Control in Evolutionary Computation using Asynchronous Dual-Populations with Search Space Partitioning

    Get PDF
    Diversity control is vital for effective global optimization using evolutionary computation (EC) techniques. This paper classifies the various diversity control policies in the EC literature. Many research works have attributed the high risk of premature convergence to sub-optimal solutions to the poor exploration capabilities resulting from diversity collapse. Also, excessive cost of convergence to optimal solution has been linked to the poor exploitation capabilities necessary to focus the search. To address this exploration-exploitation trade-off, this paper deploys diversity control policies that ensure sustained exploration of the search space without compromising effective exploitation of its promising regions. First, a dual-pool EC algorithm that facilitates a temporal evolution-diversification strategy is proposed. Then a quasi-random heuristic initialisation based on search space partitioning (SSP) is introduced to ensure uniform sampling of the initial search space. Second, for the diversity measurement, a robust convergence detection mechanism that combines a spatial diversity measure; and a population evolvability measure is utilised. It was found that the proposed algorithm needed a pool size of only 50 samples to converge to optimal solutions of a variety of global optimization benchmarks. Overall, the proposed algorithm yields a 33.34% reduction in the cost incurred by a standard EC algorithm. The outcome justifies the efficacy of effective diversity control on solving complex global optimization landscapes. Keywords: Diversity, exploration-exploitation tradeoff, evolutionary algorithms, heuristic initialisation, taxonomy

    Seeking multiple solutions:an updated survey on niching methods and their applications

    Get PDF
    Multi-Modal Optimization (MMO) aiming to locate multiple optimal (or near-optimal) solutions in a single simulation run has practical relevance to problem solving across many fields. Population-based meta-heuristics have been shown particularly effective in solving MMO problems, if equipped with specificallydesigned diversity-preserving mechanisms, commonly known as niching methods. This paper provides an updated survey on niching methods. The paper first revisits the fundamental concepts about niching and its most representative schemes, then reviews the most recent development of niching methods, including novel and hybrid methods, performance measures, and benchmarks for their assessment. Furthermore, the paper surveys previous attempts at leveraging the capabilities of niching to facilitate various optimization tasks (e.g., multi-objective and dynamic optimization) and machine learning tasks (e.g., clustering, feature selection, and learning ensembles). A list of successful applications of niching methods to real-world problems is presented to demonstrate the capabilities of niching methods in providing solutions that are difficult for other optimization methods to offer. The significant practical value of niching methods is clearly exemplified through these applications. Finally, the paper poses challenges and research questions on niching that are yet to be appropriately addressed. Providing answers to these questions is crucial before we can bring more fruitful benefits of niching to real-world problem solving

    A New Design Method Framework for Open Origami Design Problems

    Get PDF
    With the development of computer science and manufacturing techniques, modern origami is no longer just used for making artistic shapes as its traditional counterpart was many centuries ago. Instead, the outstanding lightweight and high flexibility of origami structures has expanded their engineering application in aerospace, medical devices, and architecture. In order to support the automatic design of more complex modern origami structures, several computational origami design methods have been established. However these methods still focus on the problem of determining a crease pattern to fold into an exact pre-determined shape. And these methods apply deductive logic and function for only one type of topological origami structure. In order to drop the topological constraints on the shapes, this dissertation introduces the research on the development and implementation of the abductive evolutionary design methods to open origami design problems, which is asking for their designs to achieve geometric and functional requirements instead of an exact shape. This type of open origami design problem has no formal computational solutions yet. Since the open origami design problem requires searching for solutions among arbitrary candidates without fixing to a certain topological formation, it is NP-complete in computational complexity. Therefore, this research selects the genetic algorithm (GA) and one of its variations – the computational evolutionary embryogeny (CEE) – to solve origami problems. The dissertation made two major contributions. One contribution is on creating the GA-based/abstract design method framework on open origami design problems. The other contribution is on the geometric representation of origami designs that directs the definition and mapping of their genetic representation and physical representation. This research introduced two novel geometric representations, which are the “ice-cracking” and the pixelated multicellular representation (PMR). The proposed design methods and the adapted evolutionary operators have been testified by two open origami design problems of making flat-foldable shapes with desired profile area and rigid-foldable 3D water containers with desired volume. The results have proved the proposed methods widely applicable and highly effective in solving the open origami design problems

    Multi-population methods in unconstrained continuous dynamic environments: The challenges

    Get PDF
    Themulti-populationmethod has been widely used to solve unconstrained continuous dynamic optimization problems with the aim of maintaining multiple populations on different peaks to locate and track multiple changing peaks simultaneously. However, to make this approach efficient, several crucial challenging issues need to be addressed, e.g., how to determine the moment to react to changes, how to adapt the number of populations to changing environments, and how to determine the search area of each population. In addition, several other issues, e.g., communication between populations, overlapping search, the way to create multiple populations, detection of changes, and local search operators, should be also addressed. The lack of attention on these challenging issues within multi-population methods hinders the development of multi-population based algorithms in dynamic environments. In this paper, these challenging issues are comprehensively analyzed by a set of experimental studies from the algorithm design point of view. Experimental studies based on a set of popular algorithms show that the performance of algorithms is significantly affected by these challenging issues on the moving peaks benchmark. Keywords: Multi-population methods, dynamic optimization problems, evolutionary computatio
    • …
    corecore