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Abstract. We introduce twisted permutation codes, which are frequency permutation
arrays analogous to repetition permutation codes, namely, codes obtained from the rep-
etition construction applied to a permutation code. In particular, we show that a lower
bound for the minimum distance of a twisted permutation code is the minimum distance
of a repetition permutation code. We give examples where this bound is tight, but more
importantly, we give examples of twisted permutation codes with minimum distance
strictly greater than this lower bound.

1 Introduction

Transmitting digital information using existing electrical infrastructure, known as
powerline communication, has been proposed as a possible solution to the “last
mile problem” in telecommunications [19, 24]. Constant composition codes are
coding schemes that are particularly well suited to deal with the extra noise present
in powerline communication, while at the same time maintaining a necessary
constant power output [8,9,11,23]. Moreover, it is suggested in [8] that frequency
permutation arrays, a class of constant composition codes, are particularly well
suited for powerline communication. A frequency permutation array of length
m D rq over an alphabet Q of size q is a code with the property that in each
codeword, every letter from Q appears exactly r times. They have been studied
in [20, 21]. In [17], the first two authors characterised a family of neighbour tran-
sitive codes (see Section 5) in which frequency permutation arrays play a central
role. In the same paper, the permutation codes generated by groups in this family
were classified, and by applying a repetition construction to these codes, infinite
families of non-trivial neighbour transitive frequency permutation arrays were
constructed. In this setting, repeating codewords improves the minimum distance
of the code only by a factor of the number of repetitions. In this paper we intro-
duce twisted permutation codes, which are frequency permutation arrays that are
generated by groups and are analogous to repeated permutation codes. We give
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408 N. I. Gillespie, C. E. Praeger and P. Spiga

examples where the minimum distance is improved by a greater amount than that
achieved by the repetition construction.

Let T be an abstract group and, as jQj D q, identify the symmetric group onQ
with Sq , the symmetric group on ¹1; : : : ; qº. We call a group homomorphism �

from T to Sq a representation of T of degree q. Given such a representation we
define the permutation code C.T; �/ (see Section 3). If ˛ is a codeword in C.T; �/,
we let repr.˛/ D .˛; : : : ; ˛/ denote the r-tuple with constant entry ˛, and we let

Repr.C.T; �// D ¹repr.˛/ W ˛ 2 C.T; �/º: (1.1)

The code Repr.C.T; �// is a frequency permutation array of length rq where
every letter appears r times in each codeword. (This is the repetition construc-
tion mentioned above.) A twisted permutation code is a frequency permutation
array generated by a group T and several (not necessarily distinct) representations
of T of the same degree. (See also Table 9.) Specifically, we consider an ordered
r-tuple I of representations of T to Sq and construct the twisted permutation code
C.T; I/ (see Section 3), a frequency permutation array of length rq over Q. By
letting ıtw be the minimum distance of C.T; I/ and ırep be the minimum of the
minimum distances of Repr.C.T; �// as � varies over I, we prove the following.

Theorem 1.1. Let q be a positive integer, T be an abstract group, and I be an
ordered r-tuple of (not necessarily distinct) permutation representations of T
into Sq . Then C.T; I/ as defined in Section 3 is a frequency permutation array
of length rq with minimum distance ıtw > ırep. Moreover, the twisted permutation
codes described in Table 1 have a minimum distance that is strictly greater than
this lower bound.

T r q ırep ıtw Reference

S6 2 6 4 8 Section 4.1
A6 2 6 6 8 Section 4.2

ASL.3; 2/ 2 8 8 12 Section 7.1
S6 4 60 176–192 6 224 Section 7.2

Table 1. Examples of twisted permutation codes with improved minimum distance.

Remark 1.2. The codes in the fourth line of Table 1 are described in Section 7.2.
There are several different repetition permutation codes and also several different
twisted permutation codes, with minimum distances, which can be obtained expli-
citly from Table 8 in Section 7.2, ranging from 176 to 192, and from 176 to 224,
respectively.
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Twisted permutation codes 409

In some cases, two representations of a group T to Sq can be identified with
each other if there exists a relabelling of the point set Q that maps one to the
other. However, this is not always possible, in which case the representations are
distinct. For example, S6 has two distinct representations of degree 6, which are
interchanged by an outer automorphism of order 2. Each finite 2-transitive almost
simple group has at most two distinct representations of the same degree, with one
infinite family and six exceptional cases that have exactly two distinct represen-
tations [5, Table 7.4]. (This fact is a consequence of the Classification of Finite
Simple Groups.) Additionally, these groups share the property of S6 that the two
actions are interchanged by an outer automorphism of order 2. For T being one of
these groups and �1; �2 the distinct representations of T of the same degree, we
consider the codes C.T; .�1; �2// in Section 4 where we determine their minimum
distance with respect to the lower bound ırep. We also prove in Theorem 5.1 that
these codes are neighbour transitive.

Cameron [5] also states that the 2-transitive affine group ASL.2; r/with r D 2f

for some positive integer f > 2 has r distinct representations of the same degree.
In Section 6 we give an explicit construction of these distinct representations, and
by letting I be an r-tuple of these actions, we determine the minimum distance
of C.ASL.2; r/; I/ with respect to the lower bound ırep. Finally, in Section 7, we
use the computer software program GAP to construct some further examples of
twisted permutation codes. This allows us to prove Theorem 1.1 in Section 7.3.

2 Definitions

2.1 Codes

A code of lengthm over an alphabetQ of size q can be embedded as a subset of the
vertex set of the Hamming graph � D H.m; q/, which has a vertex set V.�/ that
consists of m-tuples with entries from Q, and an edge exists between two vertices
if and only if they differ in precisely one entry. Throughout this paper we identify
the alphabet Q with the set ¹1; : : : ; qº and Sym.Q/ with Sq . The automorphism
group of H.m; q/, which we denote by Aut.�/, is a semi-direct product B Ì L
where B Š Smq and L Š Sm ([4, Theorem 9.2.1]). Let g D .g1; : : : ; gm/ 2 B ,
� 2 L and ˛ D .˛1; : : : ; ˛m/ 2 V.�/. Then g� acts on ˛ in the following way:

˛g� D .˛
g
1��1

1��1
; : : : ; ˛

g
m��1

m��1
/:

For all pairs of vertices ˛; ˇ 2 V.�/, the Hamming distance between ˛ and ˇ,
denoted by d.˛; ˇ/, is defined to be the number of entries in which the two vertices
differ. It is the distance between ˛ and ˇ in � . We let �k.˛/ denote the set of
vertices in � that are at distance k from ˛.
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410 N. I. Gillespie, C. E. Praeger and P. Spiga

The minimum distance, ı.C /, of a code C is the smallest distance between dis-
tinct codewords ofC . IfC consists of exactly one codeword, then we let ı.C / D 0.
Another code C 0 inH.m; q/ is equivalent to C if there exists an x 2 Aut.�/ such
that C x D C 0, and if C D C 0, we call x an automorphism of C . The automor-
phism group of C is the setwise stabiliser of C in Aut.�/, which we denote by
Aut.C /. The inner distance distribution of C is the .mC 1/-tuple

�.C / D .a0; : : : ; am/

where

ai D
j¹.˛; ˇ/ 2 C 2 W d.˛; ˇ/ D iºj

jC j
: (2.1)

We observe that ai > 0 for all i and a0 D 1. Moreover, ai D 0 for 1 6 i 6 ı � 1

and jC j D
Pm
iD0 ai . For a codeword ˛, the distance distribution from ˛ is the

.mC 1/-tuple
�.˛/ D .a0.˛/; : : : ; am.˛//

where ak.˛/ D j�k.˛/ \ C j.
We say a code C is distance invariant if the number of codewords at distance i

from a codeword is independent of the choice of codeword. That is �.C / D �.˛/
for each codeword ˛. It is straightforward to deduce that if a group of automor-
phisms of a code acts transitively, then the code is necessarily distance invariant.

