NOTE

ON COGRAPHIC REGULAR MATROIDS

James G. OXLEY
Mathematical Institute, 24-29 St. Giles, Oxford OX1 3LB, England.*

Received 16 August 1977
The purpose of this note is to prove the following result.
Theorem 1. A regular matroid is cographic if and only if it has no paralle! minor isomorphic to $M\left(K_{s}\right)$ and no series minor isomorphic to $M\left(K_{3.3}\right)$.

The matroid terminology used here will in general follow Welsh [4]. In particular a matroid will be called cographic if it is isomorphic to the cocycle (bond) matroid of a graph. If M is a matroid on a set S and $T \subseteq S$, we shall denote the restriction and contraction of M to $S \backslash T$ by $M \backslash T$ and M / T respectively. The matroid N is a parallei minor of M if $N \cong M / U \backslash T$ where each element of T is parallel to an element of M / U. If N^{*} is a parallel minor of M^{*}, then N is a series minor of M.

The following result is due to Tutte [3, 9.42].
Theorem 2. A regular matroid is cographic if and only if it has no minor isomorphic to $\mathbf{M}\left(\boldsymbol{K}_{5}\right)$ or $\boldsymbol{M}\left(K_{3,3}\right)$.

Bixby [1, Theorem 5.1] showed that one can replace "minor" by "series minor" in the statement of this theorem. Bixby [1, Theorem 6.1] also characterized which regular matroids are cographic by a list of five forbidden parallel minors which includes $M\left(K_{5}\right)$ and $M\left(K_{3,3}\right)$. Theorem 1 is motivated by Bixby's results though it is considerably easier to prove.

If M is a matroid on the set S and $e \in S$, then we call M a non-trivial single element extension of $M \backslash e$ if e is not a component of M and ϵ is not parallel to any element of $S \backslash e$.

Lemma 3. Neither $M^{*}\left(K_{3,3}\right)$ nor $M\left(K_{5}\right)$ has a non-trivial single element extension which is also regular.

Proof. Since every vertex of $K_{3.3}$ has degree $3, M^{*}\left(K_{3,3}\right)$ has no non-trivial single element extension which is also cographic. Thus if N is a regular non-trivial single

[^0]element extension of $M^{*}\left(K_{3,3}\right)$, then N has rank 4 and, by Theorem $2, N$ contains $\boldsymbol{M}\left(K_{5}\right)$ as a minor. That is, $M^{*}\left(K_{3.3}\right)$ is a restriction of $M\left(K_{5}\right)$; a contradiction.

It is known (J.H. Mason, private communication, 1977) that, for all positive integers $n, M\left(K_{n}\right)$ has no regular non-trivial single element extension. For completeness we indtcate a short proof of this for $n=5$. Using the fact that.$M\left(K_{5}\right)$ is isomorphic to the Euclidean matroid of the rank 4 Desargues configuration (see, for example, [2, p.141]), it is easy to show that every non-trivial single element extension of $M\left(K_{s}\right)$ has a seven-point plane as a minor. However, the only binary seven-point plane is the Fano matroid and this is not regular (see, for example, [4, Theorem 10.4.1]).

Proof of Theorem 1. Let M be a regular matroid which is not cographic. Then, by Theorem $2, M$ has a minor isomorphic to $M\left(K_{5}\right)$ or $M\left(K_{3,3}\right)$. Suppose the former and choose $U \subseteq S$ such that $M / U \backslash T \triangleq M\left(K_{5}\right)$ and no non-empty subset T^{\prime} of \boldsymbol{T} satisfies $\left.M / U \cup T^{\prime}\right) \backslash\left(T \backslash T^{\prime}\right) \cong M\left(K_{5}\right)$. Then by Lemma 3 and the choice of U, every element of T is parallel to some element of M / U. That is, $M\left(K_{5}\right)$ is a parallel minor of \mathbf{M}.

If M has $M\left(K_{3,3}\right)$ as a minor, then choose a subset T of S such that $M \backslash T / U \cong M\left(K_{3,3}\right)$ and no non-empty subset U^{\prime} of U satisfies $M \backslash(T U$ $\left.U^{\prime}\right) /\left(U \backslash U^{\prime}\right) \cong M\left(K_{3,3}\right)$. Then $M^{*}\left(K_{3,3}\right) \cong M^{*} / T \backslash U$. Again by Lernma 3 and the choice a' T, each element of U is parallel to an element of M^{*} / T. That is, $M\left(K_{3,3}\right)$ is a series minor of M.

The converse follows by Theorem 2.

Acknowledgement

The author thanks CSIRO (Australia) for their generous financial support.

An-Nparscae

[1] R.E. Bixhy, Kuratowski's and Wagner's theorems for matruids, J. Combinatorial Theory 22(B) (1977) 31-53.
[2] J.H. Mason. Matroids as the study of geometrical configurations, in: M. Aigner, ed., Higher Combinatorics (D. Reidel, Dordrecht, 1977) 133-176.
[3] W.T. Tutte, Lectures on matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965) 1-47.
[4] D.J.A. Welsh, Matroid Theory, London Math. Soc. Monographs No. 8, (Academic Press, New York. 1976).

[^0]: * Present address: Mathematics Department, Australian National University, Canberra, Australia.

