311,703 research outputs found

    Linear Size Optimal q-ary Constant-Weight Codes and Constant-Composition Codes

    Full text link
    An optimal constant-composition or constant-weight code of weight ww has linear size if and only if its distance dd is at least 2wβˆ’12w-1. When dβ‰₯2wd\geq 2w, the determination of the exact size of such a constant-composition or constant-weight code is trivial, but the case of d=2wβˆ’1d=2w-1 has been solved previously only for binary and ternary constant-composition and constant-weight codes, and for some sporadic instances. This paper provides a construction for quasicyclic optimal constant-composition and constant-weight codes of weight ww and distance 2wβˆ’12w-1 based on a new generalization of difference triangle sets. As a result, the sizes of optimal constant-composition codes and optimal constant-weight codes of weight ww and distance 2wβˆ’12w-1 are determined for all such codes of sufficiently large lengths. This solves an open problem of Etzion. The sizes of optimal constant-composition codes of weight ww and distance 2wβˆ’12w-1 are also determined for all w≀6w\leq 6, except in two cases.Comment: 12 page

    Exact Random Coding Secrecy Exponents for the Wiretap Channel

    Full text link
    We analyze the exact exponential decay rate of the expected amount of information leaked to the wiretapper in Wyner's wiretap channel setting using wiretap channel codes constructed from both i.i.d. and constant-composition random codes. Our analysis for those sampled from i.i.d. random coding ensemble shows that the previously-known achievable secrecy exponent using this ensemble is indeed the exact exponent for an average code in the ensemble. Furthermore, our analysis on wiretap channel codes constructed from the ensemble of constant-composition random codes leads to an exponent which, in addition to being the exact exponent for an average code, is larger than the achievable secrecy exponent that has been established so far in the literature for this ensemble (which in turn was known to be smaller than that achievable by wiretap channel codes sampled from i.i.d. random coding ensemble). We show examples where the exact secrecy exponent for the wiretap channel codes constructed from random constant-composition codes is larger than that of those constructed from i.i.d. random codes and examples where the exact secrecy exponent for the wiretap channel codes constructed from i.i.d. random codes is larger than that of those constructed from constant-composition random codes. We, hence, conclude that, unlike the error correction problem, there is no general ordering between the two random coding ensembles in terms of their secrecy exponent.Comment: 23 pages, 5 figures, submitted to IEEE Transactions on Information Theor

    Estimates on the Size of Symbol Weight Codes

    Full text link
    The study of codes for powerlines communication has garnered much interest over the past decade. Various types of codes such as permutation codes, frequency permutation arrays, and constant composition codes have been proposed over the years. In this work we study a type of code called the bounded symbol weight codes which was first introduced by Versfeld et al. in 2005, and a related family of codes that we term constant symbol weight codes. We provide new upper and lower bounds on the size of bounded symbol weight and constant symbol weight codes. We also give direct and recursive constructions of codes for certain parameters.Comment: 14 pages, 4 figure

    A Construction for Constant-Composition Codes

    Full text link
    By employing the residue polynomials, a construction of constant-composition codes is given. This construction generalizes the one proposed by Xing[16]. It turns out that when d=3 this construction gives a lower bound of constant-composition codes improving the one in [10]. Moreover, for d>3, we give a lower bound on maximal size of constant-composition codes. In particular, our bound for d=5 gives the best possible size of constant-composition codes up to magnitude.Comment: 4 pages, submitted to IEEE Infromation Theor

    A Simple Derivation of the Refined Sphere Packing Bound Under Certain Symmetry Hypotheses

    Full text link
    A judicious application of the Berry-Esseen theorem via suitable Augustin information measures is demonstrated to be sufficient for deriving the sphere packing bound with a prefactor that is Ξ©(nβˆ’0.5(1βˆ’Espβ€²(R)))\mathit{\Omega}\left(n^{-0.5(1-E_{sp}'(R))}\right) for all codes on certain families of channels -- including the Gaussian channels and the non-stationary Renyi symmetric channels -- and for the constant composition codes on stationary memoryless channels. The resulting non-asymptotic bounds have definite approximation error terms. As a preliminary result that might be of interest on its own, the trade-off between type I and type II error probabilities in the hypothesis testing problem with (possibly non-stationary) independent samples is determined up to some multiplicative constants, assuming that the probabilities of both types of error are decaying exponentially with the number of samples, using the Berry-Esseen theorem.Comment: 20 page

    On the Throughput of Channels that Wear Out

    Full text link
    This work investigates the fundamental limits of communication over a noisy discrete memoryless channel that wears out, in the sense of signal-dependent catastrophic failure. In particular, we consider a channel that starts as a memoryless binary-input channel and when the number of transmitted ones causes a sufficient amount of damage, the channel ceases to convey signals. Constant composition codes are adopted to obtain an achievability bound and the left-concave right-convex inequality is then refined to obtain a converse bound on the log-volume throughput for channels that wear out. Since infinite blocklength codes will always wear out the channel for any finite threshold of failure and therefore cannot convey information at positive rates, we analyze the performance of finite blocklength codes to determine the maximum expected transmission volume at a given level of average error probability. We show that this maximization problem has a recursive form and can be solved by dynamic programming. Numerical results demonstrate that a sequence of block codes is preferred to a single block code for streaming sources.Comment: 23 pages, 1 table, 11 figures, submitted to IEEE Transactions on Communication
    • …
    corecore