2.2 Permutation groups

Let � be a nonempty set. We denote the group of permutations of � by Sym.�/.
A permutation group on � is a subgroup of Sym.�/. Suppose G is a permutation
group on � and t 2 G. We define the support of t as the set

supp.t/ D ¹˛ 2 � W ˛t ¤ ˛º

and the set of fixed points of t as

fix.t/ D ¹˛ 2 � W ˛t D ˛º:

It follows that � D supp.t/ [ fix.t/ for all t 2 G. We say G acts regularly on �
if G acts transitively on � and G˛ D 1 for all ˛ 2 �.

Let G be an abstract group now. An action of G on � is a homomorphism �

from G to Sym.�/, in which case we say G acts on � or � defines an action
of G on �. We also call � a (permutation) representation of G on �. The degree
of the action is the cardinality of �. In this paper, all actions have finite degree.
Let �1 W G ! Sym.�/ and �2 W H ! Sym.�0/ be actions of the groups G;H
on � and �0. We say these actions are permutationally isomorphic if there exists
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Twisted permutation codes 411

a bijection � W �! �0 and an isomorphism ' W �1.G/! �2.H/ such that

�.˛�1.g// D �.˛/'.�1.g// for all ˛ 2 � and g 2 G; (2.2)

and we call .�; '/ a permutational isomorphism. If G D H and ' is the identity
map, then we say the two actions of G are equivalent. However, if there does not
exist a bijection � W �! �0 such that (2.2) holds with G D H and ' equal to the
identity map, then we say the two actions are inequivalent.

3 Constructions

Let Q D ¹1; : : : ; qº and H.q; q/ be the Hamming graph of length q over Q.
We denote the symmetric group on Q by Sq . Let T be an abstract group and
� W T ! Sq be an action of T onQ denoted by t 7! t�. For t 2 T , we identify the
permutation t� with the vertex in H.q; q/ that represents its passive form, that is,
with ˛.t; �/ D .1t�; : : : ; qt�/ 2 H.q; q/. We naturally define

C.T; �/ D ¹˛.t; �/ W t 2 T º: (3.1)

The code C.T; �/ is an example of a permutation code. Permutation codes were
introduced in the 1970s [2,3,15], where sets of permutations in their passive form
were considered rather than groups. Due to applications in powerline communi-
cation, Chu, Colbourn and Dukes [8] renewed the interest in permutation codes,
giving new constructions of such codes. Other interesting results on permutation
codes include a beautiful decoding algorithm by Bailey [1] for permutation codes
of groups; Cameron and Wanless’ [7] examination of the covering radius of a per-
mutation code; and Cameron and Gadouleau’s [6] introduction of the remoteness
of a code and their examination of this parameter with respect to permutation
codes.

As discussed in Section 2, the automorphism group of � D H.q; q/ is equal
to B Ì L where B Š Sqq and L Š Sq . To distinguish between automorphisms
of � and permutations in Sq , we introduce the following notation. For t 2 T and
� W T ! Sq , we let xt� D .t�; : : : ; t�/ 2 B , and we let �.t�/ denote the automor-
phism induced by t� in L. Since � is a homomorphism, it holds for t 2 T and
˛.s; �/ 2 V.�/ that

˛.s; �/xt� D .1s�; : : : ; qs�/.t�;:::;t�/

D .1s�t�; : : : ; qs�t�/

D .1.st/�; : : : ; q.st/�/

D ˛.st; �/:
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412 N. I. Gillespie, C. E. Praeger and P. Spiga

Now, suppose that i t� D j for i; j 2Q. Then, by considering ˛.s; �/ as the q-tuple
.˛1; : : : ; ˛q/, it holds that

˛.s; �/�.t�/jj D ˛i D i
s�
D j t

�1�s�
D j .t

�1s/�:

Thus ˛.s; �/�.t�/ D ˛.t�1s; �/, and we have proved the following.

Lemma 3.1. Let ˛.s; �/ 2 C.T; �/ and t 2 T . Then

˛.s; �/xt� D ˛.st; �/ and ˛.s; �/�.t�/ D ˛.t�1s; �/:

As any group has a regular action on itself by right multiplication, it is a conse-
quence of Lemma 3.1 that Diag.T; �/ D ¹xt� W t 2 T º acts regularly on C.T; �/.
This, in particular, implies that C.T; �/ is distance invariant.

Lemma 3.2. For t 2 T we have

d.˛.1; �/; ˛.t; �// D jsupp.t�/j:

Moreover, C.T; �/ has minimum distance

ı.C.T; �// D min¹jsupp.t�/j W 1 ¤ t 2 T º;

the minimal degree of T�.

Proof. For 1 ¤ t 2 T it follows that ˛.1; �/ji ¤ ˛.t; �/ji if and only if i ¤ i t�,
which holds if and only if i 2 supp.t�/, from which the first statement follows.
Now, as C D C.T; �/ is distance invariant, it has minimum distance

ı.C / D min¹d.˛.1; �/; ˛.t; �// W 1 ¤ t 2 T º:

Thus ı.C / D min¹jsupp.t�/j W 1 ¤ t 2 T º.

We now consider a more general construction. Let I D .�1; : : : ; �r/ be an
ordered list of r (not necessarily distinct) representations from T to Sq and
define

˛.t; I/ D .˛.t; �1/; : : : ; ˛.t; �r// 2 H.rq; q/;

which is an r-tuple of codewords of the form given in (3.1). Hence, we naturally
define

C.T; I/ D ¹˛.t; I/ W t 2 T º:

We call C.T; I/ a twisted permutation code. Note that if r D 1, this is just the
construction given in (3.1), and if �1 D � � � D �r , then C.T; I/ D Repr.C.T; �1//
as in (1.1).
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Twisted permutation codes 413

Proposition 3.3. Consider the code C.T; I/, with notation as above. Then C.T; I/
is a frequency permutation array of length rq. Moreover:

(i) There exists a group of automorphisms acting regularly on C.T; I/. In par-
ticular C.T; I/ is distance invariant.

(ii) The size of C.T; I/ is equal to the order of the factor group T=K, where
K D

T
�2I ker �.

(iii) One has

ı.C.T; I// D min
t2T #

X
�2I

jsupp.t�/j > min
�2I
¹ı.Repr.C.T; �///º;

where T # D T n¹1º.

