UNAVOIDABLE PARALLEL MINORS AND SERIES MINORS OF REGULAR MATROIDS

CAROLYN CHUN AND JAMES OXLEY

To the memory of Tom Brylawski, who contributed so much to matroid theory.

Abstract

We prove that, for each positive integer k, every sufficiently large 3 -connected regular matroid has a parallel minor isomorphic to $M^{*}\left(K_{3, k}\right)$, $M\left(\mathcal{W}_{k}\right), M\left(K_{k}\right)$, the cycle matroid of the graph obtained from $K_{2, k}$ by adding paths through the vertices of each vertex class, or the cycle matroid of the graph obtained from $K_{3, k}$ by adding a complete graph on the vertex class with three vertices.

1. Introduction

For 3-connected graphs, the collections of unavoidable parallel and unavoidable series minors were determined by Chun, Ding, Oporowski, and Vertigan [3] and by Oporowski, Oxley, and Thomas [8]. In this paper, we combine these results with Seymour's decomposition theorem for regular matroids [12] to determine the collection of unavoidable parallel minors for the class of 3-connected regular matroids. In particular, we prove that the last collection is precisely the union of the collections of unavoidable parallel minors for the classes of 3-connected graphic and 3 -connected cographic matroids. The collections of unavoidable minors for binary 3 -connected matroids and for all 3 -connected matroids were determined in $[6,7]$. We would like to extend our main theorem to find the unavoidable parallel minors for the class of binary 3 -connected matroids, but this will require some new ideas.

Our terminology for matroids and graphs generally follows [9] and [4]. If M and N are both matroids or are both graphs, N is a parallel minor of M if N can be obtained from M by a sequence of moves each consisting of contracting an element (in the graph case, an edge) or deleting an element that is in a 2 -element circuit. When M and N are both matroids, N is a series minor of M if N^{*} is a parallel minor of M^{*}. If G and H are graphs and H is a parallel minor of G, then $M(H)$ is a parallel minor of $M(G)$. Conversely, when G and H are loopless 3-connected graphs, if $M(H)$ is a parallel minor of $M(G)$, then H is a parallel minor of G.

Let M be a matroid with ground set E and rank function r. The simplification of M will be denoted by $\operatorname{si}(M)$. The connectivity function λ_{M} of M is defined for all subsets X of E by $\lambda_{M}(X)=r(X)+r(E-X)-r(M)$. Equivalently, $\lambda_{M}(X)=r(X)+r^{*}(X)-|X|$. Thus $\lambda_{M}(X)=\lambda_{M^{*}}(X)$. For a positive integer m, when $\lambda_{M}(X)<m$, a partition (X, Y) of E is an m-separation if $\min \{|X|,|Y|\} \geq m$ and is a vertical m-separation if $\min \{r(X), r(Y)\} \geq m$. A matroid is n-connected if, for all $m<n$, it has no m-separations [13]. A 3-connected matroid is internally

[^0]

Figure 1. A double fan graph $D F_{k}$.

4 -connected if it has no 3 -separation (X, Y) with $\min \{|X|,|Y|\} \geq 4$. A matroid M is vertically 3 -connected if it is loopless and has no vertical 1 -separations and no vertical 2-separations. Note that this adds the requirement that M be loopless to the usual definition of vertical 3 -connectedness. Thus M is vertically 3-connected if and only if $\operatorname{si}(M)$ is 3 -connected and M is loopless.

In the following theorem, the main result of the paper, \mathcal{W}_{k} denotes the k-spoked wheel, $K_{i, j}^{\prime}$ is the bipartite graph $K_{i, j}$ together with a complete graph on the vertex class of i vertices, and $D F_{k}$ is a double fan, as shown in Figure 1.

Theorem 1.1. There is a function $f_{1.1}$ such that, for each integer k exceeding three, every 3 -connected regular matroid with at least $f_{1.1}(k)$ elements has a parallel minor isomorphic to $M\left(K_{3, k}^{\prime}\right), M^{*}\left(K_{3, k}\right), M\left(\mathcal{W}_{k}\right), M\left(D F_{k}\right)$, or $M\left(K_{k}\right)$.

By using duality, we immediately obtain the set of unavoidable series minors of 3 -connected regular matroids. We denote the dual of the double fan $D F_{k}$ by V_{k}. It can be obtained from two cycles $v_{1} v_{2} v_{3} \ldots v_{k}$ and $v_{1} u_{2} u_{3} \ldots u_{k}$ that share a single vertex by adding the edges $\left\{v_{i} u_{i}: i \in\{2,3, \ldots, k\}\right\}$.
Corollary 1.2. There is a function $f_{1.2}$ such that, for each integer k exceeding three, every 3-connected regular matroid with at least $f_{1.2}(k)$ elements has a series minor isomorphic to $M^{*}\left(K_{3, k}^{\prime}\right), M\left(K_{3, k}\right), M\left(\mathcal{W}_{k}\right), M\left(V_{k}\right)$, or $M^{*}\left(K_{k}\right)$.

By a result of Seymour, stated below as Theorem 2.1, an internally 4-connected regular matroid with at least eleven elements is graphic or cographic. This means that the sets of unavoidable parallel minors and unavoidable series minors of internally 4 -connected regular matroids can be immediately determined by combining results in [3] and [8] that determine the sets of unavoidable parallel minors and unavoidable series minors, respectively, of internally 4-connected graphs.

2. Preliminaries

In this section, we introduce some more terminology and prove some lemmas that will be used in the proof of the main theorem, which appears in the next section. Of particular importance here is the operation of generalized parallel connection of matroids, which was introduced and examined in detail by Tom Brylawski [2]. We shall only use one special case of this operation.

For binary matroids M_{1} and M_{2} with ground sets E_{1} and E_{2} such that $E_{1} \cap E_{2}=$ Δ and $M_{1} \mid \Delta$ and $M_{2} \mid \Delta$ are triangles, the generalized parallel connection of M_{1} and M_{2} with respect to Δ, written $P_{\Delta}\left(M_{1}, M_{2}\right)$, is the matroid with ground set $E_{1} \cup E_{2}$ in which F is a flat if and only if $F \cap E_{i}$ is a flat of M_{i} for each i. Then $P_{\Delta}\left(M_{2}, M_{1}\right)=P_{\Delta}\left(M_{1}, M_{2}\right)$. Moreover, one can show that if $\mathrm{cl}, \mathrm{cl}_{1}$, and cl_{2} are the closure operators of $P_{\Delta}\left(M_{1}, M_{2}\right), M_{1}$, and M_{2}, then, for every subset X of $E_{1} \cup E_{2}$,

$$
\begin{equation*}
\operatorname{cl}(X)=\operatorname{cl}_{1}\left(\left[X \cup \operatorname{cl}_{2}\left(X \cap E_{2}\right)\right] \cap E_{1}\right) \cup \operatorname{cl}_{2}\left(\left[X \cup \operatorname{cl}_{1}\left(X \cap E_{1}\right)\right] \cap E_{2}\right) \tag{1}
\end{equation*}
$$

This correction to [9, Exercise 12.4.5] appears in the errata to that book available at the second author's website and in the second edition of the book [10].

When M_{1} and M_{2} both have at least seven elements and Δ does not contain a cocircuit of M_{1} or M_{2}, Seymour [12] defined the 3-sum, $M_{1} \oplus \Delta M_{2}$, of M_{1} and M_{2} to be the matroid $P_{\Delta}\left(M_{1}, M_{2}\right) \backslash \Delta$. In much of what we do, it will be convenient to work with generalized parallel connections rather than 3 -sums because of the additional constraints that must be satisfied in order for the latter to be defined. The generalized parallel connection across a triangle of two graphic matroids is easily seen to be graphic. Hence so is their 3 -sum. Note, however, that the 3 -sum of two cographic matroids need not be cographic. For example, the non-cographic matroid R_{12} can be written as a 3 -sum of $M\left(K_{5} \backslash e\right)$ and $M^{*}\left(K_{3,3}\right)$ (see, for example, [9, Exercise 1(ii), p. 440]). When G_{1} and G_{2} are graphs and both have Δ as a vertex bond, $P_{\Delta}\left(M^{*}\left(G_{1}\right), M^{*}\left(G_{2}\right)\right)$ and $P_{\Delta}\left(M^{*}\left(G_{1}\right), M^{*}\left(G_{2}\right)\right) \backslash \Delta$ are easily shown to be cographic. Hence so is $M^{*}\left(G_{1}\right) \oplus_{\Delta} M^{*}\left(G_{2}\right)$ when it is defined.

The next theorem was proved by Seymour [12]. The matroid R_{10} is the $10-$ element matroid that arises as a graft matroid from $K_{3,3}$ by taking the graft hyperedge to contain all the vertices (see [9, p. 518]).

Theorem 2.1. Let M be a 3-connected regular matroid. Then
(i) M is graphic;
(ii) M is cographic;
(iii) $M \cong R_{10}$; or
(iv) there are regular matroids M_{1} and M_{2} such that $E\left(M_{1}\right) \cap E\left(M_{2}\right)=\Delta$, where Δ is a triangle of both M_{1} and M_{2}, and $M=M_{1} \oplus_{\Delta} M_{2}$; and, for each i in $\{1,2\}$,
(a) M_{i} is 2-connected and, for every 2-separation (X, Y) of it, either X or Y has exactly two elements and meets Δ, so $\operatorname{si}\left(M_{i}\right)$ is 3-connected;
(b) M_{i} is isomorphic to a minor of M; and
(c) $\left|E\left(M_{i}\right)-\operatorname{cl}_{M_{i}}(\Delta)\right| \geq 6$ and $\left|E\left(\operatorname{si}\left(M_{i}\right)\right)\right| \geq 9$.

