42 research outputs found

    Cross-intersecting sub-families of hereditary families

    Get PDF
    Families A1,A2,...,Ak\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_k of sets are said to be \emph{cross-intersecting} if for any ii and jj in {1,2,...,k}\{1, 2, ..., k\} with iji \neq j, any set in Ai\mathcal{A}_i intersects any set in Aj\mathcal{A}_j. For a finite set XX, let 2X2^X denote the \emph{power set of XX} (the family of all subsets of XX). A family H\mathcal{H} is said to be \emph{hereditary} if all subsets of any set in H\mathcal{H} are in H\mathcal{H}; so H\mathcal{H} is hereditary if and only if it is a union of power sets. We conjecture that for any non-empty hereditary sub-family H{}\mathcal{H} \neq \{\emptyset\} of 2X2^X and any kX+1k \geq |X|+1, both the sum and product of sizes of kk cross-intersecting sub-families A1,A2,...,Ak\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_k (not necessarily distinct or non-empty) of H\mathcal{H} are maxima if A1=A2=...=Ak=S\mathcal{A}_1 = \mathcal{A}_2 = ... = \mathcal{A}_k = \mathcal{S} for some largest \emph{star S\mathcal{S} of H\mathcal{H}} (a sub-family of H\mathcal{H} whose sets have a common element). We prove this for the case when H\mathcal{H} is \emph{compressed with respect to an element xx of XX}, and for this purpose we establish new properties of the usual \emph{compression operation}. For the product, we actually conjecture that the configuration A1=A2=...=Ak=S\mathcal{A}_1 = \mathcal{A}_2 = ... = \mathcal{A}_k = \mathcal{S} is optimal for any hereditary H\mathcal{H} and any k2k \geq 2, and we prove this for a special case too.Comment: 13 page

    The Strong Perfect Graph Conjecture: 40 years of Attempts, and its Resolution

    Get PDF
    International audienceThe Strong Perfect Graph Conjecture (SPGC) was certainly one of the most challenging conjectures in graph theory. During more than four decades, numerous attempts were made to solve it, by combinatorial methods, by linear algebraic methods, or by polyhedral methods. The first of these three approaches yielded the first (and to date only) proof of the SPGC; the other two remain promising to consider in attempting an alternative proof. This paper is an unbalanced survey of the attempts to solve the SPGC; unbalanced, because (1) we devote a signicant part of it to the 'primitive graphs and structural faults' paradigm which led to the Strong Perfect Graph Theorem (SPGT); (2) we briefly present the other "direct" attempts, that is, the ones for which results exist showing one (possible) way to the proof; (3) we ignore entirely the "indirect" approaches whose aim was to get more information about the properties and structure of perfect graphs, without a direct impact on the SPGC. Our aim in this paper is to trace the path that led to the proof of the SPGT as completely as possible. Of course, this implies large overlaps with the recent book on perfect graphs [J.L. Ramirez-Alfonsin and B.A. Reed, eds., Perfect Graphs (Wiley & Sons, 2001).], but it also implies a deeper analysis (with additional results) and another viewpoint on the topic

    Cross-intersecting non-empty uniform subfamilies of hereditary families

    Get PDF
    A set AA tt-intersects a set BB if AA and BB have at least tt common elements. A set of sets is called a family. Two families A\mathcal{A} and B\mathcal{B} are cross-tt-intersecting if each set in A\mathcal{A} tt-intersects each set in B\mathcal{B}. A family H\mathcal{H} is hereditary if for each set AA in H\mathcal{H}, all the subsets of AA are in H\mathcal{H}. The rrth level of H\mathcal{H}, denoted by H(r)\mathcal{H}^{(r)}, is the family of rr-element sets in H\mathcal{H}. A set BB in H\mathcal{H} is a base of H\mathcal{H} if for each set AA in H\mathcal{H}, BB is not a proper subset of AA. Let μ(H)\mu(\mathcal{H}) denote the size of a smallest base of H\mathcal{H}. We show that for any integers tt, rr, and ss with 1trs1 \leq t \leq r \leq s, there exists an integer c(r,s,t)c(r,s,t) such that the following holds for any hereditary family H\mathcal{H} with μ(H)c(r,s,t)\mu(\mathcal{H}) \geq c(r,s,t). If A\mathcal{A} is a non-empty subfamily of H(r)\mathcal{H}^{(r)}, B\mathcal{B} is a non-empty subfamily of H(s)\mathcal{H}^{(s)}, A\mathcal{A} and B\mathcal{B} are cross-tt-intersecting, and A+B|\mathcal{A}| + |\mathcal{B}| is maximum under the given conditions, then for some set II in H\mathcal{H} with tIrt \leq |I| \leq r, either A={AH(r) ⁣:IA}\mathcal{A} = \{A \in \mathcal{H}^{(r)} \colon I \subseteq A\} and B={BH(s) ⁣:BIt}\mathcal{B} = \{B \in \mathcal{H}^{(s)} \colon |B \cap I| \geq t\}, or r=sr = s, t<It < |I|, A={AH(r) ⁣:AIt}\mathcal{A} = \{A \in \mathcal{H}^{(r)} \colon |A \cap I| \geq t\}, and B={BH(s) ⁣:IB}\mathcal{B} = \{B \in \mathcal{H}^{(s)} \colon I \subseteq B\}. This was conjectured by the author for t=1t=1 and generalizes well-known results for the case where H\mathcal{H} is a power set.Comment: 15 pages. arXiv admin note: text overlap with arXiv:1805.0524