Proof. Each codeword in C.T; I/ is an r-tuple of permutation codewords, so it is
clear that C.T; I/ is a frequency permutation array of length rq.

(i) For t 2 T let x.t; I/ D .xt�1 ; : : : ; xt�r / 2 Diag.T; �1/ � � � � � Diag.T; �r/,
and let Diag.T; I/ D ¹x.t; I/ W t 2 T º. Then x.t; I/ acts naturally on ˛.s; I/ in
the following way:

˛.s; I/x.t;I/ D .˛.s; �1/; : : : ; ˛.s; �r//
.xt�1 ;:::;xt�r /

D .˛.s; �1/
xt�1 ; : : : ; ˛.s; �r/

xt�r /

D .˛.st; �1/; : : : ; ˛.st; �r// (by Lemma 3.1)

D ˛.st; I/:

Since T has a regular action on itself by right multiplication, we deduce that
Diag.T; I/ acts regularly on C.T; I/. Hence C.T; I/ is distance invariant.

(ii) From the proof of statement (i) it follows that ˛.s; I/ D ˛.t; I/ if and only
if ˛.st�1; I/ D ˛.1; I/, which holds if and only if st�1 2 K. Hence the size of
C.T; I/ is equal to the order of the factor group T=K.

(iii) For an element t 2 T # it is clear that the distance between ˛.1; I/ and
˛.t; I/ inH.rq; q/ is equal to the sum of the distances between ˛.1; �/ and ˛.t; �/
in H.q; q/ as � varies over I. That is,

d.˛.1; I/; ˛.t; I// D
X
�2I

d.˛.1; �/; ˛.t; �// D
X
�2I

jsupp.t�/j; (3.2)

where the last equality follows from Lemma 3.2. Thus the distance between
˛.1; I/ and any codeword in C.T; I/ is minimised when this expression is min-
imised. Consequently, as C.T; I/ is distance invariant, it follows that

ı.C.T; I// D min
t2T #

X
�2I

jsupp.t�/j:
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414 N. I. Gillespie, C. E. Praeger and P. Spiga

To prove the inequality in the statement, we make the following observation:

min
t2T #

X
�2I

jsupp.t�/j > min
t2T #
¹r �min

�2I
¹jsupp.t�/jºº

D min
�2I
¹r � min

t2T #
¹jsupp.t�/jºº

D min
�2I
¹r � ı.C.T; �//º (by Lemma 3.2)

D min
�2I
¹ı.Repr.C.T; �///º:

Remark 3.4. (a) Consider the code C.T; I/ and letK be as in Proposition 3.3 (ii).
Also let QT D T=K, and for � 2 I define Q� W QT ! Sq given by Kt 7! t�. It is
straightforward to check that Q� is well defined and that ker Q� D ker �=K. By defin-
ing QI D . Q�1; : : : ; Q�r/, it follows that C.T; I/ D C. QT ; QI/. Moreover,

QK D
\
Q�2QI

ker Q� D
\
�2I

.ker �=K/ D
�\
�2I

ker �
�
=K D 1:

Thus, for any twisted permutation code, by replacing T with T=K we can assume
that K D 1 and that jC.T; I/j D jT j.

(b) The lower bound in Proposition 3.3 (iii) can be equal to zero. For example,
if for some representation �0 2 I it holds that ker �0 D T , then

min
�2I
¹ı.Repr.C.T; �///º D 0:

This is because Repr.C.T; �
0// consists of just one codeword.

In Sections 4 and 7, we give examples of twisted permutation codes with
minimum distance strictly greater than the lower bound in Proposition 3.3 (iii).
However, this lower bound can be attained by letting I D .�; : : : ; �/ for some rep-
resentation � W T ! Sq , because as we said above, in this case

C.T; I/ D Repr.C.T; �//:

The following result shows that this lower bound can also be attained in a slightly
more general setting.

Lemma 3.5. Let I D .�1; : : : ; �r/ be an r-tuple of actions of T of degree q. Sup-
pose that jsupp.t�i /j D jsupp.t�j /j for all i; j and for all t 2 T . Then C.T; I/
has the same inner distance distribution as Repr.C.T; �i // for i D 1; : : : ; r . In
particular ı.C.T; I// achieves the lower bound in Proposition 3.3 (iii).
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Twisted permutation codes 415

Proof. Let C D C.T; I/. By Proposition 3.3, C is distance invariant. Thus the
inner distance distribution of C is equal to the distance distribution from ˛.1; I/.
That is, the kth entry of �.C / is equal to j�k.˛.1; I// \ C j. It follows from (3.2)
that

˛.t; I/ 2 �k.˛.1; I// \ C ”
X
�2I

jsupp.t�/j D k: (3.3)

As jsupp.t�i /j D jsupp.t�j /j for all i; j , the expression on the right of (3.3) is
equal to r jsupp.t�i /j for each i D 1; : : : ; r . Thus the kth entry of �.C / is equal to
j¹t 2 T W jsupp.t�i /j D k=rºj for each i D 1; : : : ; r .

Now, for i 2 ¹1; : : : ; rº let I�i D .�i ; : : : ; �i /, and let

C 0 D C.T; I�i / D Repr.C.T; �i //:

Again, because the code C 0 is distance invariant, the kth entry of �.C 0/ is equal
to j�k.˛.1; I�i // \ C

0j and

˛.t; I�i / 2 �k.˛.1; I�i // \ C
0
”

rX
jD1

jsupp.t�i /j D r jsupp.t�i /j D k:

It follows that the kth entry of �.C 0/ is equal to j¹t 2 T W jsupp.t�i /j D k=rºj, as
above.

In Section 6 we give an example of an infinite family of twisted permutation
codes, each generated by a set I of r representations that are pairwise distinct, and
whose minimum distance achieves the lower bound in Proposition 3.3 (iii).

4 Examples from almost simple 2-transitive groups

The first examples of twisted permutation codes that we introduce are constructed
from finite 2-transitive groups of almost simple type. It is well known that a finite
2-transitive group of almost simple type has at most two inequivalent actions, and
the groups with precisely two actions are listed in Table 2, which is taken from
[5, Table 7.4]. We consider each group T from Table 2 as a permutation group in
its natural action, so q is equal to the degree of T . For each line in Table 2 it holds
that the normaliser in Sq of T is an index 2 subgroup of Aut.T /. Thus, we let
I D .�1; �2/ where �1 is the identity map and �2 is an outer automorphism of T
such that �22 D �1 (see Remark 4.1), and we consider the code C.T; I/.

Remark 4.1. For each T in Table 2, there exists an outer automorphism of T that
is an involution. For T in the last line of Table 2, the automorphism induced by the
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416 N. I. Gillespie, C. E. Praeger and P. Spiga

Degree T Conditions

6 S6; A6 –
11 PSL.2; 11/ –
12 M12 –
15 A7 –

176 HS –
.`n � 1/=.` � 1/ PSL.n; `/ 6 T 6 P�L.n; `/ n > 2

Table 2. 2-transitive almost simple groups with two inequivalent actions.

inverse transpose map is the required outer automorphism. For each of the other
groups in Table 2, we consult the character table of T in the ATLAS [12]. For each
T we find a conjugacy class of elements in Aut.T /nNSq .T / which has elements
of order 2. (Here NSq .T / denotes the subgroup of Aut.T / induced by NSq .T /.)