Let M_{1} and M_{2} be binary matroids with $E\left(M_{1}\right) \cap E\left(M_{2}\right)=\Delta_{2}$, where Δ_{2} is a triangle of both M_{1} and M_{2}. Let $P\left(M_{1}, M_{2}\right)$ and $\left(M_{1}, \Delta_{2}, M_{2}\right)$ be $P_{\Delta_{2}}\left(M_{1}, M_{2}\right)$ and $P_{\Delta_{2}}\left(M_{1}, M_{2}\right) \backslash \Delta_{2}$, respectively. Now assume, for some $n \geq 3$, that $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}\right.$, $\left.\ldots, \Delta_{n-1}, M_{n-1}\right)$ and $P\left(M_{1}, M_{2}, \ldots, M_{n-1}\right)$ have been defined, that
$\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n-1}, M_{n-1}\right)=P\left(M_{1}, M_{2}, \ldots, M_{n-1}\right) \backslash\left(\Delta_{2} \cup \Delta_{3} \cup \cdots \cup \Delta_{n-1}\right)$, and that the flats of $P\left(M_{1}, M_{2}, \ldots, M_{n-1}\right)$ are those subsets F of its ground set such that $F \cap E\left(M_{i}\right)$ is a flat of M_{i} for all i in $\{1,2, \ldots, n-1\}$. Let M_{n} be a binary matroid whose ground set meets that of $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n-1}, M_{n-1}\right)$ in a set Δ_{n} that is a triangle of both $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n-1}, M_{n-1}\right)$ and M_{n}. Define
$\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n}, M_{n}\right)=P_{\Delta_{n}}\left(\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n-1}, M_{n-1}\right), M_{n}\right) \backslash \Delta_{n}$ and $P\left(M_{1}, M_{2}, \ldots, M_{n}\right)=P_{\Delta_{n}}\left(P\left(M_{1}, M_{2}, \ldots, M_{n-1}\right), M_{n}\right)$. Then one easily checks that $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n}, M_{n}\right)=P\left(M_{1}, M_{2}, \ldots, M_{n}\right) \backslash\left(\Delta_{2} \cup \Delta_{3} \cup \cdots \cup \Delta_{n}\right)$ and that the flats of $P\left(M_{1}, M_{2}, \ldots, M_{n}\right)$ are those subsets F of its ground set such that $F \cap E\left(M_{i}\right)$ is a flat of M_{i} for all i in $\{1,2, \ldots, n\}$. It will be convenient to abbreviate $P\left(M_{1}, M_{2}, \ldots, M_{n}\right)$ as $M_{[n]}^{P}$. Observe that the construction guarantees that $\Delta_{2}, \Delta_{3}, \ldots, \Delta_{n}$ are disjoint.
Lemma 2.2. If $\operatorname{si}\left(\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n}, M_{n}\right)\right)$ is 3-connected, then $\operatorname{si}\left(M_{i}\right)$ is 3 -connected for all i.

Proof. By definition, $\operatorname{si}\left(\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n}, M_{n}\right)\right)$ is

$$
\operatorname{si}\left(P_{\Delta_{n}}\left(\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n-1}, M_{n-1}\right), M_{n}\right) \backslash \Delta_{n}\right)
$$

Assume that $\operatorname{si}\left(P_{\Delta_{2}}\left(M_{1}, M_{2}\right) \backslash \Delta_{2}\right)$ is 3 -connected. If we can show that both $\operatorname{si}\left(M_{1}\right)$ and $\operatorname{si}\left(M_{2}\right)$ are 3 -connected, then the result will follow by induction. For some k in $\{1,2\}$, suppose that (X, Y) is a vertical k-separation of M_{1}. Without loss of generality, we may assume that $\left|X \cap \Delta_{2}\right| \geq 2$. Then

$$
r\left(X \cup \Delta_{2}\right)+r\left(Y-\Delta_{2}\right)-r\left(M_{1}\right) \leq r(X)+r(Y)-r\left(M_{1}\right) \leq k-1
$$

Now, by [9, Lemma 8.2.10],

$$
\begin{aligned}
& r\left(\left(X \cup E\left(M_{2}\right)\right)-\Delta_{2}\right)+r\left(Y-\Delta_{2}\right)-r\left(P_{\Delta_{2}}\left(M_{1}, M_{2}\right) \backslash \Delta_{2}\right) \\
& \leq r\left(X \cup E\left(M_{2}\right) \cup \Delta_{2}\right)+r\left(Y-\Delta_{2}\right)-r\left(P_{\Delta_{2}}\left(M_{1}, M_{2}\right)\right) \\
& \leq\left[r\left(X \cup \Delta_{2}\right)+r\left(M_{2}\right)-r\left(\Delta_{2}\right)\right]+r\left(Y-\Delta_{2}\right)-\left[r\left(M_{1}\right)+r\left(M_{2}\right)-r\left(\Delta_{2}\right)\right] \\
& \quad r\left(X \cup \Delta_{2}\right)+r\left(Y-\Delta_{2}\right)-r\left(M_{1}\right) \leq k-1
\end{aligned}
$$

Thus $P_{\Delta_{2}}\left(M_{1}, M_{2}\right) \backslash \Delta_{2}$ has a vertical k-separation; a contradiction. Therefore M_{1} is vertically 3 -connected and, by symmetry, so is M_{2}.

The next lemma will be helpful in the proof of Lemma 2.4, where we use Seymour's theorem to obtain a sequential decomposition of a regular matroid.

Lemma 2.3. Let M_{1} and M_{2} be binary matroids whose ground sets meet in a set Δ_{2} that is a triangle of both matroids. If Δ_{3} is a triangle of $P_{\Delta_{2}}\left(M_{1}, M_{2}\right) \backslash \Delta_{2}$, then, for some $\{i, j\}=\{1,2\}$, either
(i) $\Delta_{3} \subseteq E\left(M_{i}\right)$; or
(ii) $\left|\Delta_{3} \cap E\left(M_{i}\right)\right|=2$ and $\left|\Delta_{3} \cap E\left(M_{j}\right)\right|=1$, and the element c of $\Delta_{3} \cap$ $E\left(M_{j}\right)$ is parallel to some element g of M_{i}. Moreover, if M_{j}^{\prime} and M_{i}^{\prime} are obtained by deleting c from M_{j}, and adding c in parallel to g in M_{i}, then $P_{\Delta_{2}}\left(M_{1}^{\prime}, M_{2}^{\prime}\right)=P_{\Delta_{2}}\left(M_{1}, M_{2}\right)$, while $\operatorname{si}\left(M_{1}^{\prime}\right)=\operatorname{si}\left(M_{1}\right)$ and $\operatorname{si}\left(M_{2}^{\prime}\right)=\operatorname{si}\left(M_{2}\right)$.
Proof. Let $E_{1}=E\left(M_{1}\right)$ and $E_{2}=E\left(M_{2}\right)$. We may assume that $\left|\Delta_{3} \cap E_{1}\right|=2$ and $\left|\Delta_{3} \cap E_{2}\right|=1$. Then, in $P_{\Delta_{2}}\left(M_{1}, M_{2}\right)$, the intersection of $\operatorname{cl}\left(E_{1}\right)$ and $\operatorname{cl}\left(E_{2}\right)$ is $\operatorname{cl}\left(\Delta_{2}\right)$. Thus the element c of $\Delta_{3} \cap E\left(M_{2}\right)$ is parallel to some element of $\operatorname{cl}\left(\Delta_{2}\right)$, and the lemma follows.

Lemma 2.4. Let M be a vertically 3-connected regular matroid such that $\operatorname{si}(M)$ has at least six elements and is not isomorphic to R_{10}. Then either M is graphic or cographic, or, for some $n \geq 2$, there is a sequence $M_{1}, M_{2}, \ldots, M_{n}$ of graphic and cographic matroids such that $M=\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n}, M_{n}\right)$ where, for all i with $2 \leq i \leq n$, the triangle $\Delta_{i} \subseteq E\left(M_{j}\right)$ for some $j<i$, and all of $\operatorname{si}\left(M_{1}\right), \operatorname{si}\left(M_{2}\right), \ldots, \operatorname{si}\left(M_{n}\right)$ are 3-connected having at least nine elements.

Proof. We shall assume that M is simple since it suffices to prove the lemma in that case. We proceed by induction on $|E(M)|$. Since M is regular, if $|E(M)| \leq 9$, then either M is graphic, or M is isomorphic to $M^{*}\left(K_{3,3}\right)$ and so is cographic. In both cases, the lemma holds. Now suppose that the lemma holds for matroids with fewer than k elements and let $|E(M)|=k \geq 10$.

Assume that M is neither graphic nor cographic. Then, by Theorem 2.1, M is the 3 -sum of some matroids N_{1} and N_{2}, where both $\operatorname{si}\left(N_{1}\right)$ and $\operatorname{si}\left(N_{2}\right)$ are 3connected having at least nine elements. Choose such a 3 -sum decomposition in
which $\left|E\left(N_{2}\right)\right|$ is minimized. Let Δ be the common triangle of N_{1} and N_{2}. We may assume that $\Delta \subseteq E\left(\operatorname{si}\left(N_{i}\right)\right)$ for each i.

Since N_{2} has a triangle, it is not isomorphic to R_{10}. Suppose $\operatorname{si}\left(N_{2}\right)$ is not graphic or cographic. Then, by Theorem 2.1, N_{2} is the 3 -sum of matroids N_{2}^{\prime} and $N_{2}^{\prime \prime}$ across a common triangle Δ^{\prime} where each of $\operatorname{si}\left(N_{2}^{\prime}\right)$ and $\operatorname{si}\left(N_{2}^{\prime \prime}\right)$ is 3 -connected and contains at least nine elements. As Δ is a triangle of $P_{\Delta^{\prime}}\left(N_{2}^{\prime}, N_{2}^{\prime \prime}\right) \backslash \Delta^{\prime}$, Lemma 2.3 implies that, without altering $\operatorname{si}\left(N_{2}^{\prime}\right)$ or $\operatorname{si}\left(N_{2}^{\prime \prime}\right)$, we can assume that $\Delta \subseteq E\left(N_{2}^{\prime}\right)$. Then, by comparing flats, we can show that $P_{\Delta}\left(N_{1}, P_{\Delta^{\prime}}\left(N_{2}^{\prime}, N_{2}^{\prime \prime}\right)\right)=P_{\Delta^{\prime}}\left(P_{\Delta}\left(N_{1}, N_{2}^{\prime}\right), N_{2}^{\prime \prime}\right)$, so $M=\left(N_{1} \oplus_{\Delta} N_{2}^{\prime}\right) \oplus_{\Delta^{\prime}} N_{2}^{\prime \prime}$. By Lemma 2.2, $\operatorname{si}\left(N_{1} \oplus_{\Delta} N_{2}^{\prime}\right)$ is 3-connected; a contradiction, since $\left|E\left(N_{2}\right)\right|$ was chosen to be minimal.

We may now assume that $\operatorname{si}\left(N_{2}\right)$ is graphic or cographic. Hence so is N_{2}. By the inductive hypothesis, $N_{1}=\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n}, M_{n}\right)$ and the desired conditions hold. Now Δ is a triangle of N_{1}. Pick the smallest integer k such that $\Delta \subseteq E\left(\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{k}, M_{k}\right)\right)$. Then Δ meets $E\left(M_{k}\right)$.

