182 research outputs found

    On cographic regular matroids

    Get PDF

    Unavoidable parallel minors of regular matroids

    Get PDF
    This is the post-print version of the Article - Copyright @ 2011 ElsevierWe prove that, for each positive integer k, every sufficiently large 3-connected regular matroid has a parallel minor isomorphic to M (K_{3,k}), M(W_k), M(K_k), the cycle matroid of the graph obtained from K_{2,k} by adding paths through the vertices of each vertex class, or the cycle matroid of the graph obtained from K_{3,k} by adding a complete graph on the vertex class with three vertices.This study is partially supported by a grant from the National Security Agency

    An obstacle to a decomposition theorem for near-regular matroids

    Get PDF
    Seymour's Decomposition Theorem for regular matroids states that any matroid representable over both GF(2) and GF(3) can be obtained from matroids that are graphic, cographic, or isomorphic to R10 by 1-, 2-, and 3-sums. It is hoped that similar characterizations hold for other classes of matroids, notably for the class of near-regular matroids. Suppose that all near-regular matroids can be obtained from matroids that belong to a few basic classes through k-sums. Also suppose that these basic classes are such that, whenever a class contains all graphic matroids, it does not contain all cographic matroids. We show that in that case 3-sums will not suffice.Comment: 11 pages, 1 figur

    The matroid secretary problem for minor-closed classes and random matroids

    Full text link
    We prove that for every proper minor-closed class MM of matroids representable over a prime field, there exists a constant-competitive matroid secretary algorithm for the matroids in MM. This result relies on the extremely powerful matroid minor structure theory being developed by Geelen, Gerards and Whittle. We also note that for asymptotically almost all matroids, the matroid secretary algorithm that selects a random basis, ignoring weights, is (2+o(1))(2+o(1))-competitive. In fact, assuming the conjecture that almost all matroids are paving, there is a (1+o(1))(1+o(1))-competitive algorithm for almost all matroids.Comment: 15 pages, 0 figure
    • …
    corecore