4.1 The symmetric group T D S6

By referring to the character table of S6 in the ATLAS, we can determine the
number of fixed points in each action for each conjugacy class of S6. By subtract-
ing this from the degree of S6, we determine, again for each action, the size of
the support for the elements in each conjugacy class of S6. We give this informa-
tion in Table 3. By summing the sizes of the supports for each conjugacy class, it
follows from Proposition 3.3 that C.S6; I/ has minimum distance 8. The minimal
degree of S6 is 2 in both actions, and so Rep2.C.S6; �i // has minimum distance 4
for i D 1; 2. Thus, C.S6; I/ has the same size and length as Rep2.C.S6; �i //
(for i D 1; 2), but has double the minimum distance. In particular, ı.C.S6; I//
is greater than the lower bound in Proposition 3.3 (iii).

Conjugacy class 1A 2A 2B 2C 3A 3B 4A 4B 5AB 6A 6B

jsupp.t�1/j 0 4 2 6 3 6 6 4 5 5 6
jsupp.t�2/j 0 4 6 2 6 3 6 4 5 6 5

Sum of supports 0 8 8 8 9 9 12 8 10 11 11

Table 3. The symmetric group S6.
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Twisted permutation codes 417

4.2 The alternating group T D A6

Again, by referring to the ATLAS, we determine, for each action, the size of the
support for the elements in each conjugacy class of A6. We present this infor-
mation in Table 4. It follows from Proposition 3.3 that we can read off the mini-
mum distance of C.A6; I/ from Table 4, which is 8. The minimal degree of A6 in
both actions is 3, so Rep2.C.A6; �i // has minimum distance 6 for i D 1; 2. Thus
C.A6; I/ is strictly greater than the lower bound in Proposition 3.3 (iii).

Conjugacy class 1A 2A 3A 3B 4A 5A 5B

jsupp.t�1/j 0 4 3 6 6 5 5
jsupp.t�2/j 0 4 6 3 6 5 5

Sum of supports 0 8 9 9 12 10 10

Table 4. The alternating group A6.

4.3 The Mathieu group T D M12

In Table 5 we give the size of the support, for each action, of the elements in each
conjugacy class of M12 (see [12]). By Proposition 3.3, we deduce that

ı.C.M12; I// D 16:

This is equal to the minimum distance of Rep2.C.M12; �i // for i D 1; 2 as the
outer automorphism �2 does not change the cycle structure of the elements in
the conjugacy class 2B, for which the size of the support is equal to the minimal
degree of M12. However, the codes C.M12; I/ and Rep2.C.M12; �i // for i D 1
or 2 are inequivalent. This can be seen by considering the distance distribution of
each code. By Proposition 3.3, both codes C.M12; I/ and Rep2.C.M12; �i // are
distance invariant. Therefore, the respective inner distance distribution is equal to
the distance distribution from any codeword. In the code C.M12; I/, the code-
words that are at distance 16 from ˛.1; I/ are the codewords associated with
elements from the conjugacy class 2B. Hence, in the inner distance distribution
of C.M12; I/, one has a16 D 495, the size of the conjugacy class 2B in M12.
However, in the code Rep2.C.M12; �i //, the codewords that are at distance 16
from .˛.1; �i /; ˛.1; �i // are precisely the elements from the conjugacy classes 2B
and 4B or 4A respectively for i D 1 or 2. Hence, in this case a16 is equal to the
sum of the sizes of the conjugacy classes 2B and 4B or 4A respectively, which
is equal to 3465 (note classes 4B and 4A contain the same number of elements).
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Conjugacy class 1A 2A 2B 3A 3B 4A 4B 5A

jsupp.t�1/j 0 12 8 9 12 12 8 10
jsupp.t�2/j 0 12 8 9 12 8 12 10

Sum of supports 0 24 16 18 24 20 20 20

Conjugacy class 6A 6B 8A 8B 10A 11A 11B

jsupp.t�1/j 12 11 12 10 12 11 11
jsupp.t�2/j 12 11 10 12 12 11 11

Sum of supports 24 22 22 22 24 22 22

Table 5. The Mathieu group M12.

The inner distribution for each code can be calculated in this way and is given in
Table 6. Note that we only give the non-zero terms of the inner distribution.

�.C / a0 a16 a18 a20 a22 a24

C.M12; I/ 1 495 1760 15444 56880 20460
Rep2.C.M12; �i // 1 3465 1760 21384 33120 35310

Table 6. Inner distance distributions.

In the remaining cases from Table 2, we claim that jsupp.t�1/j D jsupp.t�2/j
for each t 2 T . Consequently by Lemma 3.5, C.T; I/ has the same inner distance
distribution as Rep2.C.T; �i // for i D 1; 2, and therefore the same minimum dis-
tance. Hence, in these cases the code C.T; I/ has a minimum distance that is equal
to the lower bound in Proposition 3.3 (iii) even though �1 ¤ �2.

4.4 The groups T D PSL.2 ; 11/; A7; HS

By referring to the ATLAS, we see that in each case the permutation character
of the action generated by �1 is the same as the permutation character of the
action generated by �2. In particular, for T D PSL.2; 11/, A7 or HS , the permu-
tation character for both actions is equal to 1AC 10B, 1AC 14B, or 1AC 175A
respectively [12, pp. 7, 10, 80]. Hence jfix.t�1/j D jfix.t�2/j for all t 2 T and so
jsupp.t�1/j D jsupp.t�2/j for all t 2 T .
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4.5 The projective linear groups PSL.n; `/ 6 T 6 P�L.n; `/

In its natural action T is acting 2-transitively on P , the set of .`n � 1/=.` � 1/
one-dimensional subspaces of V D Fn

`
. Moreover, under �2, the action of T is

permutationally isomorphic to the action of T on B, the set of .`n � 1/=.` � 1/
hyperplanes of V . It holds that each hyperplane is uniquely determined by the
set of one-dimensional subspaces it contains. Consequently D D .P ;B/ forms
a symmetric 2-design, and in particular, T is a group of automorphisms of D .
Consequently, the cycle structure of t�1 is the same as that for t�2, for all t 2 T ,
see [22, Corollary 3.2]. Hence, jsupp.t�1/j D jsupp.t�2/j for all t 2 T .

An open question for the cases in Sections 4.4 and 4.5 is whether C.T; I/ is
equivalent to Repr.C.T; �i //, for i D 1 or 2, under the automorphisms of the
Hamming graph.

5 Neighbour transitivity

Let C be a code in H.m; q/. For any vertex � in H.m; q/ we let

d.�; C / D min¹d.�; ˇ/ W ˇ 2 C º

and
Ci D ¹� W d.�; C / D iº:

We callC1 the set of neighbours ofC , and if there exists a group of automorphisms
G such that both C and C1 are G-orbits, then we say that C is G-neighbour
transitive, or simply neighbour transitive.