Suppose that $\left|\Delta \cap E\left(M_{k}\right)\right| \geq 2$. Then, by moving at most one element of Δ from being parallel to an element of Δ_{k} in $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{k-1}, M_{k-1}\right)$ to being parallel to that element of Δ_{k} in M_{k}, we ensure that $\Delta \subseteq E\left(M_{k}\right)$, as desired.

It remains to consider when $\Delta \cap E\left(M_{k}\right)$ contains a single element, say c. Then, by Lemma 2.3 again, we move c from being parallel to an element of Δ_{k} in M_{k} to being parallel with that element in $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{k-1}, M_{k-1}\right)$. We now have $\Delta \subseteq E\left(\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{k-1}, M_{k-1}\right)\right)$ and we can repeat the above process until we eventually obtain $\Delta \subseteq E\left(M_{i}\right)$ for some i. Thus the lemma holds.

Let M be a vertically 3-connected regular matroid having at least six elements. If $M=\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n}, M_{n}\right)$ for some $n \geq 2$, we call $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots\right.$, Δ_{n}, M_{n}) a good decomposition of M if, for all i with $2 \leq i \leq n$, the triangle $\Delta_{i} \subseteq E\left(M_{j}\right)$ for some $j<i$. Also, we view (M) as a good decomposition of M.

Two disjoint triangles X_{1} and X_{2} in a binary matroid are parallel if $r\left(X_{1} \cup X_{2}\right)=$ 2. Recall that a regular matroid M is vertically 3 -connected if $\operatorname{si}(M)$ is 3-connected and M is loopless. For a good decomposition $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n}, M_{n}\right)$ of a vertically 3 -connected regular matroid, define the associated tree T to have vertex set $\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$ and edge set $\left\{\Delta_{2}, \Delta_{3}, \ldots, \Delta_{n}\right\}$ where Δ_{i} joins M_{i} to the vertex M_{j} with $j<i$ such that $\Delta_{i} \subseteq E\left(M_{j}\right)$. We shall sometimes write M_{T} for M. Note that this labelling means that, for every path $M_{i_{1}} M_{i_{2}} \ldots M_{i_{k}}$ in T, there is a j in $\{1,2, \ldots, k\}$ such that $i_{1}>i_{2}>\cdots>i_{j}$ and $i_{j}<i_{j+1}<\cdots<i_{k}$. The reader may find some features of the tree disconcerting. For example, the matroids labelling two non-adjacent vertices may contain triangles that are parallel in $M_{[n]}^{P}$. In spite of this apparent shortcoming, this tree will be adequate for our needs.

Lemma 2.5. Let M be a vertically 3-connected regular matroid for which $|E(\operatorname{si}(M))| \geq 9$ and $\operatorname{si}(M) \not \not R_{10}$. Let $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n}, M_{n}\right)$ be a good decomposition of M and $M_{i} M_{j}$ be an edge of the associated tree with $j<i$. Then

$$
\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{j},\left(M_{j}, \Delta_{i}, M_{i}\right), \Delta_{j+1}, \ldots, M_{i-1}, \Delta_{i+1}, M_{i+1}, \ldots, \Delta_{n}, M_{n}\right)
$$

is a good decomposition of M. Moreover, $\operatorname{si}\left(\left(M_{j}, \Delta_{i}, M_{i}\right)\right)$ is 3-connected.
Proof. We shall show first that

$$
\begin{align*}
\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{j},\left(M_{j}, \Delta_{i}, M_{i}\right), \Delta_{j+1}\right. & \left., \ldots, \Delta_{i-1}, M_{i-1}\right) \\
& =\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{i}, M_{i}\right) \tag{2}
\end{align*}
$$

Now $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{i}, M_{i}\right)$ is obtained from $P\left(M_{1}, M_{2}, \ldots, M_{i}\right)$ by deleting $\Delta_{2} \cup \Delta_{3} \cup \cdots \cup \Delta_{i}$. Moreover, $P\left(M_{1}, M_{2}, \ldots, M_{i}\right)$ has, as its flats, those sets F such that $F \cap E\left(M_{s}\right)$ is a flat of M_{s} for all s with $1 \leq s \leq i$. The matroid on the left-hand side of (2) is obtained from $P\left(M_{1}, M_{2}, \ldots, M_{j-1}, P_{\Delta_{i}}\left(M_{j}, M_{i}\right) \backslash \Delta_{i}, M_{j+1}, \ldots, M_{i-1}\right)$ by deleting $\Delta_{2} \cup \Delta_{3} \cup \cdots \cup \Delta_{i-1}$. Thus it is obtained from $P\left(M_{1}, M_{2}, \ldots, M_{j-1}\right.$, $\left.P_{\Delta_{i}}\left(M_{j}, M_{i}\right), M_{j+1}, \ldots, M_{i-1}\right)$ by deleting $\Delta_{2} \cup \Delta_{3} \cup \cdots \cup \Delta_{i}$. The flats of the last matroid coincide with the flats of $P\left(M_{1}, M_{2}, \ldots, M_{i}\right)$. Hence (2) holds. It follows that M has the decomposition specified in the lemma, and one easily checks that this decomposition is good. Finally, $\operatorname{si}\left(\left(M_{j}, \Delta_{i}, M_{i}\right)\right)$ is 3-connected by Lemma 2.2.

We shall repeatedly use the following routine consequence of the last lemma.
Corollary 2.6. Let T be a tree associated with a vertically 3-connected matroid M. Delete an edge $M_{a} M_{b}$ of T and let T_{a} be the component of the resulting forest that contains M_{a}. A new tree associated with M can be obtained from T by contracting the edges of T_{a}, one by one, each time labelling the composite vertex that results from contracting the edge Δ joining M_{i} and M_{j} by $\left(M_{j}, \Delta, M_{i}\right)$.

When we have a good decomposition of a regular matroid M, the next two lemmas will be useful in obtaining good decompositions of certain minors of M.

Lemma 2.7. Let $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n}, M_{n}\right)$ be a good decomposition of a regular matroid M. For e in $E\left(M_{i}\right)-\left(\Delta_{2} \cup \Delta_{3} \cup \cdots \cup \Delta_{n}\right)$, if $e \in \operatorname{cl}_{M_{[n]}^{P}}\left(\Delta_{j}\right)$ for some j, then $e \in \operatorname{cl}_{M_{i}}\left(\Delta_{k}\right)$ for some k in $\{2,3, \ldots, n\}$ where $\Delta_{k} \subseteq E\left(M_{i}\right)$.

Proof. Choose j to be the smallest integer t for which $e \in \operatorname{cl}_{M_{[n]}^{P}}\left(\Delta_{t}\right)$. If $\Delta_{j} \subseteq$ $E\left(M_{i}\right)$, then the result holds with $j=k$. Thus we may assume that $\Delta_{j} \nsubseteq E\left(M_{i}\right)$ so $\Delta_{j} \cap E\left(M_{i}\right)=\emptyset$ and $j \neq i$. Now e is parallel in $M_{[n]}^{P}$ to some element of Δ_{j}.

Assume $j<i$. Then $e \in \operatorname{cl}_{M_{[i]}^{P}}\left(\Delta_{j}\right)$ so, in $M_{[i]}^{P}$, the element e is in the intersection of $\operatorname{cl}\left(E\left(M_{i}\right)\right)$ and $\operatorname{cl}\left(E\left(P\left(M_{1}, M_{2}, \ldots, M_{i-1}\right)\right)\right.$. Hence $e \in \operatorname{cl}_{M_{[i]}^{P}}\left(\Delta_{i}\right)$. Thus $e \in$ $\operatorname{cl}_{M_{i}}\left(\Delta_{i}\right)$ and the result holds with $k=i$.

We may now assume that $j>i$ so $j \geq 2$. We know that $\Delta_{j} \subseteq E\left(M_{j}\right)$ and $\Delta_{j} \subseteq E\left(M_{s}\right)$ for some $s<j$. If $s<i$, then, it follows, as above, that $e \in \operatorname{cl}_{M_{i}}\left(\Delta_{i}\right)$. Hence we may assume that $s>i$. Then $e \in \operatorname{cl}_{M_{[s]}^{P}}\left(\Delta_{j}\right)$ so $e \in \operatorname{cl}_{M_{[s]}^{P}}\left(\Delta_{s}\right)$ and hence $e \in \operatorname{cl}_{M_{[n]}^{P}}\left(\Delta_{s}\right)$. But $s<j$; a contradiction.

Lemma 2.8. Let $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n}, M_{n}\right)$ be a good decomposition of a regular matroid M. For e in $E\left(M_{i}\right)-\left(\Delta_{2} \cup \Delta_{3} \cup \cdots \cup \Delta_{n}\right)$, if $e \in \operatorname{cl}_{M_{[n]}^{P}}\left(E\left(M_{j}\right)\right)$ for some $j \neq i$, then $e \in \operatorname{cl}_{M_{i}}\left(\Delta_{k}\right)$ for some k in $\{2,3, \ldots, n\}$ where $\Delta_{k} \subseteq E\left(M_{i}\right)$.

Proof. First we show the following.
2.8.1. The lemma holds if $e \in \operatorname{cl}_{M_{[q+1]}^{P}}\left(E\left(M_{j}\right)\right)-\mathrm{cl}_{M_{[q]}^{P}}\left(E\left(M_{j}\right)\right)$ for some q with $j \leq q<n$.

By definition, $M_{[q+1]}^{P}=P_{\Delta_{q+1}}\left(M_{[q]}^{P}, M_{q+1}\right)$. Suppose $E\left(M_{j}\right) \cap E\left(M_{q+1}\right) \neq \emptyset$. Then the construction of M means that $E\left(M_{j}\right) \cap E\left(M_{q+1}\right)=\Delta_{q+1}$. Thus, by (1), $\operatorname{cl}_{M_{[q+1]}^{P}}\left(E\left(M_{j}\right)\right)=\operatorname{cl}_{M_{[q]}^{P}}\left(E\left(M_{j}\right)\right) \cup \operatorname{cl}_{M_{q+1}}\left(\Delta_{q+1}\right)$, so $e \in \operatorname{cl}_{M_{q+1}}\left(\Delta_{q+1}\right)$. Hence $e \in \operatorname{cl}_{M_{[q+1]}^{P}}^{P}\left(\Delta_{q+1}\right)$, so $e \in \operatorname{cl}_{M_{[n]}^{P}}\left(\Delta_{q+1}\right)$ and the lemma follows by Lemma 2.7. Hence 2.8.1 holds.