    Berge's conjecture on directed path partitions—a survey

    Get PDF
    AbstractBerge's conjecture from 1982 on path partitions in directed graphs generalizes and extends Dilworth's theorem and the Greene–Kleitman theorem which are well known for partially ordered sets. The conjecture relates path partitions to a collection of k independent sets, for each k⩾1. The conjecture is still open and intriguing for all k>1.11Only recently it was proved Berger and Ben-Arroyo Hartman [56] for k=2 (added in proof). In this paper, we will survey partial results on the conjecture, look into different proof techniques for these results, and relate the conjecture to other theorems, conjectures and open problems of Berge and other mathematicians

    Non-trivial intersecting uniform sub-families of hereditary families

    Get PDF
    For a family F of sets, let μ(F ) denote the size of a smallest set in F that is not a subset of any other set in F , and for any positive integer r, let F (r) denote the family of r-element sets in F . We say that a family A is of Hilton–Milner (HM) type if for some A ∈ A, all sets in A \ {A} have a common element x ̸∈ A and intersect A. We show that if a hereditary family H is compressed and μ(H) ≥ 2r ≥ 4, then the HM-type family {A ∈ H(r): 1 ∈ A, A∩[2,r+1] ̸= ∅}∪{[2,r+1]}is a largest non-trivial intersecting sub-family of H(r); this generalises a well-known result of Hilton and Milner. We demonstrate that for any r ≥ 3 and m ≥ 2r, there exist non-compressed hereditary families H with μ(H) = m such that no largest non-trivial intersecting sub-family of H(r) is of HM type, and we suggest two conjectures about the extremal structures for arbitrary hereditary families.peer-reviewe

    On vertex neighborhood in minimal imperfect graphs

    Get PDF
    AbstractLubiw (J. Combin. Theory Ser. B 51 (1991) 24) conjectures that in a minimal imperfect Berge graph, the neighborhood graph N(v) of any vertex v must be connected; this conjecture implies a well known Chvátal's conjecture (Chvátal, First Workshop on Perfect Graphs, Princeton, 1993) which states that N(v) must contain a P4. In this note we will prove an intermediary conjecture for some classes of minimal imperfect graphs. It is well known that a graph is P4-free if, and only if, every induced subgraph with at least two vertices either is disconnected or its complement is disconnected; this characterization implies that P4-free graphs can be constructed by complete join and disjoint union from isolated vertices. We propose to replace P4-free graphs by a similar construction using bipartite graphs instead of isolated vertices

    Cross-intersecting non-empty uniform subfamilies of hereditary families

    Get PDF
    Two families A and B of sets are cross-t-intersecting if each set in A intersects each set in B in at least t elements. A family H is hereditary if for each set A in H, all the subsets of A are in H. Let H(r) denote the family of r-element sets in H. We show that for any integers t, r, and s with 1 ≤ t ≤ r ≤ s, there exists an integer c(r, s, t) such that the following holds for any hereditary family H whose maximal sets are of size at least c(r, s, t). If A is a nonempty subfamily of H(r) , B is a non-empty subfamily of H(s) , A and B are cross-t-intersecting, and |A| + |B| is maximum under the given conditions, then for some set I in H with t ≤ |I| ≤ r, either A = {A ∈ H(r) : I ⊆ A} and B = {B ∈ H(s) : |B ∩ I| ≥ t}, or r = s, t < |I|, A = {A ∈ H(r) : |A ∩ I| ≥ t}, and B = {B ∈ H(s) : I ⊆ B}. We give c(r, s, t) explicitly. The result was conjectured by the author for t = 1 and generalizes well-known results for the case where H is a power set.peer-reviewe

    A Hilton–Milner-type theorem and an intersection conjecture for signed sets

    Get PDF
    A family A of sets is said to be intersecting if any two sets in A intersect (i.e. have at least one common element). A is said to be centred if there is an element common to all the sets in A; otherwise, A is said to be non-centred. For any r ∈ [n] := {1, . . . , n} and any integer k ≥ 2, let Sn,r,k be the family {{(x1, y1), . . . , (xr, yr)}: x1, . . . , xr are distinct elements of [n], y1, . . . , yr ∈ [k]} of k-signed r-sets on [n]. Let m := max{0, 2r−n}.We establish the following Hilton–Milner-type theorems, the second of which is proved using the first: (i) If A1 and A2 are non-empty cross-intersecting (i.e. any set in A1 intersects any set in A2) sub-families of Sn,r,k, then |A1| + |A2| ≤ n R K r −r i=m r I (k − 1) I n – r r – I K r−i + 1. (ii) If A is a non-centred intersecting sub-family of Sn,r,k, 2 ≤ r ≤ n, then |A| ≤ n – 1 r – 1 K r−1 −r−1 i=m r I (k − 1) I n − 1 – r r − 1 – I K r−1−i + 1 if r < n; k r−1 − (k − 1) r−1 + k − 1 if r = n. We also determine the extremal structures. (ii) is a stability theorem that extends Erdős–Ko–Rado-type results proved by various authors. We then show that (ii) leads to further evidence for an intersection conjecture suggested by the author about general signed set systems.peer-reviewe
    corecore