Throughout this section T is one of the groups from Table 2, and C.T; I/ is
the code generated by I D .�1; �2/ where �1 is the identity map and �2 is an
outer automorphism of T such that �22 D �1. As we mentioned in the introduction,
one of the motivations for considering twisted permutation codes comes from the
family of neighbour transitive permutation codes classified in [17] and their sub-
sequent neighbour transitive repetition constructions. In this section we prove the
following for the codes presented above.

Theorem 5.1. For each T in Table 2, the code C.T; I/ is neighbour transitive.

Before we prove Theorem 5.1, we first show that any automorphism of T
defines an automorphism of NSq .T /. We define the following homomorphism:

# W NSq .T /! Aut.T /;

y 7! y;
(5.1)

where ty D y�1ty for all t 2 T , and we denote the image of NSq .T / by NSq .T /.
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Since T is acting 2-transitively, and therefore primitively, it follows that

ker.#/ D CSq .T / D 1;

see [14, Theorem 4.2A]. Hence NSq .T / Š NSq .T /. For each group in Table 2 it
is known that NSq .T / is a subgroup of index 2 in Aut.T /, and therefore is nor-
mal in Aut.T /. Thus for � 2 Aut.T / and y 2 NSq .T / one has ��1y� 2 NSq .T /.
Moreover, because NSq .T / Š NSq .T /, there exists a unique y0 2 NSq .T / such
that ��1y� D y0. Thus, for � 2 Aut.T /, O� W NSq .T / 7! NSq .T / given by

y O� D #�1.��1y�/ D y0 (5.2)

is a well-defined automorphism of NSq .T /. We note that (5.2) implies

y O� D ��1y�:

To simplify the notation, for y 2 NSq .T / we write y� for y O�, and regard � as
a representation of NSq .T /.

The code C.T; I/ is contained in the vertex set of �2 D H.2q; q/, which we
can identify with the set of arbitrary 2-tuples of vertices from � D H.q; q/. Thus,
given arbitrary automorphisms x; y 2 Aut.�/, we let .x; y/ 2 Aut.�/ � Aut.�/
act on the vertices of �2 in the following way:

.˛1; ˛2/
.x;y/

D .˛x1 ; ˛
y
2 /; (5.3)

where ˛1; ˛2 2 V.�/. We now construct a group of automorphisms of C.T; I/
that stabilises ˛.1; I/. To do this we first construct an automorphism of C.T; �/,
for any � 2 Aut.T /, in � D H.q; q/. Now � defines an automorphism ofNSq .T /,
so y� 2 NSq .T / for y 2 NSq .T /, and we let

xy� D .y�; : : : ; y�/ 2 B Š S
q
q ;

�.y�/ 2 L Š Sq;

a.y; �/ D xy��.y�/ 2 Aut.�/:

Suppose that iy� D j . Then it follows that

˛.t; �/a.y;�/jj D i
t�y�
D j .y�/

�1t�y�
D j .y

�1ty/�;

and hence
˛.t; �/a.y;�/ D ˛.y�1ty; �/: (5.4)

We now define

A.T; I/ D ¹a.y; I/ D .a.y; �1/; a.y; �2// W y 2 NSq .T /º;
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where we regard �1, �2 as representations of NSq .T /. Allowing A.T; I/ to act on
vertices of �2 as in (5.3), it follows from (5.4) that

˛.t; I/a.y;I/ D ˛.y�1ty; I/

for all t 2 T . As y 2 NSq .T /, we deduce that A.T; I/ is a group of automor-
phisms C.T; I/ that stabilises ˛.1; I/.

Let � be the automorphism of �2 that maps .˛1; ˛2/ to .˛2; ˛1/ for all vertices
˛1; ˛2 2 V.�/. We observe that ˛.t; �/ D ˛.t�; �1/ for any � 2 Aut.T / and any
t 2 T (recall �1 is the identity automorphism). Hence, recalling that �22 D �1, it
follows that

˛.t; I/� D .˛.t; �2/; ˛.t; �1// D .˛.t�2; �1/; ˛.t�2; �2// D ˛.t�2; I/:

Thus � is also an automorphism of C.T; I/ that stabilises ˛.1; I/.

Lemma 5.2. Let H D hA.T; I/; �i. Then H acts transitively on �21 .˛.1; I//.

Proof. We first describe the neighbours of the codeword ˛.1; �/ for � 2 Aut.T /
in � D H.q; q/. Following the notation of [17], for 1 6 i; j; k 6 q we let

�.˛.1; �/; i; j /jk D

´
k if k ¤ i;
j if k D i ,

so
�1.˛.1; �// D ¹�.˛.1; �/; i; j / W i ¤ j º:

It follows from [17, Lemma 1] and (5.4) that

�.˛.1; �/; i; j /a.y;�/ D �.˛.1; �/a.y;�/; iy�; j y�/ D �.˛.1; �/; iy�; j y�/:

Thus, because NSq .T / is acting 2-transitively, we deduce that

A.T; �/ D ¹a.y; �/ W y 2 NSq .T /º

acts transitively on �1.˛.1; �// in � . Hence A.T; I/ has two orbits on �21 .˛.1; I//
in �2, which are

O1 D ¹.�; ˛.1; �2// W � 2 �1.˛.1; �1//º;

O2 D ¹.˛.1; �1/; �/ W � 2 �1.˛.1; �2//º:

Because 1�2 D 1, it follows that ˛.1; �2/ D ˛.1�2; �1/ D ˛.1; �1/, and so

�1.˛.1; �1// D �1.˛.1; �2//:

Thus � interchanges O1 and O2.
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We prove Theorem 5.1 by considering the groupG D hDiag.T; I/; A.T; I/; �i.
It follows from Lemma 3.3 that Diag.T; I/ acts regularly on C.T; I/. Adding to
this the result of Lemma 5.2, we deduce that G is a group of automorphisms of
C.T; I/ that acts transitively on C.T; I/. It also follows from Lemma 5.2 that the
stabiliser of ˛.1; I/ in G is equal toH . By allowing G to translate any two neigh-
bours of C.T; I/ to two neighbours of ˛.1; I/, and then allowing an element ofH
to map one of these neighbours to the other, we deduce that G acts transitively on
the set of neighbours of C.T; I/, which proves Theorem 5.1.

6 The affine special linear group ASL.2 ; r/

Let V D F2r be the two-dimensional vector space of row vectors over the finite
field Fr of size r D 2f for some positive integer f > 2. The group ASL.2; r/ is
equal to the split extension of N , the translations of V , by SL.2; r/, the group of
invertible 2 � 2 matrices over Fr with determinant 1, and ASL.2; r/ has a natural
2-transitive action on V . It is known that there are r conjugacy classes of com-
plements of N in ASL.2; r/ (see [10]). By embedding ASL.2; r/ into SL.3; r/,
in this section we construct a representative for each of these conjugacy classes.
Then, by considering the coset action on each representative, we give an explicit
construction of the r inequivalent 2-transitive actions of ASL.2; r/ of degree r2.
We let I D .�1; : : : ; �r/, where the �i are the representations for these inequiva-
lent actions, and we prove the following.