Now assume that $j>i$. If $e \notin \operatorname{cl}_{M_{[j]}^{P}}\left(E\left(M_{j}\right)\right)$, then, since $e \in \operatorname{cl}_{M_{[n]}^{P}}\left(E\left(M_{j}\right)\right)$, the lemma follows by 2.8.1. Hence we may assume that $e \in \operatorname{cl}_{M_{[j]}^{P}}\left(E\left(M_{j}\right)\right)$. Then $e \in E\left(M_{i}\right) \cap \mathrm{cl}_{M_{[j]}^{P}}\left(E\left(M_{j}\right)\right)$. Hence $e \in \operatorname{cl}_{M_{[j]}^{P}}\left(\Delta_{j}\right)$, so $e \in \operatorname{cl}_{M_{[n]}^{P}}\left(\Delta_{j}\right)$ and again the lemma follows by Lemma 2.7.

Finally, assume that $j<i$. By 2.8.1, we may assume that $e \in \operatorname{cl}_{M_{[i]}^{P}}\left(E\left(M_{j}\right)\right)$. But $e \in E\left(M_{i}\right)$, so $e \in \operatorname{cl}_{M_{[i]}^{P}}\left(E\left(M_{j}\right)\right) \cap \operatorname{cl}_{M_{[i]}^{P}}\left(E\left(M_{i}\right)\right) \subseteq \operatorname{cl}_{M_{[i]}^{P}}\left(\Delta_{i}\right)$. Thus $e \in \operatorname{cl}_{M_{[n]}^{P}}\left(\Delta_{i}\right)$ and the lemma follows by Lemma 2.7.

Corollary 2.9. Let $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n}, M_{n}\right)$ be a good decomposition of a regular matroid M. For some i in $\{1,2, \ldots, n\}$, let N_{i} be a minor of M_{i} such that if $\Delta_{j} \subseteq E\left(M_{i}\right)$ for some j in $\{2,3, \ldots, n\}$, then Δ_{j} is a triangle of N_{i}. Then

$$
\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, M_{i-1}, \Delta_{i}, N_{i}, \Delta_{i+1}, M_{i+1}, \ldots, \Delta_{n}, M_{n}\right)
$$

is a good decomposition of a minor of M.
Proof. It suffices to prove this when N_{i} is $M_{i} \backslash e$ or M_{i} / e for some element e. In this case, the result follows without difficulty using the last lemma and properties of the generalized parallel connection [2] summarized in [9, Proposition 12.4.16].

Let A and B be parallel triangles in a loopless binary matroid N. Then $N \mid(A \cup B)$ is a double triangle. We call N a multi- K_{4} with respect to A and B if $\operatorname{si}(N)=$ $M\left(K_{4}\right)$; and we call N a multi-triangle with respect to A and B if $r(N)=2$ and N contains at least one element not in $A \cup B$.

The following result is an immediate consequence of the Scum Theorem.
Lemma 2.10. If a binary matroid M has as a minor a multi-triangle or a multiK_{4} with respect to two parallel triangles A and B, then $E(M)$ has a subset Y such that M / Y is, respectively, a multi-triangle or a multi- K_{4} with respect to A and B.

The next lemma [10] was proved by Jim Geelen and is useful for finding a double triangle as a parallel minor of a 3 -connected graphic or cographic matroid. If X and Y are disjoint subsets of the ground set of a matroid M, we define $\kappa_{M}(X, Y)$ to be $\min \left\{\lambda_{M}(Z): X \subseteq Z \subseteq E(M)-Y\right\}$.

Lemma 2.11. Let C and X be disjoint sets in a matroid M such that C is a circuit and $\kappa_{M}(C, X)=2$. Then there are elements a, b, and c of C and a minor N of M that has $\{a, b, c\}$ as a circuit and $X \cup\{a, b, c\}$ as its ground set such that $\kappa_{N}(\{a, b, c\}, X)=2$.

Lemma 2.12. Let M be a vertically 3-connected regular matroid for which $|E(\operatorname{si}(M))| \geq 9$ and $\operatorname{si}(M) \not \not R_{10}$. Let $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n}, M_{n}\right)$ be a good decomposition of M such that each $\operatorname{si}\left(M_{i}\right)$ has at least nine elements. Let T be the tree associated with this decomposition. Let T^{\prime} be a connected subgraph of T. Then T^{\prime} is a tree associated with the matroid M^{\prime} that labels the one vertex that results after all the edges of T^{\prime} are contracted. Moreover, $\operatorname{si}\left(M^{\prime}\right)$ is a 3 -connected matroid that is isomorphic to a parallel minor of M.

Proof. It suffices to prove the lemma in the case that $T^{\prime}=T-M_{i}$ for some vertex M_{i} of degree one. Let M_{j} be the neighbor of M_{i} in T and let Δ_{k} be the triangle common to M_{i} and M_{j}. By Corollary $2.6, M=P_{\Delta_{k}}\left(M_{i}, M_{j}^{\prime}\right) \backslash \Delta_{k}$ where M_{j}^{\prime} labels the vertex other than M_{i} in the graph that is obtained by contracting every edge of
T other than $M_{i} M_{j}$. By Lemma 2.2, $\operatorname{si}\left(M_{j}^{\prime}\right)$ is 3-connected. We may assume that the only 2-circuits of M_{i} meet $\mathrm{cl}_{M_{i}}\left(\Delta_{k}\right)$.

Because the vertex M_{i} has degree one in T, in $M_{[n]}^{P}$, the intersection of the closures of $E\left(M_{i}\right)$ and $E\left(M_{1}\right) \cup \cdots \cup E\left(M_{i-1}\right) \cup E\left(M_{i+1}\right) \cup \cdots \cup E\left(M_{n}\right)$ is the closure of Δ_{k}. Let $Y_{i}=E\left(M_{i}\right)-\mathrm{cl}_{M_{i}}\left(\Delta_{k}\right)$. Then $\left|Y_{i}\right| \geq 6$ so, as M_{i} is regular and cosimple, $r^{*}\left(Y_{i}\right) \geq 3$. Now $2=\lambda_{M_{i}}\left(\Delta_{k}\right)=\lambda_{M_{i}}\left(Y_{i}\right)=r\left(Y_{i}\right)+r^{*}\left(Y_{i}\right)-\left|Y_{i}\right|$. Thus $r\left(Y_{i}\right)<\left|Y_{i}\right|$ so Y_{i} contains a circuit C. By Lemma 2.11, there are elements a, b, and c of C and a minor N_{i} of M_{i} that has $\{a, b, c\}$ as a circuit and $\Delta_{k} \cup\{a, b, c\}$ as its ground set such that $\kappa_{N_{i}}\left(\{a, b, c\}, \Delta_{k}\right)=2$. Thus $2=\lambda_{N_{i}}(\{a, b, c\})=r(\{a, b, c\})+r\left(\Delta_{k}\right)-r\left(N_{i}\right) \leq$ $r\left(\Delta_{k}\right) \leq 2$, so equality holds throughout and $r\left(\Delta_{k}\right)=r\left(N_{i}\right)=2$. Therefore N_{i} is a double triangle that is a minor of M_{i}. Hence, by the Scum Theorem, since M_{i} is binary, N_{i} is a parallel minor of M_{i}. Then $\left(N_{i}, \Delta_{k}, M_{j}^{\prime}\right)$ is isomorphic to M_{j}^{\prime} and the latter is a parallel minor of M. The lemma now follows using Corollary 2.9.

The next lemma is from an unpublished paper [5] of Ding and Oporowski. The proof is given here for completeness.
Lemma 2.13. Let G be a 3-connected simple graph containing distinct 3-element bonds S_{1} and S_{2}. Then one of the following occurs.
(i) S_{1} and S_{2} are both vertex bonds.
(ii) G has a subgraph H that is a subdivision of K_{4} such that H has a degreethree vertex v so that $S_{1} \cup S_{2}$ is contained in the union of the minimal paths in H from v to the other degree-three vertices of H.

Proof. Let $S_{1}=\left\{e_{1}, f_{1}, g_{1}\right\}$ and $S_{2}=\left\{e_{2}, f_{2}, g_{2}\right\}$. Either $S_{1} \cap S_{2}=\emptyset$ or $\left|S_{1} \cap S_{2}\right|=$ 1. In each case, since G is 3-connected, $S_{2}-S_{1}$ is a bond of $G \backslash S_{1}$, and $S_{1}-S_{2}$ is a bond of $G \backslash S_{2}$. Let A be the component of $G \backslash S_{1}$ that does not contain $S_{2}-S_{1}$, and let C be the component of $G \backslash S_{2}$ that does not contain $S_{1}-S_{2}$. Then A and C are vertex disjoint.

Suppose A contains no cycles. Then A is a tree and, since G is 3 -connected, all the leaves of A must meet edges of S_{1}. Assume that A contains an edge. Then A has at least two vertices of degree one, so G has a vertex of degree at most two; a contradiction. Hence A contains no edges, and S_{1} is a vertex bond. Likewise, if C contains no cycles, then S_{2} is a vertex bond.

We may now assume that A or C, say A, contains a cycle D, otherwise (i) holds. Take a vertex v in $V(C)$. By Menger's Theorem, G contains three paths from v to $V(D)$ that have no internal vertices in $V(D)$ and that are disjoint except that all contain v. Each such path contains exactly one edge of S_{1} and exactly one edge of S_{2}. The union of these three paths with D is a subdivision of K_{4} satisfying (ii).

3. The proof of the main theorem

The following theorem is well-known (see, for example, [4]).
Theorem 3.1. There is an integer-valued function $f_{3.1}$ such that, for each positive integer d, every tree with at least $f_{3.1}(d)$ vertices has an induced subgraph isomorphic to $K_{1, d}$ or a path with d vertices.

The next two theorems $[3,8]$ will be crucial in the proof of Theorem 1.1.
Theorem 3.2. There is an integer-valued function $f_{3.2}$ such that, for each integer k exceeding three, every 3 -connected graph with at least $f_{3.2}(k)$ vertices has a parallel minor isomorphic to $K_{3, k}^{\prime}, \mathcal{W}_{k}, D F_{k}$, or K_{k}.

Theorem 3.3. There is an integer-valued function $f_{3.3}$ such that, for each integer k exceeding two, every 3 -connected graph with at least $f_{3.3}(k)$ vertices has a subgraph that is isomorphic to a subdivision of V_{k}, \mathcal{W}_{k}, or $K_{3, k}$.

