9 research outputs found

    Nonlinear ESO-based vibration control for an all-clamped piezoelectric plate with disturbances and time delay: design and hardware implementation

    Get PDF
    Considering the problems of model uncertainties, higher harmonics, uncertain boundary conditions, external excitations and system time delay in practical vibration control system, a novel active vibration control method is proposed to suppress the vibration of a thin plate structure with acceleration sensor and piezoelectric bimorph actuator in this paper. First, a nonlinear extended state observer (NESO)-based controller is designed to ensure the anti-disturbance performance of the structural vibration control system. Then, an enhanced differentiator-based time delay compensation method is introduced to improve the vibration suppression performance of the NESO-based controller. A real time hardware-in-the-loop benchmark for an all-clamped piezoelectric thin plate is designed to verify and compare the performance of the developed controller against conventional ESO-based methods (linear ESO with/without time delay compensation, NESO without time compensation). The best vibration suppression and disturbance rejection performance of the proposed NESO-based controller with an enhanced time delay compensator is verified in the comparative experimental results. This work is able to provide practitioners with vital guidance in designing active vibration control system in the presence of disturbances and time delay

    Non-predictive model-free control of nonlinear systems with unknown input time delay

    Get PDF
    This study presents a general framework for the control of unknown dynamic systems with unknown input delay. A concise output feedback control system is structured with tuning stabilization/dynamic response by an output feedback low gain, removing steady state error against step reference with a feedforward gain. A series of stability analyses are presented for the designed control systems, (1) a gain/phase margin theorem is proposed for stability analysis by regulating the feedback gain, and (2) a stability theorem based on rational function approximation of the time delay is presented for dealing with the transcendental polynomial characteristic equations, which is equivalent to the analysis from the algebraic polynomial characteristic equation. Both approaches give coherent results for stability analysis by regulating the feedback gain. The approaches are applicable to nonlinear systems, which are linearizable in the neighborhood of the operating points. The low complexity of the controllers does not require hard analytical derivation/numerical calculations to produce an acceptable control performance for the considered systems. Several representative simulation case studies provide demonstrations of computational experiments against those analytically derived and guidance for potential applications

    A cascade dead-zone extended state observer for a class of systems with measurement noise

    Get PDF
    For high frequency noise, a new 2n 2n -th order cascade extended state observer with dynamic dead-zone structure is proposed in this paper. Dead zone dynamic consists of two parts. One is to "trim" the effect of noise by cutting off the part that falls in the dead zone. The other part pushes the dead zone amplitude to converge to 0 as soon as possible to ensure the convergence of the estimation error. Moreover, in the cascade structure, the high-gain parameter grows only to a second power, thus avoiding excessive amplification of the measurement noise and solving numerical implementation problems. The design procedure ensures that the extended state observer is input-to-state stable. Numerical simulations show the improvement in terms of total disturbance estimation and noise attenuation. The frequency-domain analysis of the proposed ESO using the describing function method investigates the effect of the dead zone nonlinear parameter on the performance of a closed-loop system

    Robust active disturbance rejection control for systems with internal uncertainties: Multirotor UAV application

    Get PDF
    Abstract Active Disturbance Rejection Control (ADRC) has recently stood out as a viable alternative to the proportional–integral–derivative controllers. An interesting field of application of this approach is the control of multirotor unmanned aerial vehicles (UAVs) which are inevitably subject to various force and torque disturbances. What makes ADRC attractive is the enhanced trajectory tracking and disturbance rejection capabilities that it allows while requiring minimal knowledge about the system. Although in theory, larg

    Multimodal series elastic actuator for human-machine interaction with applications in robot-aided rehabilitation

    Get PDF
    Series elastic actuators (SEAs) are becoming an elemental building block in collaborative robotic systems. They introduce an elastic element between the mechanical drive and the end-effector, making otherwise rigid structures compliant when in contact with humans. Topologically, SEAs are more amenable to accurate force control than classical actuation techniques, as the elastic element may be used to provide a direct force estimate. The compliant nature of SEAs provides the potential to be applied in robot-aided rehabilitation. This thesis proposes the design of a novel SEA to be used in robot-aided musculoskeletal rehabilitation. An active disturbance rejection controller is derived and experimentally validated and multiobjective optimization is executed to tune the controller for best performance in human-machine interaction. This thesis also evaluates the constrained workspaces for individuals experiencing upper-limb musculoskeletal disorders. This evaluation can be used as a tool to determine the kinematic structure of devices centred around the novel SEA