Theorem 6.1. Let I be as above. Then the code C.ASL.2; r/; I/ has the same
inner distance distribution, and therefore also the same minimum distance, as the
code Repr.C.ASL.2; r/; �i // for i D 1; : : : ; r .

Remark 6.2. The code in Theorem 6.1 shows us that given any even prime
power r , we can construct a twisted permutation code with r pairwise distinct rep-
resentations such that the code has a minimum distance equal to the lower bound
of Proposition 3.3 (iii).

To embed ASL.2; r/ into SL.3; r/ we begin by taking an element a of order
r � 1 in F�r and letting b D .1C a2/�1. As f > 2, we see that b is well defined.
Consider the matrices

x D

 
a 0

0 a�1

!
; y D

 
1 1

0 1

!
; z D

 
b b2 C b C 1

1 b C 1

!
: (6.1)

For every w 2 Fr we define

u D waC wb C w and v D w C wa;
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and

X D

0B@1 0 0

0 a 0

0 0 a�1

1CA ; Yw D

0B@1 0 v

0 1 1

0 0 1

1CA ;

Zw D

0B@1 w u

0 b b2 C b C 1

0 1 b C 1

1CA ; Sw D hX; Yw ; Zwi:

Lemma 6.3. We have SL.2; r/ D hx; y; zi and SL.2; r/ Š Sw .

Proof. As the field element a has order r � 1, we have

xr�1 D 1 and Xr�1 D 1: (6.2)

Also, a direct computation shows that

y2 D 1 and Y 2w D 1: (6.3)

The characteristic polynomial of z is

.ƒ � b/.ƒ � .b C 1//C b2 C b C 1 D ƒ2 CƒC 1

and hence z2 C z C 1 D 0. From this it follows with an easy computation that

z3 D 1 and Z3w D 1: (6.4)

Using the definition of a, b, X , Yw and Zw , we see with a rather long (but simple
and direct) computation that

.xz/2 D .yz/2 D Œxi ; y�2 D 1;

.XZw/
2
D .YwZw/

2
D ŒX i ; Yw �

2
D 1;

(6.5)

for every i 2 ¹0; : : : ; r � 1º.
Since r is even, we see that a2 is also a generator of the multiplicative group of

the field Fr . So, let

p.ƒ/ D cfƒ
f
C cf �1ƒ

f �1
C cf �2ƒ

f �2
C � � � C c1ƒC c0

be the minimal polynomial of a2 over the ground field F2, that is, ci 2 ¹0; 1º
and p.a2/ D 0. Now a computation shows that

yc0xyc1xyc2x � � � xycf D

 
af �

0 a�f

!
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with

� D cf a
f
C cf �1a

f �2
C cf �2a

f �4
C � � � C c1a

�fC2
C c0a

�f :

In particular, af � D p.a2/ D 0 and hence � D 0. This gives that

xf D yc0xyc1xyc2x � � � xycf : (6.6)

Similarly, we have

Y c0w XY
c1
w XY

c2
w X � � �XY

cf
w D

0B@1 0 v�

0 af �

0 0 a�f

1CA D Xf : (6.7)

As x, y and z have determinant 1, we have hx; y; zi 6 SL.2; r/. Also, we see
from [13, Section 7.6, lines 9–10] that SL.2; r/ has presentation with three gener-
ators R, S and U and with relators

Rr�1 D S2 D U 3 D .RU /2 D .SU /2 D 1;

ŒRi ; S�2 D 1 for every i 2 ¹1; : : : ; r � 1º;

Rf D Sc0RSc1RSc2R � � �Scf�1RScf :

In particular, from (6.2)–(6.7) we obtain that hx; y; zi and Sw both satisfy the
defining relations of SL.2; r/ and hence are isomorphic to a quotient of SL.2; r/.
Since f > 2, the group SL.2; r/ is simple and the lemma follows.

For v 2 V let 'v denote the translation of V by v. By letting 'v, x, y and z act
on an arbitrary vector of V , we determine the following relations:

x�1'vx'vx D y
�1'vy'vy D z

�1'vz'vz D 1 for all v 2 V . (6.8)

If v D .v1; v2/ 2 V , we let

e.v/ D

0B@1 v1 v2

0 1 0

0 0 1

1CA
and

E D ¹e.v/ W v 2 V º:

Direct calculation shows that, for v 2 V and w 2 Fr , the following relations hold:

X�1e.v/Xe.v x/ D Y �1w e.v/Ywe.vy/ D Z�1w e.v/Zwe.v z/ D 1: (6.9)
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It is a consequence of (6.9) that Sw normalises E for each w. Furthermore, by
Lemma 6.3, Sw Š SL.2; r/, which is simple as f > 2, and so E \ Sw D 1 for
each w. Thus we can define

G D ES0;

the split extension of E by S0. Since Yw D e.v1/Y0 and Zw D e.v2/Z0 where
v1 D .0; v/, v2 D .w; u/ 2 V , we conclude that Sw is a subgroup of G for each
w. Hence G is also equal to the split extension of E by Sw for each w. Thus
another consequence of Lemma 6.3 is that

ASL.2; r/ D h'v; x; y; z W v 2 V i;

and
G D he.v/; X; Yw ; Zw W v 2 V i for each w 2 Fr .

For w 2 Fr let �w W ASL.2; r/! G be the group homomorphism that takes

x 7! X; y 7! Yw ; z 7! Zw ; and 'v 7! e.v/ for each v 2 V .

We observe, from (6.2)–(6.9), that �w is well defined. Furthermore, because E
and Sw are both subgroups of �w.ASL.2; r//, we deduce the following.

Lemma 6.4. The map �w is an isomorphism from ASL.2; r/ toG for eachw 2 Fr .

Note that since H 1.SL.2; r/; N / Š Fr by [10, Table 4.3, type A1], we have
that the group ASL.2; r/ contains exactly r conjugacy classes of complements
ofN in ASL.2; r/. We now show that in this embedding of ASL.2; r/ in SL.3; r/,
each conjugacy class of complements of N contains a unique group Sw for
some w 2 Fr .

Lemma 6.5. For each w and w0 in Fr with w ¤ w0, the groups Sw and Sw 0 are
not conjugate in G.

Proof. Let w and w0 be in Fr and suppose that Sw and Sw 0 are conjugate in G.
As G D ESw D ESw 0 and E \ Sw D E \ Sw 0 D 1, it follows that Sw and Sw 0
are conjugate via an element e.v/ 2 E for some v D .v1; v2/ 2 V . Furthermore,
as X 2 Sw \ Sw 0 , we have X�1; Xe.v/ 2 Sw 0 and hence X�1Xe.v/ 2 Sw 0 . Now

X�1Xe.v/ D

0B@1 0 0

0 a�1 0

0 0 a

1CA
0B@1 v1 v2

0 1 0

0 0 1

1CA
0B@1 0 0

0 a 0

0 0 a�1

1CA
0B@1 v1 v2

0 1 0

0 0 1

1CA

D

0B@1 v1 C v1a v2 C v2a

0 1 0

0 0 1

1CA :
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AsE\Sw 0 D 1, we must have v1Cv1a D 0 and v2Cv2a D 0, that is, v1a D v1
and v2a D v2. Since f > 2, we have a ¤ 1 and hence v1 D v2 D 0. This gives
e.v/ D 1 and hence Sw D Sw 0 .