We will also use the following result of Oxley [11].
Lemma 3.4. Let N be a 3-connected binary matroid having rank and corank at least three and suppose $\{x, y, z\} \subseteq E(N)$. Then N has a minor isomorphic to $M\left(K_{4}\right)$ whose ground set contains $\{x, y, z\}$.

The proof of our main result will occupy the rest of the paper.
Proof of Theorem 1.1. Let k be an integer exceeding three. Let $f_{3.2}$ and $f_{3.3}$ be the functions described in Theorems 3.2 and 3.3, respectively. Let $s=f_{3.2}(k)+$ $f_{3.3}(k)+11$. Let $m=\left\lceil(k+2) \frac{1}{3} f_{3.3}(k)\right\rceil+2$ and $l=\max \left\{\binom{s}{3}(k+2), 2(2 m+1)\right\}$. Let $t=(s-1) f_{3.1}(l)$. Set $f_{1.1}(k)=t$. Let M be a 3 -connected regular matroid with at least t elements. Then $t \geq 11$.

By Lemma 2.4, M has a good decomposition into matroids each of which is graphic or cographic and has a 3 -connected simplification with at least nine elements. By Lemma 2.5, we retain a good decomposition satisfying these additional conditions if we contract, one by one, the edges between vertices labelling graphic matroids. Let the resulting good decomposition be $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{n}, M_{n}\right)$, and let T be the tree associated with this decomposition.

By Lemma 2.2, for each i, the matroid $\operatorname{si}\left(M_{i}\right)$ is 3 -connected. Suppose that some such $\operatorname{si}\left(M_{i}\right)$ has at least s elements. By Lemma 2.12, $\operatorname{si}\left(M_{i}\right)$ is isomorphic to a parallel minor N of M. If N is graphic, then, by Theorem $3.2, M$ has a parallel minor isomorphic to $M\left(K_{3, k}^{\prime}\right), M\left(\mathcal{W}_{k}\right), M\left(D F_{k}\right)$, or $M\left(K_{k}\right)$, and the theorem holds. If, instead, N is cographic, then, by Theorem 3.3, N^{*} has a series minor isomorphic to $M\left(K_{3, k}\right), M\left(V_{k}\right)$, or $M\left(\mathcal{W}_{k}\right)$. Thus N, and hence M, has a parallel minor isomorphic to $M^{*}\left(K_{3, k}\right), M\left(D F_{k}\right)$, or $M\left(\mathcal{W}_{k}\right)$, and again the theorem holds.

We may now assume that no vertex of T labels a matroid whose simplification has at least s elements. As $|E(M)| \leq \sum_{i=1}^{n}\left|E\left(\operatorname{si}\left(M_{i}\right)\right)\right|$, we have $n>\frac{t}{s-1}=f_{3.1}(l)$.

Suppose next that T contains a vertex M_{i} of degree at least l. We will show that M has a parallel minor isomorphic to $M\left(K_{3, k}^{\prime}\right)$. Since $\operatorname{si}\left(M_{i}\right)$ has fewer than s elements, $\operatorname{si}\left(M_{i}\right)$ has fewer than $\binom{s}{3}$ triangles. As M_{i} has degree at least l, for some triangle S in $\operatorname{si}\left(M_{i}\right)$, at least $l /\binom{s}{3}$ of the matroids labelling vertices adjacent with the vertex M_{i} have a triangle whose union with S has rank 2 in $M_{[n]}^{P}$. We may assume that $\operatorname{si}\left(M_{i}\right)$ is labelled so that $S=\Delta_{h}$ for some h. Clearly $j>i$ for all but at most one neighbor M_{j} of M_{i} in T; and Δ_{h} is contained in the ground set of a unique neighbor of M_{i} in T. By definition, $l /\binom{s}{3} \geq k+2$. Take a subgraph T^{\prime} of T induced by M_{i} and k of its higher-indexed neighbors, $M_{i_{1}}, M_{i_{2}}, \ldots, M_{i_{k}}$, that contain triangles that are parallel to and so disjoint from Δ_{h}. By Lemma 2.12, the simplification of the matroid M^{\prime} associated with T^{\prime} is isomorphic to a parallel minor Q of M. We relabel $M_{i}, M_{i_{j}}, \Delta_{i_{j}}$, and Δ_{h} as M_{0}, M_{j}, Δ_{j}, and Δ_{0}. Then $V\left(T^{\prime}\right)=\left\{M_{0}, M_{1}, \ldots, M_{k}\right\}$ and M_{0} has $\Delta_{0}, \Delta_{1}, \ldots, \Delta_{k}$ as parallel triangles.

By Lemma 3.4, for all j in $\{1,2, \ldots, k\}$, the matroid M_{j} has an $M\left(K_{4}\right)$-minor M_{j}^{\prime} having Δ_{j} as a triangle. Because M_{j} has no Fano minor, by the Scum Theorem, M_{j}^{\prime} is a parallel minor of M_{j}. Take two distinct elements d_{1} and d_{2} in Δ_{0} and extend $\left\{d_{1}, d_{2}\right\}$ to a basis B of M_{0}. Let $M_{0}^{\prime}=M_{0} /\left(\operatorname{cl}_{M_{0}}\left(B-\left\{d_{1}, d_{2}\right\}\right)\right)$. Then $\Delta_{0} \subseteq E\left(M_{0}^{\prime}\right)$. Therefore, if $i \geq 1$, for every parallel deletion that is done in M_{i} to produce M_{i}^{\prime},
there is a corresponding parallel deletion in Q. It follows by Corollary 2.9 that $\left(M_{0}^{\prime}, \Delta_{1}, M_{1}^{\prime}, \Delta_{2}, \ldots, \Delta_{k}, M_{k}^{\prime}\right)$ is a parallel minor N of Q. Moreover, $\operatorname{si}(N)$ can be obtained by identifying a triangle in each of k matroids isomorphic to $M\left(K_{4}\right)$, so $\operatorname{si}(N) \cong M\left(K_{3, k}^{\prime}\right)$. Hence M has a parallel minor isomorphic to $M\left(K_{3, k}^{\prime}\right)$.

We may now suppose that every vertex of T has degree at most $l-1$. By Theorem 3.1, T contains a path $M_{i_{1}} M_{i_{2}} \ldots M_{i_{l}}$ with l vertices. By construction, there is some index j such that $i_{1}>i_{2}>\cdots>i_{j}$ and $i_{j}<i_{j+1}<\cdots<i_{l}$. Now $\frac{l}{2} \geq 2 m+1$, so T contains a path T^{\prime} with at least $2 m+1$ vertices such that the indices on the vertices are increasing. As no two adjacent vertices of this path label graphic matroids, by removing vertices from the ends of the path, we can get a path T^{\prime} with $2 m$ vertices such that the first vertex of T^{\prime} labels a non-graphic matroid. We relabel the vertices of T^{\prime} so that $T^{\prime}=M_{1} M_{2} \ldots M_{2 m}$ and relabel each edge $M_{i} M_{i+1}$ as Δ_{i+1}. Let $M^{\prime}=\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{2 m}, M_{2 m}\right)$ and $\bar{M}=\operatorname{si}\left(M^{\prime}\right)$. By Lemma 2.12, \bar{M} is 3-connected and is isomorphic to a parallel minor of M. We can modify the decomposition we have for M^{\prime} to obtain a good decomposition for \bar{M} by deleting superfluous parallel elements. Specifically, we replace each M_{i} by its restriction to the set $\left(E(\bar{M}) \cap E\left(M_{i}\right)\right) \cup\left(\Delta_{i} \cup \Delta_{i+1}\right)$. Note that Δ_{1} and $\Delta_{2 m+1}$ do not exist so we take these sets to be empty. This process gives us a good decomposition of \bar{M} for which we shall retain the labelling $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}, \ldots, \Delta_{2 m}, M_{2 m}\right)$.

Next we prove two lemmas to deal with this kind of situation. Let N be a 3 -connected regular matroid having $\left(N_{1}, \Delta_{2}, N_{2}, \Delta_{3}, \ldots, \Delta_{d}, N_{d}\right)$ as a good decomposition such that the associated tree is a path $N_{1} N_{2} \ldots, N_{d}$; each $\operatorname{si}\left(N_{i}\right)$ has at least nine elements and is graphic or cographic, with no two consecutive matroids being graphic; and N_{1} is not graphic. We call such a good decomposition a fine decomposition of N. Note that, in a fine decomposition, every non-trivial parallel class of each N_{i} meets Δ_{i} or Δ_{i+1}. When $\left(N_{1}, \Delta_{2}, N_{2}, \Delta_{3}, \ldots, \Delta_{d}, N_{d}\right)$ is a fine decomposition of N, if $1<i<d$, we denote ($N_{1}, \Delta_{2}, N_{2}, \ldots, \Delta_{i-i}, N_{i-1}$) and $\left(N_{i+1}, \Delta_{i+2}, N_{i+2}, \ldots, \Delta_{d}, N_{d}\right)$ by \hat{N}_{i-1} and \check{N}_{i+1}. As a graph, the triangular prism consists of the vertices and edges of the eponymous polyhedron. This graph is the planar dual of the graph $K_{5} \backslash e$.

Lemma 3.5. Let $\left(N_{1}, \Delta_{2}, N_{2}, \Delta_{3}, \ldots, \Delta_{d}, N_{d}\right)$ be a fine decomposition of a 3connected regular matroid. For all i with $1<i<d$, one of the following occurs:
(i) N_{i} is graphic and $E\left(N_{i}\right)$ has a subset Y_{i} such that N_{i} / Y_{i} is a multi-triangle with respect to Δ_{i} and Δ_{i+1};
(ii) N_{i} is the cycle matroid of a triangular prism, and N_{i-1} and \hat{N}_{i-1} have no triads meeting Δ_{i}, while N_{i+1} and \tilde{N}_{i+1} have no triads meeting Δ_{i+1};
(iii) N_{i} is not graphic and $N_{i}=M^{*}\left(G_{i}\right)$ for some graph G_{i} where Δ_{i} and Δ_{i+1} are vertex bonds of G_{i}; or
(iv) N_{i} is cographic but not graphic and $E\left(N_{i}\right)$ has a subset Y_{i} such that N_{i} / Y_{i} is a multi- K_{4} with respect to Δ_{i} and Δ_{i+1}.