    Implantable medical devices for drug and cell release

    Get PDF
    This work is focused on the research on how to leverage 3D printing technology in the field of cell transplantation. More specifically, the study of an artificial organ for hormone replacement therapies thanks to the close collaboration between the Methodist Hospital Research Institute, Houston, Texas and Politecnico di Torino, Turin, Italy. Cell transplantation offers an attractive therapeutic approach for many endocrine deficiencies. Transplanted endocrine cells or engineered cells encapsulated in the here presented 3D printed device, can act as biological sensors detecting changes in hormonal levels and secrete molecules in response to maintain homeostasis. The major advantage of this technology is that patients affected by endocrine disorder could potentially avoid the need of frequent hormone injections, such as insulin or testosterone, resulting in an improved quality of life and lower chronic side effects associated to external hormone supplementations. This implant was extensively tested both in vitro and in vivo condition, providing remarkable results that lead to several publications. The cell encapsulation system was fabricated via 3D printing technology adopting an FDA approved polymeric material. The structure, composed by an array of micro and macro channels, was specifically designed in order to allow vasculature formation within the device and for housing cells while avoiding cell clustering. Over the course of the Ph.D., the technology was designed, fabricated and tested for the encapsulation of several cell lines and for small and large animal models. According to the in vivo results, we demonstrated that our 3D printed device exemplifies a clinically translatable strategy for preserving viability and function of transplanted cells. Currently, is ongoing an experiment in Non-Human Primates (data not shown), last pre- clinical study before the possibility to move to the clinical development in humans. The pre-vascularization approach to achieve an ideal intra-device milieu prior to transplantation, transcutaneous cell loading and refilling capabilities, as well as the potential for rapid device retrievability, addresses current challenges in transplantation. This technology may offer exciting potential for clinical adoption in relevant medical areas of diabetes, hypogonadism, hypothyroidism, cancer, and neurological diseases among others

    Smoking and Second Hand Smoking in Adolescents with Chronic Kidney Disease: A Report from the Chronic Kidney Disease in Children (CKiD) Cohort Study

    Get PDF
    The goal of this study was to determine the prevalence of smoking and second hand smoking [SHS] in adolescents with CKD and their relationship to baseline parameters at enrollment in the CKiD, observational cohort study of 600 children (aged 1-16 yrs) with Schwartz estimated GFR of 30-90 ml/min/1.73m2. 239 adolescents had self-report survey data on smoking and SHS exposure: 21 [9%] subjects had “ever” smoked a cigarette. Among them, 4 were current and 17 were former smokers. Hypertension was more prevalent in those that had “ever” smoked a cigarette (42%) compared to non-smokers (9%), p\u3c0.01. Among 218 non-smokers, 130 (59%) were male, 142 (65%) were Caucasian; 60 (28%) reported SHS exposure compared to 158 (72%) with no exposure. Non-smoker adolescents with SHS exposure were compared to those without SHS exposure. There was no racial, age, or gender differences between both groups. Baseline creatinine, diastolic hypertension, C reactive protein, lipid profile, GFR and hemoglobin were not statistically different. Significantly higher protein to creatinine ratio (0.90 vs. 0.53, p\u3c0.01) was observed in those exposed to SHS compared to those not exposed. Exposed adolescents were heavier than non-exposed adolescents (85th percentile vs. 55th percentile for BMI, p\u3c 0.01). Uncontrolled casual systolic hypertension was twice as prevalent among those exposed to SHS (16%) compared to those not exposed to SHS (7%), though the difference was not statistically significant (p= 0.07). Adjusted multivariate regression analysis [OR (95% CI)] showed that increased protein to creatinine ratio [1.34 (1.03, 1.75)] and higher BMI [1.14 (1.02, 1.29)] were independently associated with exposure to SHS among non-smoker adolescents. These results reveal that among adolescents with CKD, cigarette use is low and SHS is highly prevalent. The association of smoking with hypertension and SHS with increased proteinuria suggests a possible role of these factors in CKD progression and cardiovascular outcomes
    corecore