From the previous paragraph we have Yw ; Yw 0 2 Sw and hence YwYw 0 2 Sw .
Now,

YwYw 0 D

0B@1 0 w C wa

0 1 1

0 0 1

1CA
0B@1 0 w0 C w0a

0 1 1

0 0 1

1CA

D

0B@1 0 .w C w0/C .w C w0/a

0 1 0

0 0 1

1CA :
Since E \ Sw D 1, we must have .w C w0/a D w C w0 and hence w C w0 D 0.
This gives w D w0 and the lemma follows.

Let�w be the set of right cosets of Sw in G. As Sw normalises E, and because
G D ESw , it follows that every right coset of Sw in�w has a coset representative
in E. Moreover, because E \ Sw D 1, each e.v/ 2 E uniquely determines the
right coset it belongs to. Hence the map �w W V ! �w given by v 7! Swe.v/ is
a well-defined bijection.

Proposition 6.6. Under .�w ; �w/, the action of G on �w is permutationally iso-
morphic to the action of ASL.2; r/ on V .

Proof. Let v 2 V and consider the generator y of ASL.2; r/. From the definition
of �w it follows that �w.vy/ D Swe.vy/. Now, it follows from (6.8) that

�w.v/�w.y/ D Swe.v/Yw D SwYwe.vy/ D Swe.vy/:

Thus �w.vy/ D �w.v/�w.y/. By applying similar arguments to the other genera-
tors of ASL.2; r/, we conclude that .�w ; �w/ is a permutational isomorphism.

It is a consequence of Proposition 6.6 that G acts 2-transitively on �w for
each w 2 Fr . Moreover, it follows from Lemma 6.5 and [5, Theorem 1.3] that for
w0 ¤ w the action of G on �w 0 is inequivalent to the action of G on �w . Hence
these actions of G on �w , for w in Fr , are r pairwise inequivalent 2-transitive
actions of degree r2. Thus, by considering the action of ASL.2; r/ on the right
cosets of ��10 .Sw/ for each w 2 Sw , it follows that ASL.2; r/ has r inequivalent
2-transitive actions of degree r2. To prove Theorem 6.1, we look at the number of
fixed points of an element of ASL.2; r/ in each of these actions.

Unauthenticated
Download Date | 3/11/16 10:58 AM



Twisted permutation codes 427

Lemma 6.7. Let 1 ¤ t 2 ASL.2; r/ be an element that has at least two fixed points
in some 2-transitive representation of degree r2. Then t fixes r points in every
2-transitive representation. Moreover, jt j D 2.

Proof. By Proposition 6.6, each 2-transitive action of ASL.2; r/ of degree r2

is permutationally isomorphic to its natural action on V . Thus without loss of
generality, we can assume that t fixes at least two points in the natural action
of ASL.2; r/. As ASL.2; r/ acts 2-transitively on V , it follows that t is conjugate
to an element that fixes 0 D .0; 0/ and e2 D .0; 1/. It holds that

SL.2; r/e2 D

´
Mc D

 
1 c

0 1

!
W c 2 Fr

µ
; (6.10)

so t is conjugate to Mc0 for some c0 2 F�r . It is straightforward to show that
fix.Mc0/ D ¹.0; c/ W c 2 Frº and jMc0 j D 2. So t fixes r points in this action and
has order 2. Now, as r is an even prime power, c0 D `2 for some ` 2 Fr . Conju-
gatingMc0 by the diagonal matrix Diag.`; `�1/ gives the group element y in (6.1).
Moreover, for 0 ¤ w, it holds that

��10 �w.y/ D �
�1
0 .Yw/ D 'vy;

where v D .0; v/ with v D w C wa, and fix.'vy/ D ¹.v; c/ W c 2 Frº. It follows
that ��10 �w.t/ fixes r points. In particular, t fixes r points in every 2-transitive
representation.

Corollary 6.8. Let t 2 ASL.2; r/. Then t fixes 0, 1 or r points in each 2-transitive
representation of ASL.2; r/ of degree r2.

Lemma 6.9. Let t 2 ASL.2; r/ be a non-trivial element of odd order. Then t fixes
exactly one point in each 2-transitive representation of ASL.2; r/.

Proof. Suppose in some 2-transitive representation of ASL.2; r/ that t has no
fixed points. Then in that representation t has a cycle of minimal length b > 1. As
the order of t is equal to the least common multiple of the disjoint cycle lengths of
t , it follows that b is odd as jt j is odd. If all the disjoint cycles have length b,
then b divides r2 (because t has no fixed points), which is a contradiction as
r D 2f . Thus there exists a cycle of length c > b. Hence tb ¤ 1, and tb fixes
at least b > 1 points. By Lemma 6.7, it follows that tb fixes r points and jtbj D 2.
Hence t2b D 1. Now, because tb ¤ 1 and jt j is a multiple of b, it follows that
jt j D 2b, contradicting the fact that jt j is odd. Thus t fixes at least one point in
every representation. If t fixes more than one point in some representation, then
by Lemma 6.7, jt j D 2, which is a contradiction.
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Lemma 6.10. Let t 2 ASL.2; r/ be an element of even order. Then t fixes the same
number of points in each 2-transitive representation of ASL.2; r/.

Proof. Suppose jt j D 2. Then, in any 2-transitive representation of ASL.2; r/,
t can be written as the disjoint union of transpositions. Thus t cannot fix exactly
one point, otherwise 2 would divide r2 � 1, which is a contradiction. Hence, by
Corollary 6.8, t either fixes r points or 0 points. By Lemma 6.7, if t fixes r points,
then t fixes r points in each 2-transitive representation of ASL.2; r/. Hence if t
has no fixed points, then t has no fixed points in every 2-transitive representation
of ASL.2; r/.

Now assume that jt j > 2. Because jt j > 2, it follows from Lemma 6.7 that t
cannot fix r points. So, in every 2-transitive representation, t fixes either 0 or 1
point. Suppose t fixes one point in some 2-transitive representation, and let b be
the minimal non-trivial cycle length of t in that representation. Further suppose
that tb D 1, so jt j D b. Then the disjoint union of the points in the b-cycles of t
is equal to support of t , which has size r2 � 1. Hence b divides r2 � 1. Thus b
is odd, contradicting the fact that jt j is even. Hence tb ¤ 1. Now, tb fixes at least
1C b points, so by Lemma 6.7, tb fixes r points and jtbj D 2. Hence jt j D 2b.
Moreover, the set of r � 1 fixed points of tb points that are not fixed by t is equal
the disjoint union of the points that form the b-cycles of t . Hence b divides r � 1,
and so b is odd. However, as t fixes one point, it follows that t is conjugate to some
h 2 SL.2; r/, and so tb is conjugate to hb 2 SL.2; r/. Now, SL.2; r/ has only one
conjugacy class of involutions (see for example [18, p. 95]), so hb is conjugate
the element y in (6.1). It is straightforward to show that the subgroup SL.2; r/e2

from (6.10) is the centraliser in SL.2; r/ of y, and has order r . Hence, because
h centralises hb it follows that jhj divides r , and so jt j divides r , contradicting
the fact that jt j D 2b with b odd. So t has no fixed points in each 2-transitive
representation of ASL.2; r/.