Proof. If Δ_{i} and Δ_{i+1} are parallel in N_{i}, then Lemma 3.4 implies that $E\left(N_{i}\right)$ has a subset Y_{i} such that N_{i} / Y_{i} is a multi- K_{4} with respect to Δ_{i} and Δ_{i+1}. In the first case, (i) holds; in the second, (i) or (iv) holds depending on whether N_{i} is graphic or not. We may now assume that Δ_{i} and Δ_{i+1} are not parallel in N_{i}.

Suppose that N_{i} is graphic and let G_{i} be the 3-connected graph such that $M\left(G_{i}\right)=N_{i}$. By Menger's Theorem, G_{i} has three vertex-disjoint paths, P_{1}, P_{2}, and P_{3}, from $V\left(\Delta_{i}\right)$ to $V\left(\Delta_{i+1}\right)$.

We assume first that $G_{i} \backslash\left(E\left(\Delta_{i}\right) \cup E\left(\Delta_{i+1}\right)\right)$ has a component C that contains at least two of the chosen paths. Then $G_{i} \backslash\left(E\left(\Delta_{i}\right) \cup E\left(\Delta_{i+1}\right)\right)$ contains a path R with ends in two different chosen paths and no other vertices in any chosen path. Evidently, G_{i} has a multi-triangle as a minor whose restriction to each of $E\left(\Delta_{i}\right)$ and $E\left(\Delta_{i+1}\right)$ is a triangle. By Lemma 2.10, $E\left(N_{i}\right)$ contains a set Y_{i} such that N_{i} / Y_{i} is a multi-triangle with respect to Δ_{i} and Δ_{i+1}, and (i) holds.

We may now assume that $G_{i} \backslash\left(E\left(\Delta_{i}\right) \cup E\left(\Delta_{i+1}\right)\right)$ has three disjoint components each containing one chosen path. Since G_{i} is 3-connected, no P_{i} has an internal vertex since its ends do not form a vertex cut. Thus $V\left(G_{i}\right)=V\left(P_{1}\right) \cup V\left(P_{2}\right) \cup V\left(P_{3}\right)$. If G_{i} has a non-trivial parallel class, then this class meets Δ_{i} or Δ_{i+1}, and (i) holds with $Y_{i}=P_{1} \cup P_{2} \cup P_{3}$. Thus we may assume that G_{i} is simple. Then $\left|E\left(G_{i}\right)\right|=\left|E\left(\operatorname{si}\left(N_{i}\right)\right)\right| \geq 9$, and it follows that G_{i} is a triangular prism.

Let $\left\{x_{1}, x_{2}, x_{3}\right\}=E\left(N_{i}\right)-\left(\Delta_{i} \cup \Delta_{i+1}\right)$. By Lemma 2.5, $N_{i-1} \oplus_{\Delta_{i}} N_{i}$ and $\hat{N}_{i-1} \oplus \Delta_{i} N_{i}$ have no series pairs. Thus N_{i-1} and \hat{N}_{i-1} have no triads meeting Δ_{i}. Similarly, N_{i+1} and \check{N}_{i+1} have no triads meeting Δ_{i+1}, and (ii) holds.

We may now assume that N_{i} is not graphic. Then N_{i} is cographic and so too is $\operatorname{si}\left(N_{i}\right)$. Hence $\operatorname{si}\left(N_{i}\right)=M^{*}\left(H_{i}\right)$ for some 3-connected simple graph H_{i}. Now Δ_{i} and Δ_{i+1} are not parallel in N_{i}. Thus $r\left(\Delta_{i} \cup \Delta_{i+1}\right)$ is 3 or 4 . Hence we can choose H_{i} so that either both Δ_{i} and Δ_{i+1} label bonds of it, or so that Δ_{i} and $\left(\Delta_{i+1}-e_{i+1}\right) \cup e_{i}$ label bonds of it where $\left\{e_{i}, e_{i+1}\right\}$ is a circuit of N_{i} with each e_{j} in Δ_{j}. Consider the bonds Δ_{i} and Δ_{i+1}^{\prime} of H_{i} where Δ_{i+1}^{\prime} is Δ_{i+1} or $\left(\Delta_{i+1}-e_{i+1}\right) \cup e_{i}$. Suppose first that both Δ_{i} and Δ_{i+1}^{\prime} are vertex bonds. Then, by replacing edges of H_{i} by paths if necessary, we can get a graph G_{i} such that $N_{i}=M^{*}\left(G_{i}\right)$ and Δ_{i} and Δ_{i+1} are both vertex bonds of G_{i}. Thus (iii) holds.

It remains to consider when Δ_{i} or Δ_{i+1}^{\prime} is not a vertex bond of H_{i}. By Lemma 2.13, H_{i} has a subgraph J that is a subdivision of K_{4} such that J has a degree-three vertex v so that $\Delta_{i} \cup \Delta_{i+1}^{\prime}$ is contained in the union of the minimal paths in J from v to the other degree-three vertices of J. If $\Delta_{i+1}^{\prime} \neq \Delta_{i+1}$, form J^{\prime} from J by replacing e_{i} by a 2-edge path $\left\{e_{i}, e_{i+1}\right\}$; otherwise let J^{\prime} be J. Then $M^{*}\left(J^{\prime}\right)$ is a minor of N_{i}. By Lemma 2.10, $E\left(N_{i}\right)$ has a subset Y_{i} such that N_{i} / Y_{i} is a multi- K_{4} with respect to Δ_{i} and Δ_{i+1}, and (iv) holds.

We will say that N_{i} is type (i) if it meets the conditions of (i) in the preceding lemma. Likewise, we will say that N_{i} is type (ii), type (iii), or type (iv) if it meets the conditions of (ii), (iii), or (iv), respectively. The goal of the next lemma is to eliminate the graphic matroids in a fine decomposition.

Lemma 3.6. Let $\left(N_{1}, \Delta_{2}, N_{2}, \Delta_{3}, \ldots, \Delta_{d}, N_{d}\right)$ be a fine decomposition of a 3-connected regular matroid N. For some i with $2 \leq i \leq d-1$, suppose $N_{1}, N_{2}, \ldots, N_{i-1}$ are not graphic. When N_{i} is type (i), let N_{i}^{\prime} be a contraction of N_{i} that is a multitriangle with respect to Δ_{i} and Δ_{i+1}. When N_{i} is type (ii), let N_{i}^{\prime} be the double triangle obtained by contracting each element not in a triangle of N_{i}. Then either $\left(N_{1}, \Delta_{2}, N_{2}, \Delta_{3}, \ldots, \Delta_{i}, N_{i}^{\prime}, \Delta_{i+1}, \ldots, \Delta_{d}, N_{d}\right)$ is vertically 3-connected, or there is an element a of $E\left(N_{j}\right)-\left(\operatorname{cl}_{N_{j}}\left(\Delta_{j}\right) \cup \operatorname{cl}_{N_{j}}\left(\Delta_{j+1}\right)\right)$ for some $j \leq i-1$ such that

$$
\left(N_{1}, \Delta_{2}, N_{2}, \ldots, \Delta_{j}, N_{j} / a, \Delta_{j+1}, \ldots, N_{i-1}, \Delta_{i}, N_{i}^{\prime}, \Delta_{i+1}, \ldots, \Delta_{d}, N_{d}\right)
$$

is vertically 3-connected, and N_{j} / a is not graphic.
Proof. By Lemma 2.12 , both \hat{N}_{i-1} and \check{N}_{i+1} are vertically 3 -connected. We show first that:
3.6.1. Either $\left(\hat{N}_{i-1}, \Delta_{i}, N_{i}^{\prime}, \Delta_{i+1}, \check{N}_{i+1}\right)$ is vertically 3-connected, or that there is an element a of $E\left(\hat{N}_{i-1}\right)-\Delta_{i}$ such that $\left(\hat{N}_{i-1} / a, \Delta_{i}, N_{i}^{\prime}, \Delta_{i+1}, \check{N}_{i+1}\right)$ is vertically 3-connected.

Now N_{i}^{\prime} is either a double triangle with ground set $\Delta_{i} \cup \Delta_{i+1}$, or it is obtained from this matroid by adding some elements in parallel with elements of Δ_{i+1}. In both cases, we let $\hat{N}_{i-1}^{\prime}=\hat{N}_{i-1} \oplus_{\Delta_{i}} N_{i}^{\prime}$. Then \hat{N}_{i-1}^{\prime} may be obtained from \hat{N}_{i-1} by relabelling the elements of Δ_{i} by the appropriate elements in Δ_{i+1} and, when N_{i}^{\prime} is type (i), adding some non-empty set of elements in parallel with those of Δ_{i+1}. Let \bar{N} be the matroid $P_{\Delta_{i+1}}\left(\hat{N}_{i-1}^{\prime}, \check{N}_{i+1}\right)$. Then every non-trivial parallel class of \bar{N} meets Δ_{i+1}. Let $\Delta_{i+1}=\{x, y, z\}$. We shall distinguish the following two cases:
(a) no element of Δ_{i+1} is in a non-trivial parallel class of \bar{N}; and
(b) some element, say z, of Δ_{i+1} is in a non-trivial parallel class of \bar{N}.

Observe that if N_{i} is type (i), then (b) holds.
Assume first that (a) holds. Then N_{i} is type (ii), so \hat{N}_{i-1}^{\prime} has no triad meeting Δ_{i+1} because \hat{N}_{i-1} has no triad meeting Δ_{i}. Moreover, \bar{N} is simple and, since it is the generalized parallel connection across a triangle of two 3 -connected matroids, it too is 3 -connected. Let C^{*} be a cocircuit of \bar{N} meeting Δ_{i+1}. Then $\left|C^{*} \cap \Delta_{i+1}\right|=2$. Furthermore, as $C^{*} \cap E\left(\hat{N}_{i-1}^{\prime}\right)$ and $C^{*} \cap E\left(\check{N}_{i+1}\right)$ contain cocircuits of \hat{N}_{i-1}^{\prime} and \check{N}_{i+1}, it follows that both $\left|C^{*} \cap E\left(\hat{N}_{i-1}^{\prime}\right)\right|$ and $\left|C^{*} \cap E\left(\check{N}_{i+1}\right)\right|$ exceed 3 , so $\left|C^{*}\right| \geq 6$. Thus, if $Z \subseteq \Delta_{i+1}$, then $\bar{N} \backslash Z$ has no 2-cocircuits. Since \bar{N} / x has a non-minimal 2 -separation, it follows, by a well-known result of Bixby [1] (see also [9, Proposition 8.4.6]), that $\bar{N} \backslash x$ is 3-connected. Similarly, $\bar{N} \backslash x / y$ and $\bar{N} \backslash x, y / z$ have non-minimal 2-separations, so $\bar{N} \backslash x, y$ is 3-connected and then so is $\bar{N} \backslash x, y, z$. Hence, in case (a), $\left(\hat{N}_{i-1}, \Delta_{i}, N_{i}^{\prime}, \Delta_{i+1}, \tilde{N}_{i+1}\right)$ is vertically 3 -connected.

Now assume that (b) holds. Then \bar{N} has $\{e, z\}$ as a 2 -circuit for some element e, so $\operatorname{si}(\bar{N} \backslash z)$ is 3 -connected. We shall show next that $\operatorname{si}(\bar{N} \backslash z, y)$ is 3-connected. Suppose not. Then y is not in a 2 -circuit of \bar{N}. Clearly $\operatorname{si}(\bar{N} \backslash z) / y$ has a nonminimal 2-separation. Thus, by Bixby's Lemma, $\operatorname{co}(\operatorname{si}(\bar{N} \backslash z) \backslash y)$ is 3-connected, that is, $\operatorname{co}(\operatorname{si}(\bar{N} \backslash z, y))$ is 3-connected. As $\operatorname{si}(\bar{N} \backslash z, y)$ is not 3-connected, $\operatorname{si}(\bar{N} \backslash z) \backslash y$ has a 2 -cocircuit. Thus $\operatorname{si}(\bar{N} \backslash z)$ has a triad C^{*} containing y. As each of $\operatorname{si}\left(\hat{N}_{i-1}^{\prime}\right)$ and $\operatorname{si}\left(\check{N}_{i+1}\right)$ is a restriction of $\operatorname{si}(\bar{N} \backslash z)$, and either $C^{*} \cap E\left(\operatorname{si}\left(\hat{N}_{i-1}^{\prime}\right)\right)$ or $C^{*} \cap E\left(\operatorname{si}\left(\tilde{N}_{i+1}\right)\right)$ has exactly two elements, we deduce that $\operatorname{si}\left(\hat{N}_{i-1}^{\prime}\right)$ or $\operatorname{si}\left(\check{N}_{i+1}\right)$ has a cocircuit with at most two elements; a contradiction. Thus $\operatorname{si}(\bar{N} \backslash z, y)$ is indeed 3-connected.

Now $\operatorname{si}(\bar{N} \backslash z, y) / x$ has a non-minimal 2 -separation. Thus, by Bixby's Lemma again, $\operatorname{co}(\operatorname{si}(\bar{N} \backslash z, y) \backslash x)$ is 3 -connected. As $\operatorname{si}(\bar{N} \backslash z, y, x) \cong \operatorname{si}\left(P\left(\hat{N}_{i-1}^{\prime}, \check{N}_{i+1}\right) \backslash \Delta_{i+1}\right)$, we assume that $\operatorname{si}(\bar{N} \backslash z, y, x)$ is not 3-connected, otherwise the lemma holds. Then

3.6.2. \bar{N} has no 2 -circuit containing x or y.

As $\operatorname{si}(\bar{N} \backslash z, y)$ is 3 -connected, \bar{N} has no 2 -circuit containing x. By symmetry, \bar{N} has no 2 -circuit containing y.

Now $\operatorname{si}(\bar{N} \backslash z, y)$ must have a triad containing x. Assume that $\{a, b, x\}$ and $\{c, d, x\}$ are such triads. Then their symmetric difference is a disjoint union of cocircuits of $\operatorname{si}(\bar{N} \backslash z, y)$. Thus $\{a, b\} \cap\{c, d\}=\emptyset$. Now $\operatorname{si}(\bar{N} \backslash z) \backslash y$ is 3-connected. Therefore $\{a, b, x, y\}$ and $\{c, d, x, y\}$ contain cocircuits of $\operatorname{si}(\bar{N} \backslash z)$ containing $\{a, b, x\}$ and $\{c, d, x\}$. By considering the intersections of these cocircuits with $E\left(\operatorname{si}\left(\hat{N}_{i-1}^{\prime}\right)\right)$ and $E\left(\operatorname{si}\left(\check{N}_{i+1}\right)\right)$, we see that each such cocircuit has four elements. Moreover, we may
assume that the first contains $\{a, c\}$ and the second contains $\{b, d\}$. Thus $\{a, x, y\}$ and $\{c, x, y\}$ are cocircuits of $\operatorname{si}\left(\hat{N}_{i-1}^{\prime}\right)$. Hence $\operatorname{si}\left(\hat{N}_{i-1}^{\prime}\right)$ has a cocircuit contained in $\{a, c\}$; a contradiction. We deduce that $\operatorname{si}(\bar{N} \backslash z, y)$ has exactly one triad, say $\{a, b, x\}$, containing x. Moreover, we may assume that $\{a, x, y\}$ and $\{b, x, y\}$ are triads of $\operatorname{si}\left(\hat{N}_{i-1}^{\prime}\right)$ and $\operatorname{si}\left(\check{N}_{i+1}\right)$, respectively.
3.6.3. \hat{N}_{i-1}^{\prime} has no 2 -circuit containing a.

If a is in a 2 -circuit of \hat{N}_{i-1}^{\prime}, then, by $3.6 .2, a$ is parallel to z. Thus $\{a, x, y\}$ is both a triangle and a triad of $\operatorname{si}\left(\hat{N}_{i-1}^{\prime}\right)$; a contradiction.

By 3.6.2 and 3.6.3, $\{a, x, y\}$ is a triad of \hat{N}_{i-1}^{\prime}. Since $\{a, b\}$ is the only 2cocircuit of $\operatorname{si}\left(\hat{N}_{i-1}^{\prime} \oplus_{\Delta_{i+1}} \check{N}_{i+1}\right)$, the matroid $\operatorname{si}\left(\hat{N}_{i-1}^{\prime} \oplus_{\Delta_{i+1}} \check{N}_{i+1}\right) / a$ is 3 -connected, so $\operatorname{si}\left(\left(\hat{N}_{i-1}^{\prime} / a\right) \oplus_{\Delta_{i+1}} \check{N}_{i+1}\right)$ is 3 -connected. This completes the proof of 3.6.1.

Observe that the construction of \hat{N}_{i-1}^{\prime} means that we can label the triangle Δ_{i} of N_{i-1} by $\left\{x_{i}, y_{i}, z_{i}\right\}$ where $\left\{x, x_{i}\right\},\left\{y, y_{i}\right\}$, and $\left\{z, z_{i}\right\}$ are circuits of N_{i}^{\prime}. Clearly \hat{N}_{i-1} can be obtained from \hat{N}_{i-1}^{\prime} by first relabelling the elements x, y, and z of the latter as x_{i}, y_{i}, and z_{i} and then deleting some elements that are parallel to x_{i}, y_{i}, or z_{i}. By 3.6.2 and 3.6.3, none of a, x, or y is in a 2 -circuit of \hat{N}_{i-1}^{\prime}. Hence none of a, x_{i}, or y_{i} is in a 2 -circuit of \hat{N}_{i-1}. Moreover, as $\{a, x, y\}$ is a triad of \hat{N}_{i-1}^{\prime}, and $\operatorname{si}\left(\hat{N}_{i-1}\right)$ is 3-connected, $\left\{a, x_{i}, y_{i}\right\}$ is a triad of \hat{N}_{i-1}.

For all p with $2 \leq p \leq i-1$, let $\Delta_{p}=\left\{x_{p}, y_{p}, z_{p}\right\}$. Now $\hat{N}_{i-1}=P_{\Delta_{i-1}}\left(\hat{N}_{i-2}\right.$, $\left.N_{i-1}\right) \backslash \Delta_{i-1}$. Since $\left\{a, x_{i}, y_{i}\right\}$ is a triad of \hat{N}_{i-1}, either $\left\{a, x_{i}, y_{i}\right\}$ is a triad of N_{i-1}; or $\left\{a, x_{i}, y_{i}\right\} \cup Z$ is a cocircuit of $P_{\Delta_{i-1}}\left(\hat{N}_{i-2}, N_{i-1}\right)$ for some 2-element subset Z of Δ_{i-1}. In the latter case, we may assume that $Z=\left\{x_{i-1}, y_{i-1}\right\}$. Then $\left\{a, x_{i-1}, y_{i-1}\right\}$ contains and so is a cocircuit of \hat{N}_{i-2}. By repeating this argument, we deduce that, for some j with $1 \leq j \leq i-1$, after possibly relabelling the elements of Δ_{j+1}, we have $\left\{a, x_{j+1}, y_{j+1}\right\}$ as a triad of N_{j}.

Next we shall show that a is not in the closure of Δ_{j} or Δ_{j+1} in N_{j}. Note that, when $j=1$, the set Δ_{j} does not exist. We have $\left\{a, x_{j+1}, y_{j+1}\right\}$ as a triad of N_{j}. If N_{j} has a circuit containing a and contained in $a \cup \Delta_{j}$, then we contradict orthogonality. If N_{j} has a circuit containing a and contained in $a \cup \Delta_{j+1}$, then a is parallel to some element of Δ_{j+1}. Thus $\operatorname{si}\left(N_{j}\right)$ has a 2 -cocircuit, a contradiction since $\operatorname{si}\left(N_{j}\right)$ is 3 -connected having at least nine elements.

We now show that N_{j} / a is not graphic. Assume it is and let G be a graph such that $M(G)=N_{j}^{*}$. Since $\left\{a, x_{j+1}, y_{j+1}\right\}$ is a triad of N_{j}, it is a triangle of G. As $\left\{x_{j+1}, y_{j+1}, z_{j+1}\right\}$ is a triad of G, the vertex v common to x_{j+1} and y_{j+1} has degree 3. Since N_{j} is not graphic, G has a minor isomorphic to K_{5} or $K_{3,3}$. Assume first that G has a $K_{3,3}$-minor. Since $K_{3,3}$ is cubic, G contains a subgraph H that is a subdivision of $K_{3,3}$. As $M^{*}(G \backslash a)$ is graphic, $G \backslash a$ has no $K_{3,3}$-minor. Thus a is in H. Since H has no triangles, at most one of x_{j+1} and y_{j+1} is in H. Either v has degree two in H, or v is not in $V(H)$. In each case, by interchanging x_{j+1} and y_{j+1} if necessary, we get that G / x_{j+1} has a $K_{3,3}$-minor. But $\left\{a, y_{j+1}\right\}$ is a cycle of G / x_{j+1}, so $G / x_{j+1} \backslash a$ has a $K_{3,3}$-minor. Hence so does $G \backslash a$; a contradiction.