To prove Theorem 6.1, we let I D .�1; : : : ; �r/, where the �i are the represen-
tations of the r inequivalent 2-transitive actions of ASL.2; r/ of degree r2. It is
a consequence of Lemmas 6.9 and 6.10 that

jfix.t�i /j D jfix.t�j /j

for all i; j and for all t 2 ASL.2; r/. Hence

jsupp.t�i /j D jsupp.t�j /j

for all i; j and for all t 2 ASL.2; r/. Thus Theorem 6.1 is now a consequence of
Lemma 3.5.
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7 Coset actions on the computer

In this final section we use the algebraic computer software GAP [16] to analyse
two further groups acting on sets of cosets of certain subgroups.

7.1 The affine group ASL.3; 2/

We first consider the 2-transitive action of the affine group AGL.3; 2/ on F32 . It is
well known that the number of distinct actions of a 2-transitive group G of affine
type is equal to the order of the cohomology group H 1.G0; N / ([5, Section 7.3]),
where G0 is the stabiliser of a point in the natural action of G and N is the unique
minimal normal subgroup ofG. This in turn is equal to the number ofG-conjugacy
classes of the complements of N in G. For the group AGL.3; 2/, there are two
distinct actions [5, Table 7.3]. To generate these actions, we use the “Comple-
mentclasses” function in GAP to find two representatives H1;H2 of these conju-
gacy classes. If �i is the set of right cosets of Hi in ASL.3; 2/, we can construct
in GAP the representation �i W ASL.3; 2/! Sym.�i / that describes the action
of ASL.3; 2/ on �i , for i D 1; 2. The group AGL.3; 2/ has eleven conjugacy
classes Cj , and for each one, we calculate jsupp.t�i /j for some t 2 Cj for i D 1; 2
and j D 1; : : : ; 11. We give this information in Table 7. The minimal degree of
both actions is 4, so Rep2.AGL.3; 2/; �i / has minimum distance 8 for i D 1 or 2.
However, it follows from Proposition 3.3 that C.AGL.3; 2/; I/ has minimum
distance 12, where I D .�1; �2/.

Conjugacy class 1 2 3 4 5 6 7 8 9 10 11

jsupp.t�1/j 0 8 4 8 8 6 8 6 8 7 7
jsupp.t�2/j 0 8 8 4 8 8 6 6 8 7 7

Sum of supports 0 16 12 12 16 14 14 12 16 14 14

Table 7. The affine group ASL.3; 2/.

7.2 The symmetric group S6

The second action we consider is S6 acting on the right cosets of subgroups of
order 12. Using GAP, we determine that S6 has four conjugacy classes of sub-
groups of order 12. Let Hi be a representative for each conjugacy class, �i be
the set of right cosets of Hi in S6, and �i be the representation that describes the
action. We calculate in GAP the size of the supports for an element from each
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Conjugacy class 1A 2A 2B 2C 3A 3B 4A 4B

jsupp.t�1/j 0 56 60 60 60 48 60 60
jsupp.t�2/j 0 56 60 60 48 60 60 60
jsupp.t�3/j 0 56 44 60 57 60 60 60
jsupp.t�4/j 0 56 60 44 60 57 60 60

Sum of supports 0 224 224 224 225 225 240 240

Conjugacy class 5AB 6A 6B

jsupp.t�1/j 60 60 60
jsupp.t�2/j 60 60 60
jsupp.t�3/j 60 59 60
jsupp.t�4/j 60 60 59

Sum of supports 240 239 239

Table 8. The symmetric group S6 acting on subgroups of order 12, one from each of
the four conjugacy classes.

conjugacy class for each representation, which we present in Table 8. From this
table we see that S6 under �3 has the smallest minimal degree, which is 44. Thus,
by letting I D .�1; : : : ; �4/, it follows that

min
�2I
¹ı.Rep4.C.T; �//º D 4 � 44 D 176:

However, Proposition 3.3 implies that C.S6; I/ has minimum distance 224, the
minimum of the sums of the supports over the four actions, as is shown in Table 8.

The minimum distance of C.S6; I/ is actually maximal from an alternative
perspective. Consider the set of representations S D ¹�1; �2; �3; �4º. Let I be
formed by taking any four elements from S but allowing repeats of represen-
tations. Note that the order in which the representations appear in I does not
affect the minimum distance of the code it generates. Using GAP, we calculate
the minimum distance ı.C / of C D C.S6; I/ for each possible I and give this in
Table 9. We see that this minimum distance is maximised when each representa-
tion appears exactly once in I, as above. In Table 9 we label I D .�i1 ; �i2 ; �i3 ; �i4/

by ¹i1; i2; i3; i4º.
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I ı.C / I ı.C / I ı.C /

¹1; 1; 1; 1º 192 ¹2; 2; 2; 1º 204 ¹4; 4; 4; 2º 192
¹2; 2; 2; 2º 192 ¹2; 2; 2; 3º 201 ¹4; 4; 4; 3º 192
¹3; 3; 3; 3º 176 ¹2; 2; 2; 4º 204 ¹1; 1; 2; 2º 216
¹4; 4; 4; 4º 176 ¹3; 3; 3; 1º 192 ¹1; 1; 3; 3º 208
¹1; 1; 1; 2º 204 ¹3; 3; 3; 2º 192 ¹1; 1; 4; 4º 208
¹1; 1; 1; 3º 204 ¹3; 3; 3; 4º 192 ¹2; 2; 3; 3º 208
¹1; 1; 1; 4º 201 ¹4; 4; 4; 1º 192 ¹2; 2; 4; 4º 208

I ı.C / I ı.C /

¹3; 3; 4; 4º 208 ¹3; 3; 1; 2º 208
¹1; 1; 2; 3º 216 ¹3; 3; 1; 4º 208
¹1; 1; 2; 4º 213 ¹3; 3; 2; 4º 208
¹1; 1; 3; 4º 214 ¹4; 4; 1; 2º 208
¹2; 2; 1; 3º 213 ¹4; 4; 1; 3º 208
¹2; 2; 1; 4º 216 ¹4; 4; 2; 3º 208
¹2; 2; 3; 4º 213 ¹1; 2; 3; 4º 224

Table 9. The symmetric group S6 acting on subgroups of order 12, one from each of
the four conjugacy classes.

7.3 Proof of Theorem 1.1

Let T be an abstract group, I be an ordered r-tuple of (not necessarily distinct) per-
mutation representations of T into Sq for some q. By letting ıtw D ı.C.T; I// and
ırep D min�2I¹ı.Repr.C.T; �//º, the first assertions of Theorem 1.1 follow from
Proposition 3.3. The final assertions follow from Sections 4.1, 4.2, 7.1 and 7.2.
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