We may now assume that G has a K_{5}-minor. Then G has five disjoint connected subgraphs $G_{1}, G_{2}, G_{3}, G_{4}$, and G_{5} that together contain all of the vertices in G and such that G has at least one edge between every pair of these subgraphs. Suppose first that a is in G_{1}. Then two of the three neighbors of v are in G_{1}, and we may assume that v is in G_{1}. Hence x_{j+1} and y_{j+1} are in G_{1}. Then $G_{1} \backslash a$ is connected,
since $\left\{a, x_{j+1}, y_{j+1}\right\}$ is a triangle, and $G \backslash a$ contains a minor isomorphic to K_{5}; a contradiction. Finally, assume that a is a $G_{1}-G_{2}$-edge. If x_{j+1} or y_{j+1} is a $G_{1^{-}} G_{2^{-}}$ edge, then $G \backslash a$ has a minor isomorphic to K_{5}. In the exceptional case, without loss of generality, we may assume that x_{j+1} is a $G_{2}-G_{3}$-edge and y_{j+1} is a $G_{3}-G_{1}$-edge. Then v is in G_{3}. Since v has degree three in G, it has degree one in the graph G_{3}. Hence $G_{3}-v$ is a connected graph and, for each i in $\{4,5\}$, there is an edge of G with one end in $G_{3}-v$ and the other in G_{i}. We contract the subgraphs G_{1}, $G_{2}, G_{3}-v, G_{4}$, and G_{5} to vertices $v_{1}, v_{2}, v_{3}, v_{4}$, and v_{5}, respectively, and delete the edge a. The resulting 6 -vertex graph has $K_{3,3}$ as a subgraph, where the vertex classes are $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left\{v, v_{4}, v_{5}\right\}$. Thus $G \backslash a$ has a $K_{3,3}$-minor; a contradiction. We conclude that N_{j} / a is not graphic and the lemma is proved.

Now returning to the proof of the main theorem, recall that, immediately before Lemma 3.5, we showed that we could obtain a fine decomposition $\left(M_{1}, \Delta_{2}, M_{2}, \Delta_{3}\right.$, $\ldots, \Delta_{2 m}, M_{2 m}$) of a 3 -connected matroid \bar{M} that is isomorphic to a parallel minor of M. Each M_{i} with $1<i<2 m$ satisfies one of (i)-(iv) of Lemma 3.5.

Suppose that some matroid in the set $\left\{M_{1}, M_{2}, \ldots, M_{2 m-1}\right\}$ is graphic. In that case, let M_{i} be the lowest-indexed such matroid. Then $i>1$, so M_{i} labels a type (i) or type (ii) matroid. By Lemma 3.6, we may contract elements from M_{i} to obtain a matroid M_{i}^{\prime} that is a double triangle or a multi-triangle containing Δ_{i} and Δ_{i+1}, and we may contract at most one element of some M_{j} with $j \leq i-1$ to obtain a non-graphic matroid $M_{j}^{\prime \prime}$ such that

$$
\begin{equation*}
\left(M_{1}, \Delta_{2}, M_{2}, \ldots, \Delta_{j}, M_{j}^{\prime \prime}, \Delta_{j+1}, \ldots, M_{i-1}, \Delta_{i}, M_{i}^{\prime}, \Delta_{i+1}, \ldots, \Delta_{2 m}, M_{2 m}\right) \tag{3}
\end{equation*}
$$

is vertically 3 -connected. Now let $M_{i-1}^{\prime \prime}$ be $M_{j}^{\prime \prime}$ when $j=i-1$ and let $M_{i-1}^{\prime \prime}=M_{i-1}$ when $j<i-1$. Then $M_{i-1}^{\prime \prime}$ is cographic but not graphic, hence so is $\left(M_{i-1}^{\prime \prime}, \Delta_{i}, M_{i}^{\prime}\right)$. Thus, in (3), when we remove Δ_{i} and M_{i}^{\prime}, and replace $M_{i-1}^{\prime \prime}$ by $\left(M_{i-1}^{\prime \prime}, \Delta_{i}, M_{i}^{\prime}\right)$, we get a good decomposition of a vertically 3 -connected matroid whose simplification is a parallel minor \bar{M}^{\prime} of M. We can convert this good decomposition into a fine decomposition for \bar{M}^{\prime} by deleting superfluous parallel elements. This means that we can repeat the above process. Thus, from our original fine decomposition, we eliminate graphic matroids one by one, beginning with the lowest-indexed such matroid. After each such move, we recover a fine decomposition of a 3-connected parallel minor of M. Since no two consecutive matroids in $M_{1}, M_{2}, \ldots, M_{2 m}$ are graphic and M_{1} is non-graphic, we eventually obtain a fine decomposition for which the corresponding path has at least $m+1$ vertices, where each vertex except possibly the last labels a cographic matroid that is not graphic. If this path ends in a graphic matroid, that matroid has been unaltered in the above process and so its simplification has at least nine elements. Hence we can apply Lemma 2.12 and remove at least one vertex from the end of this path to obtain a path Q with m vertices each of which is labelled by a cographic matroid that is not graphic. Again by deleting superfluous parallel elements, we may assume that M_{Q}, which is a parallel minor of M, is simple. Relabel Q as $N_{1} N_{2} \ldots N_{m}$. By Lemma 3.5, each N_{i} with $1<i<m$ is type (iii) or type (iv).

Recall that $m=\left\lceil(k+2) \frac{1}{3} f_{3.3}(k)\right\rceil+2$. Suppose that the interior vertices of Q contain a subpath Q^{\prime} of at least $\left\lfloor\frac{1}{3} f_{3.3}(k)\right\rfloor$ vertices each of which is labelled by a type (iii) matroid. Then it is not difficult to check that the associated matroid $M_{Q^{\prime}}$ is cographic. Because each $\operatorname{si}\left(N_{i}\right)$ has at least nine elements, $\operatorname{si}\left(M_{Q^{\prime}}\right)$ has at least $f_{3.3}(k)$ elements and, by Lemma $2.12, M_{Q^{\prime}}$ is vertically 3 -connected. Since $D F_{k}$ is
the dual of V_{k}, we deduce by Theorem 3.3, that M has a parallel minor isomorphic to $M\left(D F_{k}\right), M\left(\mathcal{W}_{k}\right)$, or $M^{*}\left(K_{3, k}\right)$. Hence, in this case, Theorem 1.1 holds.

We may now assume that every interior subpath of Q with at least $\frac{1}{3} f_{3.3}(k)$ vertices contains a vertex labelled by a type (iv) matroid. Thus Q has at least $\left\lfloor(m-2) /\left(\frac{1}{3} f_{3.3}(k)\right)\right\rfloor$ vertices that are labelled by type (iv) matroids, so Q has at least $k+2$ such vertices.

We now modify each N_{i} with $1<i<m$ to produce N_{i}^{\prime} as follows. If N_{i} is type (iv), we let $N_{i}^{\prime}=N_{i} / Y_{i}$, where N_{i} / Y_{i} is a multi- K_{4} with respect to Δ_{i} and Δ_{i+1}. Now suppose N_{i} is type (iii). Then $N_{i}=M^{*}\left(G_{i}\right)$ for some graph G_{i} that has Δ_{i} and Δ_{i+1} as vertex bonds. By Menger's Theorem, G_{i} has a subgraph H_{i} that is a subdivision of $K_{2,3}$ where Δ_{i} and Δ_{i+1} are vertex bonds of H_{i}. Thus N_{i} has, as a minor, a double triangle with ground set $\Delta_{i} \cup \Delta_{i+1}$. Hence, by the Scum Theorem, for some subset Y_{i} of $E\left(N_{i}\right)$, the matroid N_{i} / Y_{i} is either this double triangle or a multi-triangle with respect to Δ_{i} and Δ_{i+1}. In this case, we let $N_{i}^{\prime}=N_{i} / Y_{i}$.

Let $R=N_{2}^{\prime} N_{3}^{\prime} \ldots N_{m-1}^{\prime}$. Using Corollary 2.9 and Lemma 2.12, we can show that $\operatorname{si}\left(M_{R}\right)$ is a parallel minor of $\operatorname{si}\left(M_{Q}\right)$. Furthermore, M_{R} may be obtained by identifying at least $k+2$ copies of $M\left(K_{4}\right)$ across a triangle and either deleting elements from the common triangle or adding elements parallel with the elements in the common triangle. Evidently M_{R}, and hence M, has a parallel minor isomorphic to $M\left(K_{3, k}^{\prime}\right)$, and this completes the proof of the theorem.

Acknowledgements

The second author's work was partially supported by a grant from the National Security Agency.

References

[1] R.E. Bixby, A simple theorem on 3-connectivity, Linear Algebra Appl. 45 (1982), 123-126.
[2] T.H. Brylawski, Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc. 203, 1-44.
[3] C. Chun, G. Ding, B. Oporowski, and D. Vertigan, Unavoidable parallel minors of 4-connected graphs, J. Graph Theory, to appear.
[4] R. Diestel, Graph Theory, Springer-Verlag, New York, 2000.
[5] G. Ding, B. Oporowski, Unavoidable minors of large 3-connected regular matroids, unpublished manuscript, 1994.
[6] G. Ding, B. Oporowski, J. Oxley, D. Vertigan, Unavoidable minors of large 3-connected binary matroids, J. Combin. Theory Ser. B, 66 (1996), 334-360.
[7] G. Ding, B. Oporowski, J. Oxley, D. Vertigan, Unavoidable minors of large 3-connected matroids, J. Combin. Theory Ser. B, 71 (1997), 244-293.
[8] B. Oporowski, J. Oxley, and R. Thomas, Typical subgraphs of 3- and 4-connected graphs, J. Combin. Theory Ser. B, 57 (1993), 239-257.
[9] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[10] J.G. Oxley, Matroid Theory, second edition, in preparation.
[11] J.G. Oxley, On nonbinary 3-connected matroids, Trans. Amer. Math. Soc., 300 (1987), 663679.
[12] P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory, Ser. B, 28(3) (1980), 305-359.
[13] W. T. Tutte, Connectivity in matroids, Canad. J. Math., 18 (1966), 1301-1324.
Mathematics Department, Louisiana State University, Baton Rouge, Louisiana
E-mail address: chchchun@math.lsu.edu
Mathematics Department, Louisiana State University, Baton Rouge, Louisiana
E-mail address: oxley@math.lsu.edu

[^0]: Date: February 23, 2009.
 1991 Mathematics Subject Classification. 05B35.

